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ABSTRACT Data are being generated and used to support all aspects of healthcare provision, from policy
formation to the delivery of primary care services. Particularly, with the change of emphasis from curative
to preventive medicine, the importance of data-based research such as data mining and machine learning
has emphasized the issues of class distributions in datasets. In typical predictive modeling, the inability
to effectively address a class imbalance in a real-life dataset is an important shortcoming of the existing
machine learning algorithms. Most algorithms assume a balanced class in their design, resulting in poor
performance in predicting the minority target class. Ironically, the minority target class is usually the focus in
predicting processes. The misclassification of the minority target class has resulted in serious consequences
in detecting chronic diseases and detecting fraud and intrusion where positive cases are erroneously predicted
as not positive. This paper presents a new attribute selection technique called variance ranking for handling
imbalance class problems in a dataset. The results obtained were compared to two well-known attribute
selection techniques: the Pearson correlation and information gain technique. This paper uses a novel
similarity measurement technique ranked order similarity-ROS to evaluate the variance ranking attribute
selection compared to the Pearson correlations and information gain. Further validation was carried out using
three binary classifications: logistic regression, support vector machine, and decision tree. The proposed
variance ranking and ranked order similarity techniques showed better results than the benchmarks. The
ROS technique provided an excellent means of grading and measuring the similarities where other similarity
measurement techniques were inadequate or not applicable.

INDEX TERMS Imbalanced dataset, class distribution, binary class, imbalance ratio, majority class,
minority class, oversampling, under sampling, logistic regression, support vector machine, decision tree,

ranked order similarity, peak threshold accuracy.

I. INTRODUCTION

The problems associated with class imbalance are very com-
mon in real-life datasets, which could result in the sensitiv-
ities of predictions becoming skewed towards the majority
class target [1], while adversely becoming insensitive to the
minority target class; hence, the proportions of the captured
minority target classes are subjective and, in many instances,
mere approximations. In data mining and other predictive
scenarios, the minority classes are usually the interest group,
for instance, medical data such as diabetes or heart data [2],
financial fraud detection, credit scoring [3], Weblogs, and
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instruction detection, the interest groups are usually the
minority class. Therefore, the general performance of any
classification algorithm is relatively determined by the sensi-
tivities to the minority target class, but usually, the predictions
of the minority target class are below optimal due to the
primary design of the algorithms, which assume an equal
class distribution in both concept and application [4]. The
effects of this class imbalance become more evident when
the built model is applied to test data or deployed. External
effects have more influence on the imbalanced data; missing
data or general noise has more impact on a data distribution
that is imbalanced than those that are more closely balanced;
the more a dataset is imbalanced, the greater the impact of
noise on the model built using the data [5].
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An imbalanced dataset has some unexpected impacts
directly and indirectly on the deployments due to the class
distributions. It is relatively difficult to assess the accuracy
of the majority class that has been captured by the pre-
dictions because the accuracy boundaries are not clearly
defined [5] which raises the issues of subjective proportions.
It should be clear what a data mining or machine learn-
ing process is intended to achieve. In some processes, it is
costlier to misclassify a minority class than to misclassify
any of the majority classes, for example, in chronic dis-
eases such as diabetes, heart disease, kidney disease and
cancer [6]. If the prediction is unable to identify the sick
patient, the error could result in death or more serious health
complications [7].

Class imbalance also has a profound effect on big data
(extremely large datasets) such that the traditional techniques
of analyzing these voluminous datasets cannot produce the
expected accurate results [8]. Many of the poor results in
the classification performance are due to skewness in the
imbalanced data class ratio. The general model built with
imbalanced data has a tendency of false alarms and, in many
instances, outright misclassification.

Binary classifications (two classes, 0, 1)[9], [10] are
very common in imbalanced classed scenario and provides
a context example of the problems encountered during
predictions. [11]-[13]. An analogy is to consider a study
of a population consisting of 1000 patients, and assuming
that 900 patients out of 1000 have no disease as shown
in Figure 1, a model that predicts all 1000 as not having the
disease would still appear to be 90% accurate, even if the
remaining 100 patients have the disease, and they were not
identified [14].

class 0 (50%)
class 0 (90%)
class 1 (50%)
class 1(10%)
(@) (b)

FIGURE 1. (a) Imbalance data and (b) balance data.

Therefore, the challenge is to reduce the effects of the
imbalance ratio to improve the abilities of the classification
algorithm to become more sensitive to the minority class
because the minority classes are usually the reason for the
predictions [15]. Hence, if the algorithm used is unable to
perform by targeting the minority class, the accuracy obtained
becomes subjective and essentially an approximation. This
paper presents a new attribute selection technique (vari-
ance ranking) for handling imbalanced class problems in the
dataset, which are based on the intrinsic characteristics of the
data items (the variance). The contributions of this paper are
as follows:
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« A novel attribute selection technique (variance ranking)
based on the intrinsic properties of each attribute in the
subsection of the classes.

« A novel similarity measurement technique (ranked order
Similarity-ROS) in Section I'V-B.

« A novel method of choosing significant attributes based
on ranking by showing that the significant attributes are
those at the peak threshold performance.

« An independent process of evaluating and validating the
proposed approach and findings.

The remainder of this paper is organized as follows: Section II
provides an overview of the related works, and Section III
describes the proposed method and approach. Section IV pro-
vides the experimental results based on the attribute selection
on a set of publicly available data to validate the proposed
framework, and Section V is the discussion, summary of the
papers novelty and the conclusion.

Il. RELATED WORK

Most of the real-life datasets are imbalanced, where the
classes are not evenly distributed, Figure 2 represents the
ubiquitous nature of imbalanced classed in association with
other problems that a real life data might have; that is “Most
Real-life data set must have imbalanced classed in addition
to other problems”. Therefore, how to obtain an accurate
prediction from such a dataset is a subject of research in
industry and academia. Researchers have been devising ways
to reduce the general effects of class imbalance and improve
the predictive performance of classification algorithms.

units values
tranformation
inaccurate data
unstructured - type
imbalanced
outlier

classed
other errors

RN S dimensionality

FIGURE 2. Problems of real-life data sets.

The processes of dealing with imbalanced data can be cat-
egorized as follows: sampling-based techniques, algorithm
modifications and the cost-Sensitive Approach [16]. Details
of these techniques and their importance in dealing with class
imbalance and targeting the minority class will be reviewed
in the following sections.
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A. SAMPLING BASED TECHNIQUES

The main idea behind sampling-based techniques is to bal-
ance the class distribution. This method of handling imbal-
anced data has become one of the most popular due to
the ease of use. The process involves changing the total
number of class data items by either increasing the minor-
ity class [17], [18], known as oversampling or reducing the
majority class, known as undersampling.

The oversampling techniques were made popular by the
pioneering work of [17] through a process called the synthetic
minority oversampling technique (SMOTE), which involves
artificially generating data items to increase the minority
class in the dataset to the level where the imbalance ratio (IR),
which is the ratio of the majority class to the minority class,
is approximately equal. Although this SMOTE technique
apparently has many advantages, particularly in solving the
issues of class imbalance, it invariably introduced issues such
as the misclassification cost ratio [19], and some researchers
have also encountered problems of overfitting, which stem
from creating a replica of the same dataset and inheriting the
intrinsic errors therein.

Therefore, new approaches are necessary to solve
the issues of class imbalance, such as investigating the
relationships between variables and the measure of central
tendencies, which is our approach. Other modifications of
oversampling have been proposed, such as random oversam-
pling used by [20] and [21], which tends to select the training
data by random selection. This method, though improving
accuracy, has led to delays in the execution and overfitting
when dealing with large datasets. A generative oversampling
technique was used by [22] and [23], and the process
involved new data being created by learning from the training
data. This method made it possible for the created data to
have the basic characteristics of the existing data, thereby
maintaining the data integrity, but the accuracy improvement
is limited because the characteristics of the training data are
still maintained.

An alternative method, which is the opposite of oversam-
pling is called undersampling, it basically reduces the number
of majority classes. These methods have also gained strong
research interest in academia. The literature [15] presented
two methods of undersampling as random and informative;
the random process chooses and eliminates data from the
existing class until the class distribution is balanced, while
the informative undersampling eliminates the data obser-
vation class from the dataset based on preselected criteria
to achieve balance. A process known as active undersam-
pling that eliminates the sample of data items that are far
from the decision boundary was used by [24]. These sam-
pling methods have a problem with performance in large
datasets and can lead to the removal of important data
items.

Multiple resampling techniques were employed by [25]
because it provides better tuning results with every resam-
pling iteration. A method of integrating the oversampling
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technique with cross-validation to improve the general perfor-
mance was proposed by [26]. Cluster sampling methods were
also used by [27], which introduced the process of cluster
density and boundary density thresholds to determine the
cluster and sampling boundary. The literature [28] used a
method called a bidirectional sampling based on K-means
clustering, which performed very well with data that had
too much noise and few samples. Each of these sampling
techniques has its benefits and drawbacks, which are very
subjective and depend on the context of the application and
usage [29].

A technique that could result in an improved performance
might not show the same performance when used in different
contexts; therefore, more modifications and improvements
in the existing sampling techniques have continued to be
presented and developed by researchers based on some local
properties of the dataset. For instance, some undersampling
methods have incorporated the mean of the attribute values
as a metric for the derivative of the sampling techniques [30].
One of the main disadvantages of the oversampling method
is the risk of overfitting due to generating a replica of the
existing data [31]. For undersampling, the main disadvantage
is the possibility of discarding some data that might present
potential useful information, particularly during the process
of variable selection that is cross dependent on other variables
or when the potential target is far away from the central data
items.

B. ALGORITHM MODIFICATIONS TECHNIQUE

This technique tends to interact with the classifica-
tion algorithm, making it less sensitive to the class
imbalance [32], [33], depending on the derivative of the clas-
sification algorithm [34] and proposes a benchmark to val-
idate other algorithm-dependent techniques; it has different
nonstandard variations that have been discovered over time;
for example, in SVM the margin of class separation is weak-
ened to align the hyperplane to accommodate extraneous
classes by adjusting the class boundary in the kernel functions
for a condition in which the training data could be represented
in a vector space or using a kernel matrix if it is sequential
data [35], [36].

A modification of the K-nearest neighbor, called the
weighted-K-nearest neighbor (W-KNN) was used by [37].
The process utilized a wider region around the data item dis-
tribution to deduce the nearest neighbor, but this has resulted
in accommodating some extraneous data, such as outliers,
which may add some noise, resulting in the whole prediction
becoming less accurate when applied to datasets that has
large variances. Recently, a new approach of handling imbal-
anced datasets known as conditional generative adversarial
networks (cGAN) was introduced by [38], which is based on
a concept of continuous competitions by two vectors known
as generators and discriminators, while the discriminator tries
to learn the actual data set pattern by comparing it to the
data being generated by the generator, feedback between the
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FIGURE 3. An overview of the proposed method.

two vectors results in adaptation and improvement to the data
quality.

C. COST SENSITIVE APPROACH

This approach considers the cost of misclassification and
adjust the results into empirical consequences of misclassi-
fication by allotting a different cost threshold to the target
class [39]. In a cost-sensitive approach, the accuracy is not
as important as the implication of wrongly classifying the
target. In this context, cost might allow a loose boundary,
in predicting chronic diseases, an incorrect prediction such as
not being able to capture the presence of illnesses or any other
unpleasant occurrence; hence, results are computed with a
class that leads to minimum cost [40]-[42].

The cost-sensitive learning (CSL) was implemented in
combination with resampling and an imbalance ratio by [43].
When using the cost-sensitive approach, each scenario must
have a baseline for measuring the acceptable cost and may be
modified based on the context of the situation. Combination
algorithms such as the ensemble and bagging approaches,
although in their infancy, are becoming popular for han-
dling imbalanced datasets. For instance, in [44] and [45],
balance-bagging was utilized to study the characteristics of
data items as it affects the class distributions.

All the existing methods, as explained in this section,
differ from our approaches because they are based on two
main methods. Firstly, its either artificially generate or reduce
the existing data items to equalize the class distributions.
Secondly, the existing machine learning algorithms are mod-
ified. However, our approach is based on looking at the
intrinsic properties of the attribute distributions within a
term of reference (measure of central tendency); we con-
sider how the attribute values are distributed in context to
the domain (variable) being measured. We believe that the
attribute value arrangement within a central term of reference
can provide insight into the relevance of such attributes to
the class that they belong to in a binary classed context,
and hence, they can be metrics to predictions in binary
classification.
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Ill. PROPOSED METHOD AND APPROACH
The classification of imbalanced data poses a significant chal-
lenge capable of skewing sensitivities to the majority class
target. In addition, the proportions of captured minority target
classes may be below the actual numbers of the minority
class in the dataset. To achieve proper classification while
retaining the sensitivities and features of the data, we propose
the technique as illustrated in Figure 3.

By definition, variance is a measure of the spread of the
data items of number N, from the mean and is given by 02 =

Z(IT_”)Z if the whole population is considered. However, this
equation is slightly different, when a sample of the whole
population is used; o2 = w Consequently, to what
extent does the type of variable data item affect the overall
variance? Variables are made up of discrete and continuous
data items, as in the case of our dataset, and the effect of these
intrinsic properties of the data item can be deduced accord-
ingly. For an input dataset with N = {n;...... n,}, where nis a
combination of discrete and continuous variables [46]-[48],
if the variance of the continuous random variable x is given
by Var, which is the expected value of the square of the
the deviation, for all the variable x with a mean of u the
variance is;

var, = E { @ — )? (1)

The Equation 1 [47] is modified to accommodate both dis-
crete and continuous variables. Hence, when variable x is
continuous the variance is

n
var, =E{@ -} =Y - wf® @
i=1
Also for discrete variable Equation 1 would resolve to;

oo

Var, = E {(x — ,u,)z] = f @—p’f@dx  (3)
—00

When the whole population is considered, the population

variance becomes subjective to the probability density func-
tion f(x) such that that the expectation values and mean of x
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is the sum of Equation 2 and Equation 3 Visotar) = Vidisrete) +
V{(continuous) 1€ sum of discrete and continuous variable. There-
fore, if for independent random variables the variance of their
sum or difference is the sum of their variances:

mm=2arm%w+f @—w’f @Wdx @
i=1 -

fx%anu—uz ®)

if p is considered as being the propability density functions
expected value of x which is equal to xf (x) dx = pi then the
population variable, V4, is also deduced by [49]:

n
Viany = ) pi- (6 — p)? (6)
i=1

For all values of pi being the probability density functions,
for equation 5 and 6, the similarity is deduced by equating
the integral to f (x)dx and )}, pi. Due to the premise
of the same range of probability density function, the vari-
ables transformable vis-a-vis discrete and continuous as pro-
vided by [46], [50], and [51]. This link between the discrete
and continuous distribution under the condition of the same
range [52] therefore equalized the variables; hence, the vari-
ances of the discrete and continuous variables are equal if
f (x)dx and )i, pi are equal. Our technique implemented
the concept of sample variance by taking n values in the range
of yj....y, of the population where n < N. Estimating the
variance of the sample data variables gives the average of the
square deviationsasino) = 1 3™ | (y —§)? = (% ZLI)—
Y=2 L i (i — yj)z. This computation confirms that the
range of the variable values of x is still within that of the
mean, as explained earlier. This derivative will hold true in
both cases of variances if and only if the distribution of the
variable x is completely determined by the probability density
function f(x) [53], [54], which is shown in Equation 5 and 6.
In carrying out the experiments, we have to contend with
the properties of the attributes like the continuous and discrete
data, the numerous data type and the natural partition in the
in the datasets. Therefore, the selection of appropriate sta-
tistical techniques that could accommodate these properties
on the subpopulation (binary groups). The work of [55], [56]
and [57] provided an insight in such processes, the subgroup
distribution is not normal as such non parametric statistical
techniques as recommended by [58] and [59] will be used.
Consequently, we have to considered a process of variance
ranking known as Kruskal-Wallis one-way analysis of vari-
ance by rank test [60]-[62], which addresses the nonparamet-
ric differences between the continuous and discrete variables.
This test is used as an alternative to one-way analysis of
variance (ANOVA) when a normal distribution in the dataset
is not assumed in the probability density functions of f (x) dx
and )7, pi.The Kruskal-Wallis ANOVA by rank is given by

Y8 ni (7 —7)?

H=N-1 :
i (5 %)

@)
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Based on the probability density of Equations 5 and 6,
the Equation 7 would resolved to
Nngj 251 Mmaj (i — X)?
N = — ®)
min Yot min (4 — %)
The ratio of two random variable events is the same if they
share the same probability function and sample space [63],
agreeing with Equation 8.

A. VARIANCE SIGNIFICANT TEST
We have to ascertain if the pattern noticed in the variances
are significant or just due to mere coincidence, that is the
variance of each of the variable in the majority and minority
data subsets different from each other? this is done by con-
sideration the F-distribution [64]-[66] as against other dis-
tributions functions like chi-squared distribution because the
F-distribution could deal with multiple sets of events [67] as
represented by different variables in the majority and minor-
ity data groups or classes. By definition the F-distribution
(F-test) [65], [68] is given by

Larger variance

(€))

"~ smaller variance

For the the sum of discrete and continuous variable, will be
F; = Fiscrete + Fcontinuous S provided in Equation 4,

Vig . Vic
Fi=|—+— 10
' I:VZJ + Vae (10)

Therefore, for subset (class 1 and 0)
Ffinat = Fi + Fj (1D

The Equation 10 and 11 agreed with the rules that
“variance of independent variable is additive” please
see [69], [70] Var[X+Y] = Var[X]+Var[Y].

The unit of Fj,, is the same unit as variance, hence Ffpg is
a measure of variance of the variances Fy and F;. For a Binary
classed data set, if the sub classes variance is V; and V}, then
the 11 would resolved to 12, the squaring is a mathematical
expediency to eliminate any negative in the value of Fgq

Vii . Vo 2
Flinal = | — + -2
'final [V0i + Vij

(12)
B. SPLITTING THE DATA SET

In splitting of the data set, the total number of instances
were taken into consideration, were the numbers are below a
thousand like in (Pima, Wiscosin and Bupa) all the data were
taken and split into two (training and test) data by the ratio
of 60% and 40%, the reason for taken this close proportion is
to avoid ending up with very few numbers of minority groups
in both the training or the test data since it will be split again
into positive and negative down along the line. For Cod-rna
data set random selection of one 1000 instance from the total
of 488565 in the proportion of 67% and 33% (see Table 1)
which is the ratio of the positive and negative instances in the
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TABLE 1. Table of the four data set.

Pima Indians Di- | Wisconsin BUPA liver | Cod-rna
abetes data breast cancer disorders Dataset
Attrih + class 8 11 7 9
Number of 768 699 345 488565
Negative 500 (65.10%) =0 | Benign: 458 | 200 325,710
(65.5%) =0 (57.97%) (67%) =0
=0
Positive 768 (34.90%) = 1 | Malignant:241 | 145 162,855
(34.5%) =1 (42.20%) (33%) =1
=1
Value yes none yes none
Number of Class 2 2 2 2

total data set, this was done before splitting it further to 60%
and 40% of (training and test) data set.

The training data set was divided into two subsets of
different classes to represent the two events (positive and
negative). If the variance of subset V; (Variance of negative
class) is Zf;l Nnaj (Xi —f)z and Vq (Variance of positive
class) is D% | fmin (X — J?)2 of the data set were obtained,
the ratio of Vj to V1 was added to the ratio of V; to V), and
we squared the results to eliminate any negative values. The
results were then ranked to achieve the final classification.
The criteria used for evaluation are as follows. First, we com-
pared the results obtained with two benchmarks of attribute
selection (Pearson correlations and information gain), and in
the second evaluations, we provided a series of experiments
of binary classification: logistic regression (LR), support vec-
tor machine (SVM) and decision trees (DT) without attribute
selection and with attribute selection obtained in our vari-
ance ranking techniques. We describe in detail the processes
in Section 4.

C. DATA ACQUISITION AND DESCRIPTIONS

The datasets used in this research are the Wisconsin Breast
Cancer data, the BUPA liver disorders data, the Pima Indians
Diabetes data and the Cod-rna data. The datasets are from the
machine learning archive [71], [72], the full descriptions and
other details of the datasets are listed in Tables 1.

The data are in the public domain; hence, no extra per-
mission was needed. All references to the data have been
acknowledged. Detailed descriptions such as the number of
instances, total attributes, missing data, and class distributions
are all provided. The main similarities in the datasets are that
the target classes are all binary (two classes).

D. DATA PREPARATION
Although the Weka data mining and machine learning soft-
ware were used for most analyses, we also used Microsoft
Excel for initial analysis and data preparation, such as count-
ing the missing values and descriptive statistics. The work
involved four datasets, Pima Indians Diabetes data, Wiscon-
sin Breast Cancer data, BUPAliver disorders data and the
cod-ra dataset (please see Section III-C). These datasets
were explored to ascertain the types of data preparations that
would be applied to each in accordance with Cross Industrial
Standard Process- CRISP for data mining [73], [74].

For the Missing data, two of the datasets had missing
data; the Pima Indians Diabetes data and the BUPA Liver
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Disorders data. This was treated using the average of the data
column items because the Skewness for the missing columns
are zero, hence their mean value were used as replacement
for the missing data in the body mass index (BMI) and
age attributes in the Pima Indians Diabetes data, also for
the BUPA Liver Disorders data, the aspartate aminotrans-
ferase (sgot) and alanine aminotransferase (sgpt) columns
were also treated for missing data values. The Wisconsin
Breast Cancer data are well organized and were treated from
source, so there were no problems with the data, while the
cod-rna dataset had very few cases of missing values; thus,
it was deleted. Additionally, none of the data had any prob-
lem with outliers. Finally, the inconsistency of representing
missing values with zero in the Pima Indians Diabetes data
was also addressed in the BMI column. For any part of this
research, three binary classification algorithms (DT, LR and
SVM). These three Machine Learning algorithm belong to
the group of supervised learning algorithms, DT have the
advantages of being able to handle both regression and clas-
sification problems, in its simplest form it takes the training
data set as the root node and split it into two and continue
splitting until the final node, see Figure 4.

apou
JOOY

/// ~—
-
E\ ! !

00000000
FIGURE 4. Decision tree.

The splitting is based on intrinsic properties of the data
set known as Entropy Entropy H(X) = — Y _ p(X)logp(X)
which is a measure of the homogeneity of the data
therein and is derived from either information Gain
Information Gain I(X,Y) = H(X) — H(X|Y) or Gini index
Gini(E) = 1 — Y1y (p)* [T5HH771.

The LR is an Logistic Regression is an offshoot of linear
regression y = mx + ¢, which is basically an equation of
straight line. LR uses a logistic sigmoid function to transform
its output into a probability discrete binary like(1 or 0, yes or
no, true or false) see Figure 5, LR is very easy to implement,
interpret and train [78]-[80].

The SVM algorithm considered all data items as a point in
a plane where a dividing line that demarcate (the hyperplane)
the data points into two parts representing the binary classes
which the data belong to see Figure 6 .

Any new test data will either belong to one of the
classes. Apart from some of the advantages of these three
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FIGURE 5. Logistic regression.
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FIGURE 6. Support vector machine.

algorithms mentioned earlier, the main reasons for selecting
these algorithms is because of their performance with corre-
lated attributes that are not directly related to the outputs but
could be related to other attributes, these machine learning
algorithms could detect such indirect relations [81]. We also
used k-fold cross-validation to avoid over-fitting. The metric
of measurement in the binary context is addressed in the next
section.

E. RESULT AND MATRIX TERMS DEFINITIONS
While there are different binary classification algorithms, all
the performance evaluations uses the confusion matrix [82].
The confusion matrix is represented by a table summary
of numbers in a group that have been correctly and incor-
rectly predicted [83], [84] therefore, the classification results
will be explained using a confusion matrix, which is a
cross-section table that evaluates how accurate the model
classifies the binary groups. One major reason for using
this metric in measuring binary classification is the insight
into how the algorithm identifies the classes and how many
classes have been confused and mislabeled and the ability to
visualized the classification performance as explained in [85]
and [86]. This enables the assessment of the accuracy of the
model to be easily compared to the benchmark.

The confusion matrix in Table 2 is especially useful in
binary situations as against multiclass classification, where
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TABLE 2. Confusion matrix.

Predicted
Positive | Negative
Actual Yes TP FN
Actual No FP TN

multiple overlapping classifications could make the result
less discriminant. The terms in the confusion matrix tables
are defined below:

True positives (TP): These are cases in which the sys-
tem predicted yes and they do have the disease.(Correctly
predicted).

True negatives (TN): We predicted no, and they don’t have
the disease.(Correctly predicted).

False positives (FP): We predicted yes, but they don’t have
the disease.(Incorrectly predicted)

False negatives (FN): We predicted no, but they do have
the disease.(Incorrectly predicted).

True Positive Rate (TPR) = Sensitivity = Recall; defined
as the proportion of actual positives which are predicted
positive).

P
Recall = ———. (13)
(TP + FN)
. P
Precision = —— . (14)
(TP + FP)
Precision.Recall
= — . (15)
(Precision + Recall)
1, in in
Accuracy = Pt = Pt . (16)
(tp +1tn+fp +fn)

The formulas show that the F-score is another means of
testing the accuracy of the binary classification [87].

IV. EXPERIMENT

A. VARIANCE RANKING FEATURE SELECTION METHOD
The proposed method of attribute selection should depend on
the nature of the data and the target. For instance, in discrete
and continuous numeric data with a binary class target of
1 or 0, variance ranking has been found to show a very
promising result. Missing values and other data preparations:
the first step was to treat the missing values and other neces-
sary data preparations as described above in the Pima Indians
Diabetes data, Wisconsin Breast Cancer data, BUPA Liver
Disorders data and the cod-rna data, which have a high imbal-
ance ratio. Note that none of the datasets has the problems of
outliers. The missing values were treated by replacing them
with the average of the data in each of the columns that had
missing values. The variables are numeric with a binary target
(0, 1 or as detailed in the dataset). The aim was to find which
of these variables could be very significant in predicting the
target class. First, a subsection of the dataset that belongs to
each target class was selected, e.g., 1 and 0. The variance
of each of the subsections, class target 1 and class target 0O,

of the dataset waszcomputcd using the following variance
Ya—i)

T If The Variance subsection of class 0 is

formulav =
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given by:
n _ a2
(n—1)
If then Variance subsection of class 1 is given by:
ZF—1(1'1 - flz)
Vi==———— 18
1 w—1 (18)
The Variance Ranking is then deduced by:
2
Vi+vg
VR=|-L -0 1
( Vivo ) 19)

being a derivatives from equations 9 to 11 as applied to both
the majority and minority classes in the data set.

TABLE 3. The variance ranking of Pima India Diabetes data.

Variable i Vo 04,/Va) (Vo V1) VR

plaghi | 530,318 | 683028 | 12156427 | 0822610133 | 41544714597
binass 573530 | 47065 | 12231566 | UB17336832 | 4164511137
age T19.856 | 116,344 | 10301863 | 0970698171 | 4.003538843

preg T0.1388 | 767682 | 13207031 | 0757172446 | 4317566B0Z
insutest | 105832 | BUT36Z | 1310837 | D 762871343 | 4300266385
skinfeld | 984036 | 700424 | TA045433 | D711772501 | 4480485745 |
pedi (13812 | 0.09846 | 14028032 | 0.712838384 | 4476023806

TABLE 4. The variance ranking of liver disorder Bupa data.

Variable Vi Vo 1/Vo) | Wa/Vi) VR
mev TE56064 | 23.08621 | 0.6489235 | 15422021 | 4 798840241
alkphos | 345.6176 | 3262356 | 10594111 | 09439207 | 4013338026
St TAEGAT | AT7.2000 | 05216739 | 19160063 | 3046673357 |
sgot 5087730 | 1274371 | 046986 | 71262037 | 6150402623
gammagt | 1103502 | 1807.52 | 0.6106261 | 16376635 | 5.054805883
Erinks T544272 | 8075060 | 19123948 | 05220046 | 5930683086 |

TABLE 5. The variance ranking of Wisconsin breast cancer data.

Vi Vo Vi/Vo) [ Vo[V VK
ClumpThickness 58093084 | 28053406 | 21043832 | 04751982 | 6634230430
Uniformity of Cell Size | 73957469 | 08239083 | 80764174 | 0.111305 | 8258847934
UniformityofCellshape | 63640733 | 09956162 | 63925784 | 015168571 | 43 48509828
| 09936696

Marginal Adhesion | 10307089 | 0 TOIT2753 | 00964064 | 1096032918
5i ithelialCellSize | 6.0103734 | 08411273 | 71456165 | 0.1399439 [ 5307942022
Bare Nuclel 9.TI368E 13873264 | 70017324 | 01428218 | 51.04465399
BlandChromatin 51704011 | 11671333 | 44300005 | 0.2257336 | 2167386052
NormalRucleoll TLZZ7006 | 11211767 | 10013592 | 00998643 | 281

Mitcses 6.5430498 | 02519995 | 25064538 | 0.038514]1 | 676.1587396

TABLE 6. The variance ranking of cod-rna data.

Variable | V1 V0 VIVO) | (vavI) [ VR
X1 TO0Z028 | 09863 TOI5646 | 0984304 | 4001001
XZ 0939372 | OG55021 | 0963614 | 1016659 | 4001092
X3 OOEHE | | ODE3TS | LOI6E08 | 4001001 |
] 0092204 | 1016367 | 0076034 | 1024554 | 4003354
X6 0999488 _| 1025702 | 0674943 | 1026227 | 4002682
X5 0999758 | 0050536 | 1036175 | 0063085 | 4005053 |
X3 0099864 | 1042645 | 0938960 | LOAZ781 | 4007023
X7 0050464 | 0.642895 | 1478412 | 06764001 | 4643222

In Tables 3, 4, 5 and 6, the column V; and Vj
are the results of the variance of each subsection class
(positive=1 and negative=0) for each attribute. The column
(V1/Vp) and (Vp/V1) is the division of each variance and
inverted and divided again to produce the values that could

2
be added to each other. The VR = C",IJ}E“ is the addition
of the two columns (V; / V) and (Vp/ V1) and finally, the result
is squared.
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B. COMPARISON OF VARIANCE RANKING
FEATURE SELECTION WITH OTHER
BENCHMARKS TECHNIQUE
Attribute selections in general could be categorized as filter
and wrapper methods [88], [89]. The filter method uses the
general characteristics of the data item to determine the fea-
tures that are more significant without involving any intended
learning algorithm, while wrapper method on the order hand
tend to determined the features in data set that would produce
the best performance on a predetermined learning algorithm,
putting it succinctly, wrapper method suggest the attributes to
use for a given classifier. This suggestive and predetermining
the classifier made the wrapper method less generic and
limited as a means of comparison with our method (Vari-
ance raking) which is independent of any learning algorithm.
Beside wrapper methods create a subset of features which
are deemed to be most importance for a specific classifier’s
performance, these subsets more often than not does not
contained all the original features meaning that some features
are eliminated in the subsets and each feature relevance to the
subsets are not made known, but filter methods uses all the
features and rank them to produce the order of relevance of
each, ie no feature is eliminated from the ranking [88] The
comparison of variance ranking attribute selection will be
done with similar filter method that are not classifier sugges-
tive and uses all the features. Consequently, We compare our
method to the state-of-art filter feature selection methods; the
Pearson correlation (PC) and [90]-[92] and information gain
(IG) [93], [94] the results are provided in Tables 7, 8, 9 and 10
for the four data sets used in the experiment.

Variance(V) is given by:

_ 32
V = M (20)
(n—1)
Pearson Correlation(PC) is given by:
pe - LE =D -7) a1

IR E
and Information Gainy y)(IG) between X and Y is
IG = Entropy(y) — Entropy y)- (22)

TABLE 7. Comparison of variance ranking with PC and IG variable
selection for Pima India Diabetes data.

Ranking of variables based on different feature selection Algoritk
sn_| Variance il Pearson Ci Gain
1 age plasghu Age
2 | plasgla hmass bmss
3 hmass preg plasgln
4 ingutest age preg
5 preg insutest insutest
6 | pedi skinfold skanfold
T | skinfold pedi pedl
8 | diapres diapres diapres

Tables 7, 8, 9 and 10 show the results obtained using the
three attribute selections on the four binary classed datasets;
Pima Indians Diabetes, BUPA Liver Disorders, Wisconsin
Breast Cancer data and the cod-rna data ranked the attributes
according to their relevance to the target class (1, 0). The four
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TABLE 8. Comparison of variance ranking with PC and 1G variable
selection for liver disorder Bupa data.

Hanking of variables based on different feature selection Algodt.hm
sn | Variance Ranking | Pearson Ci i Gain
1 sgot sgot dnnks
T | agpt gammagt gammagt
3 | drinks drinks SEpt
4 | pammagt mey sgot
5 | mev SEPR alkphos
[ 6| alkphos alkphos eV

TABLE 9. Comparison of variance ranking with PC and 1G variable
selection for Wisconsin breast cancer data.

Ranking of variables based on different i‘mum Mulmn Algnnthm

sn | Variance Ranking Pearson Ci

T | Clumplhickness Ummape Uniformmity of Cell Size
2 | BlandChromatin i ity of Cell Size | BlandChromatin

3 | Uniformi TShape Bs:r.Nul:Jm UniformityofCellShape
4 | Bare Nuclei BlandChromatin Bare Nuclei

5 | SingleFputhelalCellSize | Clumpliickness SingleFpihelalCellsize |
6 | Uniformity of Cell Size | NormalNucleoli NormalNucleoli

7 | WormalMNucleoli Margmnla\dhman ClumpThickness

§ | MarginalAdhesi ialCellSize | MarginalAdbesion

T | Mitoses Mitoses Mitoses

TABLE 10. Comparison of variance ranking with PC and IG variable
selection for cod-rna data.

Hanking of variables based om different fmmre celection Algorithm
sn | Variance Ranking Pearson C Gain
1 [ XI X1 X1
X2 XZ ¥
3 [ X3 X4 X3
4 [ X4 X5 X4
5 [ X6 XE& X5
6 | X5 X7 xT
7 X& X3 X6
8 [ X7 X6 X

results were comparatively similar but had some minor differ-
ences. For instance, in Table 7, the most significant attribute
using variance ranking and information gain was (age) for
the Pima Indians Diabetes data, while the first in the Pearson
correlation was plasma glucose; in row numbers 6, 7 and
8 of Table 7, the three attribute selection techniques selected
pedi, skinfold and diapres, respectively, as the least sig-
nificant attribute in a slightly different order. Also in the
BUPA Liver Disorders data in Table 8,the most significant
attribute using variance ranking and the Pearson correlation
was agot while sgot ranked third by the information gain
selection, but in Table 8, in row numbers 5 and 6, each of
the attribute selection techniques selected mcv and alkphose,
respectively, as the least significant attributes. For Table 9
For the Wisconsin Breast cancer data, two of the techniques
(variance ranking) and (information gain) were in agreement
selecting Mitoses and Marginal Adhesion as the least signifi-
cant attributes, while the Pearson correlation also identified
Mitoses as the least significant attribute but selected Sin-
gleEpithelialCellSize as the second least significant attribute.
For Table 10 for the cod-rna data, the variance ranking and
the information gain techniques were similar in rows 1, 2,
3 and differed slightly in rows 4 and 5. However, clear
similarities were very noticeable for all three techniques.
Generally, the three selection methods identified the same
sets of attributes but ranked them in a slightly different order.

C. COMPARISON OF VARIANCE RANKING FEATURE
SELECTION TO OTHERS USING RANKED

ORDER SIMILARITY-ROS

Similarity and dissimilarity measure has been used to to
compare item and results of two or more structures, but quite
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recently many data centric researches like data mining and
machine learning have used this process to compare and
validate the results [95]-[97] of experiments and predictive
modeling, this is done by measuring the similarity index of
anew concept with existing benchmarks knowledge, concept
or results. With this in mind we proposed a novel similarity
measure technique-ROS, we want to determine how similar
the results are in Tables 7, 8, 9 and 10, Considering Table 7
for instance. Should we say that the result of variance rank-
ing and the Pearson correlation are 50%,70%, 80% or 90%
similar? How should their similarities be graded? Although
there are different approaches to measuring the similarities,
the five most popular are Euclidean distance, Manhattan
distance, Minkowski distance, cosine similarity and Jaccard
similarity [98], [99]; however, none of these is appropriate to
measure the similarities between two or more sets that con-
tain the same objects but are arranged or ranked differently.
If three Sets « = {a, b,c,d,e,f}, B = {a,b,c,f,e,d} and
y = {f, b, c,d, e, a} contain the same elements arranged or
ranked in a different order as in Table 11, based on the order
of ranking, what are the percentage similarities?

TABLE 11. Three sets arranged and ranked in different order.

8

o | m-o| o e |
LOR RN =R Lol =g R ] S

-|o|olo|o|e (R

| nf | | b =] B

Let us determine the similarities between « and £. The total
elements in « and B is 12 ie N = 12, Since we wish to find
the percentage similarities, we use Equation 23 we defined
a quantity which is called Element Percentage Weighting =
EPW given by:

EPW = Z 100 (23)

Therefore, 100/N = 8.33; thus,each element of the set
has a percentage weighting of 8.33%; two elements in a
row would have a total percentage weighting of the sum of
their weightings; for example, in row 1 in Figure 7, the total
percentage weighting of an element a in Set @ and element a
in Set B is 8.33 + 8.33 = 16.66.

Additionally, each set has a total number of n. When an
element moves downward or upward in a column to be in
the same row with its similar element it loses a percentage
weighting equal to EPW — (2 % il ) the 2 is because

there are two elements. The quantity ( /i ) is called the unit

Element Percentage Weighting. The sum of all the (@l) is

equal to the EPW for the two set:

n EPW

ROS = ZEPW Zz

(24)
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Calculation of ROS between a and B sets
sn a | B | seew TEPW Comments

4 value is ZEPW and note (EPW/n) =0},

a a 8.33+8.33 16.66 because the elements did not move

5 b b value is SEPW and note (EPW/n} =0},

8.33+8.33 16.56 because the elements did not move

3 value is TEPW and note (EPW/n} =0),

C C B.33+8.33 16.66 because the elements did not move

(F*EPW/n]

4 d f AThE f tnoved 3 position (371,388 = 4.164)
8,166 833 8.33-4.164 = 4166 2°4.166=5.33

. value is ZEPW and note (EPW/n] =0),

¢ e B.33+8.33 16.56 because the elements did not move

(2*EPW/n]

] f d 4,156 + d moved 3 position (3*1.388 - 4.164)

4.166 8.33 B331-41p4=4166 2°4166=R33
— = . EPW
. - y = .
ifEPW= | 100/12 | =333 ROS =7 EPW - 2_, B e 83.3%
1=J 1-j .
i#(EPw/n) | 8.33/6 | =1.388 ‘ ‘

FIGURE 7. Ranked order similarity-ROS percentage weighting calculation
for « and 8.

In rows 4 and 6 for sets « and 8, the element d and f
are not in the same row with their similar item. To calculate
their weighting using Equation 23 is given by 8.33-) " Loss
percentage weighting, if Loss percentage weighting =
EPW /n = 8.33/6 = 1.388. Elements d and f have moved
up and down three steps (including their row), the total Loss
percentage weighting for each is 3 % 1.388 = 4.164, and the
final weighting for each is 8.33 —4.164 = 4.166. Therefor in
row 4, f +f = 4.166 + 4.166 = 8.33. Additionally, Also in
row 6,d+d = 4.166+4.166 = 8.33. The similarity between
sets « and B is 83.3%, Please see 24 and Figure 7 represents
the process of calculating the ranked order similarity-ROS.

TABLE 12. Comparison of varinace ranking, Pearson correlation and
information gain using ROS.

Pima India dial

Varinace Ranking | Pearson Correlation | Information Gain
Varinace Ranki 100 74 81.25
Pearson Correlation 74 100 B6
Information Gain 81.25 86 100

Bupa Liver Disorder data

Varinace Ranking | Pearson Correlation | Information Gain
Varinace Ranki 100 75 56
Pearson Correlation 75 100 5835
Information Gain 56 58.35 100

Wi in Breast cancer

Varinace Ranking | Pearson Correlation | Information Gain
Varinace Ranki 100 68 82
Pearson Correlation 68 100 78
Information Gain 82 78 100

Cod-rna data

Varinace Ranking | Pearson Correlati Information Gain
Varinace Ranking 100 69 $4.38
Pearson Correlation 69 100 77
Information Gain 84.38 77 100

Table 12 is the comparison table using the ranked order
similarity-ROS to compare the results of variance ranking,
Pearson correlation and information gain attributes selection
techniques in Tables 7, 8, 9 and 10. In the Pima Indians
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Diabetes database, variance ranking and information gain are
81.25% similar, while it is 74% similar to Pearson correlation.
Even the Pearson correlation is 86%, which is similar to
the information gain. In the BUPA Liver Disorders data,
variance ranking is 75% similar to the Pearson correlation,
while it is 56% similar to the information gain, and the
Pearson correlation is 58.35% similar to the information gain.
In the Wisconsin Breast Cancer data, variance ranking is 68%
similar to the Pearson correlation and 82% to the information
gain, while the information gain and Pearson correlation are
78% similar. Finally, in the cod-rna data variance ranking is
84.38% similar to the information gain and 69% similar to
the Pearson correlation, the Pearson correlation and the infor-
mation gain are 77% similar. This comparison establishes
the following facts: (1) the efficacy of the ROS similarity
measure and (2) no two attribute selection processes produce
100% of the same results.

D. VALIDATION OF VARIANCE RANKING ATTRIBUTES
SELECTION USING BINARY CLASSIFICATION

In this section, the variance ranking variable selection will be
tested; it involves carrying out binary classification using the
following three algorithms: logistic regression (LR), support
vector machine (SVM) and decision tree (DT). Three of
the datasets described in Tables 1 (Pima Indians Diabetes,
Wisconsin Breast Cancer data and Bupa liver disease data)
will be used to make the following predictions: (1) Who
among the patients is likely to be diabetic in Pima Indians
Diabetes data? (2) Which of the tumors are malignant in the
Wisconsin Breast Cancer data? and who is most likely to have
liver disease from the Bupa data set The two target classes
are 0 or 1. A confusion matrix is used to deduce the accuracy
of the binary classifications, and the details and explanations
have been provided in Section III-E (Results and matrix
terms definitions). The following will be deduced from the
confusion matrix: true positive (TP), true negative (TN), false
positive (FP) and false negative, the Fafeqsure and the receiver
operating characteristics (ROC).

1) THE SELECTION OF THE ATTRIBUTES FROM

PEAK ACCURACY THRESHOLD

The attributes selection has been carried out and compared
with the benchmarks in section IV-A and using ROS to
quantify the similarities of variance ranking and others bench-
marks in sections I'V-B. The attributes have been ranked from
the most to the least significant, the next stage is how to
use this ranking; meaning which attributes should be selected
or eliminated as the case maybe? the work of [100]-[102]
provided an exposition by reevaluating the concept of “Most
and Least” significant attributes, taking a cue from this con-
cept, we made the following postulations; For any data set
A with attributes aj.....a, ranked from the “Most” to the
“Least” significant, if we start with the most significant
from the rank aj.....a, and continued adding the attributes
toward the “least” significant, the accuracy (or the cap-
ture of the TPRafey;,) of the prediction would increase and
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TABLE 13. Experiment without attribute selection for LR, SVM and DT for three data set.

Data Set Algorithm Class R:l:e R::e Precision Recall Me:;ure i?:; Acctg.leracy
- 0 088 | 0.429 | 0.793 0.88 0.834 0.832
1 0.571 | 0.12 0.718 | 0571 | 0.636 0.832 | 77.22%
o SUM 0 0.898 | 0.459 0.785 0.898 0.838 0.72
1 0.541 0.102 0.74 0.541 0.625 0.72 77.34%
oT 0 0.766 | 0.437 | 0766 | 0.766 | 0.766 0.709
1 0563 | 0.234 | 0563 | 0563 | 0.563 0.709 | 69.53%
o 0.954 | 0.137 0.93 0.954 | 0.942 0.914
SIehice LR 1 0.863 | 0.046 | 0.908 | 0.863 | 0.885 | 0.932 | 92.27%
:::;2"‘::: S . 0 0.965 | 0.05 0.974 | 0.965 | 0.969 0.946
1 095 | 0.035 | 0935 0.95 0.942 0958 | 95.99%
oT o 0952 | 0.154 | 0922 | 0952 | 0.937 0.964
1 0.846 | 0.048 | 0903 | 0.846 | 0.874 0.965 | 91.56%
o 051 | 0.435 0.46 051 0.484 0.533
LR 1 0.565 | 0.49 0.614 | 0.565 | 0.589 0.533 | 54.20%
0 051 | 0.355 0.51 0.51 0.51 0.578
Bupa SVM
1 0.645 | 0.49 0.645 | 0.645 | 0.645 0.578 | 58.84%
oF 0 0.497 | 0.36 0.5 0.497 | 0.498 0.566
1 0.64 | 0.503 | 0.637 0.64 0.638 0.566 | 57.97%
Logistic Regression for Pima Decision Tree for Pima
776
74 735
:3 7 77,08 7

7 of attributes by rankad

FIGURE 8. Attribute selection by peak threshold accuracy for LR
algorithm.

SupportVector Machine for Pima

1 2 1 3 5 & 7 a

# of sttri butesky ranked

FIGURE 9. Attribute selection by peak threshold accuracy for SVM
algorithm.

peak at a threshold of the most significant attributes before
decreasing in the accuracy (or the capture of the TPRate,,;,).
Figure 8, 9 and 10 is a representation of the of the increase
of accuracy as the most significant attributes are added until
the peak threshold is reached before decreasing or falling in
accuracy.
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7 of attributes by ranked

FIGURE 10. Attribute selection by peak threshold accuracy for DT
Algorithm.

Although, accuracy was used, but the same relationship
also exist between the number of the attributes and the
TPRatep, in Tables (14, 15 and 16) The higher accuracy the
higher the captured TPRate,;n.

This peak threshold accuracy techniques were used in all
the three data set for selecting the attributes, the important
thing here is to note the number of attributes required for
our techniques (variance ranking) needed to attained the peak
threshold (only 4 attributes) as against total of 8 attributes in
the Pima data set. Also using the PC and IG attributes selec-
tion it takes a total of 6 attributes to attained the peak accuracy
threshold. Therefore not only that variance ranking attributes
selection is superior in performance, it is also superior by
using fewer attributes to attained higher accuracy.

2) VALIDATION EXPERIMENT OF BINARY CLASSIFICATION
USING PIMA INDIA DIABETES DATA

The corresponding experimental results are in
Tables (13, 14, 15 and 16) which contains the tabular
results obtained using the Pima Indians Diabetes, Wisconsin
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TABLE 14. Experiment with attribute selection using VR for LR, SVM and DT for three data set.

. TP FP . F- ROC- %
Data Set | Algorithm | Class Rase Rate Precision | Recall Measure | Area | Accuracy
5 0 0.884 | 0.422 0.796 | 0.884 | 0.838 | 0.825
1 0.578 | 0.116 0.728 | 0.578 | 0.644 | 0.825 | 77.73%
. _ 0 0.808 | 0.450 0785 | 0.808 | 0.838 0.72
i i 1 0.541 | 0.102 0.74 0.541 | 0.625 0.72 | 77.34%
T 0 0.8 0.366 0.803 0.8 0.802 0.773
1 0.634 0.2 0.63 0.634 | 0.632 0.773 | 74.22%
b 0 0076 | 0046 | 0076 | 0076 | 0076 | 0003
Abtribuir e 1 0.954 | 0.024 0.954 0.954 | 0.954 0.993 | 06.85%
f,‘;l:i"::;‘; S S 0 0.974 | 0.037 0.98 0.974 | 0977 0.968
Ranking 1 0.963 | 0.026 0.951 0.963 | 0.957 0.968 | 97.00%
T 0 0.956 | 0.075 0.961 0.956 | 0.958 | 0.955
1 0.025 | 0.044 0018 | 0025 | 0.021 0.055 | 04.56%
i 0 0.531 | 021 0.647 | 0.531 | 0.583 0.718
1 0.79 | 0.469 0.699 0.79 0.742 0.718 | 68.12%
0 0.455 | 0.11 0.75 0455 | 0.567 | 0.673
e = SVM 1 0.80 | 0.545 0.693 089 | 0779 | 0673 | 70.72%
- 0 0.531 0.2 0.658 | 0.531 | 0.588 | 0.665
1 0.8 0.469 0.702 0.8 0.748 | 0.665 | 68.70%

Breast Cancer and the BUPA Liver Disorders data sets for
the following algorithms LR, SVM, and DT, these tables
contain the following correctly and incorrectly classified:
percentage accuracy, TP rate, FP rate, precision, recall,
F-measure and ROC area for both classes (0 and 1), these
were deduces from Equations 13, 14, 15 and 16 and the
confusion matrix in Table 2. The blow-by-blow details of
the experimental results will be provided in the successive
sessions. In Tables (13, 14, 15 and 16), the results of logis-
tic regression- LR (with and without) attribute selection,
the results of the support vector machine-SVM (with and
without) attribute selection and the decision tree-DT (with
and without) attribute selection. Notice that in the above
tables, class O are patients without diabetes (negative) and
class 1 are patients with diabetes (positive); the total num-
ber of instances is 768, with 500 belonging to class 0 and
268 belonging to class 1; hence, the minority is 268 in
number.

The main aim of the above experiment is to show that
variance ranking attribute selection improved the sensitivities
of the algorithm to capture or target class 1 patients with
diabetes. This is shown by the increase in the TP rate for
class 1, as indicated in Table 14. From the analysis of the
results of LR, the TP rate for without attribute selection is
0.571 and that for attribute selection is 0.578. This is an
approximately 1.2% increase in the accuracy of targeting the
minority class. The results of SVM also did not show any
increase from 0.541 to 0.541 but uses fewer attribute. Finally,
the results of DT TP Rate for minority class (1) increases
from 0.563 to 0.634, is the biggest increase. This accounted
for the additional identification of more 25 patients from the
minority of 268.

The results clearly demonstrated unequivocally that the
variance ranking attribute selection works and has a direct
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impact on the general accuracy of the classification model to
target the minority in an imbalanced data set.

3) VALIDATION EXPERIMENT OF BINARY CLASSIFICATION
USING WISCONSIN BREAST CANCER DATA
In Tables (13, 14, 15 and 16) is the binary classification using
LR, SVM and DT on the Wisconsin Breast Cancer data for
the predictive model. Firstly, all 9 attributes were used for
the predictions (without attributes selections) as in Tables(13)
The following the techniques as explained in sections IV-D.1
until a peak threshold with highest accuracy and highest
TPRateminoriry Which is class(1). Figures 8, 9 and 10 showed
a similar graph of the peak threshold at which the attributes
selection was made. Any future removal or addition of
attribute(s) after this threshold resulted in the reversal of the
general accuracy and specific accuracy of the TPRateminority,
the results of the peak threshold agreed with the results
obtained from the three attributes selection techniques used
(variance ranking, Pearson correlations and information
gain). The analysis of predictive model for Wisconsin data
set in Tables (13, 14, 15 and 16) contain the following results
logistic regression (LR), support vector machine (SVM), and
decision tree (DT), with and without attributes selections.
For each of the predictions, a summary statistic is pro-
vided showing the general percentages accuracy true positive
rate (TPRate), true negative rate (TNRate), false positive
(FPRate), false negative (FNRate), F-measure and receiver
operating characteristics (ROC) for both the majority class 0
and Minority class 1, all these were deduced from the con-
fusion matrix as provided and explained in Table 2. In the
LR results, the general accuracy increases from 92.27% to
96.85% with a corresponding increase in TPRatepinority class
1 from 0.863 to 0.954, the SVM accuracy increases from
95.99% to 97% and the TPRateminoriry Class 1 increases
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TABLE 15. Experiment with attribute selection using PC for LR, SVM and DT for three data set.

Data Set Algorithm Class R::e R:l‘:e Precision Recall Me:;u re i?:; Accia -
- 0 0.88 | 0.429 0.793 0.88 0.834 0.832
1 0.571 0.12 0.718 | 0.571 0.636 0.832 | 77.21%
— —_— 0 0.898 | 0.466 | 0.782 0.898 | 0.836 0.716
1 0.534 | 0.102 0.737 0.534 | 0.619 0.716 | 77.08%
- 0 0.852 | 0.444 | 0.782 0.852 0.815 0.791
o 1 0.556 | 0.148 | 0.668 | 0.556 | 0.607 0.791 | 74.87%
P g - 0 0.974 | 0.05 0.974 0.974 | 0.974 0.993
e 1 0.95 | 0.026 0.95 0.95 0.95 0.993 | 96.57%
. . 0 0.974 | 0.041 0978 | 0974 | 0976 0.966
pe:r‘:m AN i S 1 0.959 | 0.026 | 0.951 0.959 | 0.955 0.966 | 96.85%
c oT 0 0.956 | 0.083 0.956 | 0.956 | 0.956 0.946
1 0.917 | 0.044 | 0.917 0.917 | 0.917 0.946 | 94.28%
- 0 0.559 | 0.36 0.529 0.559 | 0.544 0.653
1 0.64 | 0.441 | 0.667 0.64 0.653 | 0.652 | 60.58%
s svm 0 0.538 | 0.33 0.542 | 0.538 0.54 0.604
upa 1 067 | 0462 | 0667 | 067 | 0.668 | 0.604 | 61.49%
- 0 0.497 | 0.375 0.49 0.497 | 0.493 | 0.586
1 0.625 | 0.503 | 0.631 | 0.625 | 0.628 | 0.586 | 57.10%
TABLE 16. Experiment with attribute selection using IG for LR, SVM and DT for three data set.
Data Set Algorithm Class R::a R::e Precision Recall Ma:;ura i?:: Acczsracy
- 0 0.88 | 0.429 | 0.793 0.88 0.834 | 0.832
1 0.571 | 0.12 0.718 0.571 | 0.636 | 0.832 | 77.22%
) 0 0.898 | 0.459 0.785 0.898 0.838 0.72
Eimu =i 1 0.541 0.102 0.74 0.541 0.625 0.72 77.34%
i 0 0.814 | 0.403 0.79 0.814 | 0.802 | 0.751
1 0.597 0.186 0632 0.597 0.614 0.751 73.83%
with LR 0 0965 | 0.12 0938 | 0965 | 0952 | 0.926
Attribute 1 0.88 | 0.035 0.93 0.88 0904 | 095 | 9356%
Selected by ) ) 0 0.963 | 0.071 | 0.963 | 0.963 | 0.963 | 0.935
Information | Wisconsin = 1 0.929 | 0.037 | 0929 | 0.929 | 0.929 | 0.946 | 95.14%
Gain 0 0.952 | 0.145 | 0926 | 0.952| 0.939 | 0.962
oT 1 0.855 | 0.048 | 0.904 | 0.855 | 0.878 | 0.962 | 91.85%
0 0538 | 0.325 | 0545 | 0.538 | 0.542 | 0.593
LE 1 0.675 | 0.462 | 0.668 | 0.675| 0.672 | 0.594 | 61.74%
0 0.524 | 0.305 | 0.555 | 0.524 | 0.539 | 0.61
Bupa svMI
1 0.695 | 0.476 | 0.668 | 0.695 | 0.681 | 0.61 | 62.32%
o 0 0.51 | 0.335 | 0.525 0.51 0.517 | 0.582
1 0.665 | 0.49 0652 | 0.665| 0.658 | 0.582 | 60.00%

from 0.95 to 0.963, finally the DT accuracy 91.56% to
94.56% while the TPRateminoriry increase from 0.846 to
0.925. In all experiment using the Wisconsin the variance
ranking attributes selection have achieved higher accuracy in
both general accuracy and targeting the minority classes.

4) VALIDATION EXPERIMENT OF BINARY CLASSIFICATION
USING BUPA LIVER DISEASE DATA

Tables (13, 14, 15 and 16) contains the results of experiment
for the following algorithms LR,SVM and DT using the Bupa
liver disease data sets. The results in Tables 13 is using all the
attributes in the data sets while Tables 14 is using the selected
attributes by the peak accuracy threshold as explained in
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section I'V-D.1 and Figure 10 is a representation of the graph
of the technique to identify the peak threshold attributes.

The general accuracy of LR for increased from 54.20%
to 68.12%, while the increased of the TPRateminoriry i8
0.565 to 0.79. The SVM accuracy increased from 58.84%
to 70.72% while the TPRateyinority increases from 0.645 to
0.89. Finally, the DT accuracy is from 57.97% to 68.70%,
the TPRatepnyriry for DT increased from 0.64 to 0.80

V. DISCUSSION

There is a noticeable pattern in all the experiments which are
basically an increased in the TPRateminoriry (class 1). In gen-
eral there is an increase in accuracy as a result of an increase in
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DT-variance Rank 0 0s3 a2 74.22% DT-variance Rank | 092 0518 0521 34.56% DT-varianceRank | 0.8 0.702 0748 | 6B70%
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FIGURE 11. Summary table of comparison.

the prediction of class 1 (TPRateyinority)- The emphasis here
is not on the machine learning algorithm that was used but
on the attribute that was selected from the variance ranking.
This is to demonstrate that our technique is independent on
any algorithm but dependent on the intrinsic properties of the
data set particularly the measurement of central tendencies,
ie the variance.

Although three algorithm LR, SVM and DT were used
on three dataset; the Pima Indians Diabetes Data, Wisconsin
Breast Cancer and Bupa liver diseases data, in all over twenty
experiment were conducted. it shows that more accurate pre-
dictions were obtained and more minority target classes were
accurately classified using the identified attributes. Addition-
ally, there was an increase in the overall precision, recall,
and F-measure. The problem associated with imbalanced data
is ubiquitous and will continue to elicit customized solu-
tions. We demonstrated a new attribute selection technique.
The variance ranking attributes selection technique is signif-
icantly similar in performance to other attributes selections
techniques, notably Pearson correlation and information gain
which are categorized as filter attribute selection technique.
We made a case why our method should be compared to
the same family of filtered selection techniques by providing
numerous cogent reasons such as; our method is not algo-
rithm suggestive and does not eliminate any attribute but
rather ranked them as done by other filter methods. To val-
idate our work, three pronged approach was used.

Firstly, we performed attributes selections using our meth-
ods (variance ranking) and compare the result with that of
PC and IG which are the state-of-art filter attributes selection
methods, the results are in Tables 7, 8, 9 and 10. The conclu-
sion here is that the choice of attributes selection technique
depends on the context of the application and the domain
of usage and that no two feature/attributes selection method
thus give the same answers 100%. Hence, we encountered a
new problem here, this led to the second validation technique.
How could we compare or rather quantitatively grade our
result with that of state-of-art filter methods?”, the PC and IG.
Should we say variance ranking, PC and IG are 70%, 80%
or 90% similar?. How do we calculate the similarity index?.
Thus we invented a novel approach of calculating the sim-
ilarity index, since the existing method like cosine, Jaccard
etc similarity measurement appeared to be inadequate please
see section IV-C for Ranked Order Similarity-ROS and the
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reasons behind it, we used it to compare our method with
PC and IG. Finally, we also used the identified attributes
with three binary classification models (logistic regression,
support vector machine and decision tree) to filter out the
most significant attributes from the datasets used (Pima
Indians Diabetes and Wisconsin Breast Cancer data, Bupa
liver disease data set). The results obtained are shown
in Tables (13, 14, 15 and 16) an increase in capturing the
minority positive classes (rare) with the selected attributes
compared to the result without the selected attributes. Though
in some of the results the increments are significant, while in
others the increment is small, it is noteworthy that in all cases
there was an increment.

PIMA

wFPimaTPimir)  w PimaPrecision/min)  m Pima F-Measureimin) Pima% Accuracy

e B

-

.\" < \\' \_" Kl

FIGURE 12. Comparison of attributes selection results for LR,SVM and DT
using Pima data.

The summary table in Figure 11 and the associated graphs
in figures (12,13 and 14) is a point of focus to explicitly
establish the superiority of our technique (variance ranking)
over PC and IG. In all the comparison eg (LR-variance
Rank, LR-Pearson C and LR-Informatiion G ) the variance
ranking have performed better. We attributed this superior
performance not only to the attributes but also to the ranking
because the most significant attributes were identified and
ranked earlier hence it took only 4 attributes to attained the
peak accuracy threshold as against others that took more than
6 attributes.

One of the strongest benefit of attributes selection
in data mining and machine learning is not only high
accuracy/predictions, but achieving the predictions with
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FIGURE 13. Comparison of attributes selection results for LR,SVM and DT
using Wisconsin data.
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FIGURE 14. Comparison of attributes selection results for LR,SVM and DT
using Bupa data.

fewer attributes. If a prediction of accuracy 80% is achieved
using 10 attributes and another prediction of the same 80% is
achieved using 5 attributes out of the 10 attributes the second
predictions is more superior to the first in terms of resources
needed to get the same predictive accuracy, apart from the
accuracy another point where our techniques surpasses the
others is using fewer attributes.

A. CONCLUSION AND FUTURE WORK
We reviewed the problems of imbalanced class distribution
in a dataset as it relates to intrinsic characteristics. In this
case, the variance of the data item and the issue of imbalanced
datasets and classification algorithm, will continue to attract
interest within the data science communities both in industry
and academia. In our method for the proof of concept (POC),
several experiments were carried out. The accuracy of the
results surpassed the benchmark and was similar on some
occasions. The major finding of this work can be summarized
as follows:
« Variance ranking attributes selection techniques based
on the intrinsic properties of each attribute in a binary
classification context.

VOLUME 7, 2019

It has long been suspected that intrinsic properties of
attributes and the measure of central tendency can objec-
tively correlate with the logical distance of the attributes
to the target class. This study is the pioneer in this
regard as one of the first of its kind to consider this
area of attribute knowledge. This viewpoint has not been
explored properly by researchers. Specifically, it has
not been explored to the extent that definite conclu-
sions could be made regarding the extent to which the
intrinsic properties of attributes correlate to the tar-
get class. We have concluded that in some particular
data types similar to the ones used in this research,
variance does correlate to the target class in a binary
context.

o A novel similarity measurement (ranked order
similarity-ROS) has been invented; this technique is
intended to measure the similarity between two or more
sets that contain the same elements ranked in a different
order. The ROS techniques are a means of grading and
measuring similarities where other similarity measure-
ment techniques are inadequate or not applicable.

« When attributes are ranked, the significant attributes are

those at the peak threshold performance.
As a subset of the data has been used, this aligned very
well with the slight modification to the approach to
variance when the whole population (N) and when the
sample (N — 1) of the whole population is being con-
sidered. In this regard, there are no conflicts; therefore,
it follows that variance ranking techniques can also be
applied to the whole population as well as a sample of
the whole population.

« We also proposed that similarity index is an efficacious
way of validating the results of experimental findings
and in many instances it could be better and more
dependable means of demonstrating the proof of con-
cept (POC). The best practices in the validation of
processes and experimental results should not be tra-
ditional but rigorous, invective and context based and
each method of validation should be independent of
each other, for example we used comparison with the
bench mark, similarity index and predictive modelling
and each of them are independent of the other. On each
technique that was applied the evidential results point
in same direction, Therefore, double-blind independent
evaluation and validation (DBI-E V) techniques are
highly recommended for any POC.

Similar to many attribute selection techniques, there is no
single technique that can be used for all types of datasets.
Depending on some intrinsic properties of the data items,
each known technique must be used on the correct dataset. For
example, the Pearson correlation technique cannot be used for
categorical datasets.

Hence, this variance ranking attributes selection has the
following limitations.

« The variable must be numeric (discrete or continuous).

« The variable must not be categorical.
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Our next work hopes to solve the limitations as itemized
above and to apply this technique to a multiclass dataset.
We hope to ascertain the extent and threshold to which
the intrinsic properties of the data item affect the attributes
and generally, the learning algorithm. Additionally, we will
explore the relationships of the measurements of central ten-
dency to the significant attributes, if any.
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