

Visualizing Variability Models Using Hyperbolic Trees

R. Bashroush, A. Al-Nemrat, M. Bachrouch, H. Jahankhani

School of Computing, IT and Engineering,

University of East London,

London, United Kingdom

{rabih, ameer, hamid2}@uel.ac.uk

Abstract. Software Product Line Engineering (SPLE) has emerged in recent

years as a viable way to maximize reuse when designing a family of related

products. One of the main tasks conducted during the SPLE process is

Variability Management (VM). VM is about identifying commonality among

the different products being developed while capturing and cataloging

variability. In real-life projects, VM models tend to encompass a very large

number of variants reaching in many projects the order of thousands.

Visualizing these models has been a major challenge for tool developers. In this

work, we present our MUSA CASE tool which uses hyperbolic trees for

representing VM models and supports gesture based interaction (using multi-

touch interfaces). The tool has been successfully used to develop a large scale

case study.

Keywords: Software Product Lines, Variability Management, Feature

Modeling, Hyperbolic Trees.

1 Introduction

Software Product-line Engineering (SPLE) has emerged as a major strategy for

maximizing reuse when a family of related software systems is developed. In this

approach, commonality-variability analysis [1] (Variability Management - VM) of the

member products is a major phase of the process and plays an important role in its

success.

One of the main challenges within VM is the handling and visualizing “industry-

size” models which usually comprise a large number of variability points along with

the dependency relationships that exist among them. The challenge comes from the

large amount of information captured within a model (business related, dependency

and relationships, etc.) as well as the current techniques and I/O devices used to

visualize the model which do not inherently scale [13].

The MUSA CASE tool was designed to overcome these challenges [13], [14].

MUSA is based on our successful work on multiple-perspective based variability

management which provides a rich modeling framework while using the concept of

separation-of-concerns to alleviate the problem of information overloading. MUSA

implements this theory using a mind-mapping modeling approach, hyperbolic trees,

over the state-of-the-art in HCI, the multi-touch Microsoft Surface [2]. This provides

114 Pre-proceedings of CAISE'11 Forum

a scalable solution that taps on the latest in Natural User Interface (NUI) [3] design

providing an intuitive and large display for VM. In addition, the MUSA solution

provides interfaces over other multi-touch platforms including Windows 7 (using its

native multi-touch support).

The theory behind MUSA is highlighted in section 2. An overview of the MUSA

CASE tool is then presented in section 3. Finally, section 4 ends with related work

and conclusion.

2 Technical Background

The Four Views Model (4VM) forms the theoretical foundation upon which MUSA is

designed as a Proof-of-Concept. The original version of the 4VM can be found here

[4] and to appear here [5].

It is generally agreed that different stakeholders have interest in considering

different views of the product line variability model [4],[6]. So, it is important for a

VM mechanism to be able to extract and present relevant information about the

family model in dedicated views for different groups of stakeholders (users, system

analysts, developers, etc.). This could considerably contribute to alleviating the

graphical overload when showing all the information in one view (as compared to

using multiple views). This is one of the core concepts behind 4VM.

The 4VM proposes a four view presentation of the feature model which are

discussed below.

2.1 Business View

The Business View is aimed at the project business and management stakeholders. It

acts as a portal for inputting and presenting information related to:

- Feature implementation time: This indicates when a given feature is to be

implemented. Planning for future releases of products, the features to be

implemented in these products, and the timing, is a key step for the success

and sustainability of a product line

- Feature Cost/Benefit analysis: information related to the effort needed and

cost involved in realizing features as well as their foreseen benefit. This

provides valuable input to the overall project costing and the product

versioning process

- Open/Closed sets of features: it is rarely the case that the architect is

furnished with a system’s comprehensive and complete set of features

upfront. Rather, features are continuously added (and modified) to the initial

feature model over time. Designing a system around an open and changing

set of features is a very challenging task. To overcome this problem, some

industries designate some features as closed, meaning that they can’t be

changed (core features), while others are designated as open, meaning they

can be modified by developers.

- Negative features: these are the features that are not mean to be supported by

the system (e.g. for security reasons) as opposed to supported features.

Visualizing Variability Models Using Hyperbolic Trees 115

These properties are usually specified and used by the project managers to carry

out system-wide business analyses which support decision making such as when to

introduce features within a product line; what features are feasible from a business

perspective, etc.

2.2 Hierarchical & Behavioral View

The Hierarchical and Behavioral View is the view provided by most existing feature

modeling techniques. In this view, information related to the structure of the feature

model and the behavior of the features is captured. Among other potential users, this

view is mainly targeted at architects and developers.

2.3 Dependency and Interaction View

Due to the size and complexity of feature dependency and interaction within real-life

systems, a separate view is created within the 4VM to model these relationships. The

Dependency and Interaction View is complementary to the Hierarchical and

Behavioral View. We define feature dependency and feature interaction as follows:

- Feature Dependency: a feature-to-feature dependency where the inclusion of

one or more features affects one or more features within the system.

- Feature Interaction: a feature-to-architecture dependency where the inclusion of

one or more features affects the architecture structure (different component sets

and/or configurations, etc.).

In this view, logic design is proposed to capture the dependency and interaction

relationships. Once the relationships are modeled, standard logic algorithms (and SAT

solvers) can be used to simplify the models.

2.4 Intermediate View

Finally, the intermediate view has been introduced in an attempt to bridge the gap

between feature modeling and the architecture design. This gap exists between the

two domains due to the fact that the feature model is based on end-user and

stakeholder concerns while the architecture structure is designed to accommodate

technical concerns.

To bridge this gap, the intermediate view proposed attempts at injecting design

decisions into the feature model to take it one step further towards the architecture

domain. As such, it may be regarded as an intermediate stage between feature model

and system architecture.

3 Implementation

MUSA was funded as a Proof-of-Concept project to demonstrate the theoretical

foundation provided in 4VM. The MUSA system provides an end-to-end variability

116 Pre-proceedings of CAISE'11 Forum

management solution as shown in Figure 1 below. MUSA provides a rich and

collaborative interface to elicit and manage requirements and variability from

stakeholders while allowing for appropriate access to the variability model to different

teams including: implementation, testing and deployment teams. In addition, MUSA

automates model verification (with the use of SAT solvers) and maintains consistency

among the different views with the help of a centralized Database (as shown in Figure

1). MUSA is considered among the very first CASE tools to move into the NUI space

in order to overcome scalability issues.

Fig. 1. The end-to-end MUSA System overview

For example, with MUSA, users can user different gestures such as: pinching (for

expanding nodes), panning (by moving two fingers on the screen to shift the model),

three finger gesture (to center the model at the root node), etc.

In addition, one of the main advantages of MUSA over other CASE tools within

the domain of VM (see next section) is scalability. This is made possible with the

adoption of hyperbolic trees [15] to represent VM rather than normal trees and other

structures within the Euclidean space.

Hyperbolic trees (a.k.a. hypertree) is a visualization method that maps graphs into

the hyperbolic geometry. The result effect is similar to a fish-eye lens view where

nodes in focus are placed in the center and given more room, while out-of-focus

nodes are compressed near the boundaries. Focusing on a different node brings it and

its children to the center of the screen, while compressing out of focus nodes.

The advantage of this is that the standard tree suffers from visual clutter when the

number of child nodes grow exponentially (in the order of 2
n
 for binary trees and

much quicker for other types of trees), thus, requiring an exponential amount of space

Development Team

Stakeholders /

Project Managers

Testing & Evaluation

Team

R
e
q
u
ir
e
m

e
n
ts

S
p
e
ci

fic
a
tio

n

Requirements Engineers

& Architects

Surface

V
M

 D
e
sig

n
 &

 M
a
in

te
n
a
n
ce

V
M

 C
o
m

p
lia

n
c
e

Deployment Team

V
M

 C
om

pl
ia

nc
e

VM Compliance

Visualizing Variability Models Using Hyperbolic Trees 117

to be displayed appropriately. However, hyperbolic trees employ hyperbolic space

which provides more room compared with Euclidean space. This is because

increasing objects’ size in Euclidean space would cause objects to increase linearly in

size compared to hyperbolically in the hyperbolic space [15].

Figure 2 (using the MS Surface) and figure 3 (using Windows 7) below show an

example VM of a case study developed with the MUSA toolset. In these figures, we

notice color coding is used to distinguish between optional (blue) and mandatory

features (yellow).

Fig. 2. MUSA over the MS Surface Interface

118 Pre-proceedings of CAISE'11 Forum

Fig. 3. MUSA over the Windows 7 Interface

Visualizing Variability Models Using Hyperbolic Trees 119

4 Conclusion and Related Work

Over the past few years, a number of VM approaches have been developed ranging

from research techniques to commercial products.

On the research techniques front, Sinnema et al [7] introduced the COVAMOF

framework and toolset which uses the COVAMOF variability view (CVV) to

represent the view of variability for the product family artefacts. The graphical

notation used is based on a simple 2D, unidirectional tree that becomes cumbersome

to use as soon as the number of variants exceeds about the 50. The Feature Modelling

Tool [16] was created as a plugin to visual studio (Figure 4 below). Yet again, in

practice, the tool would be difficult to use and manage as soon as the number of

variants exceeds 60 or 70. Other tools include FeaturePlugin (an eclipse plugin) by

Antkiewicz and Czarnecki [8] and Kubmang by Asikainen et al [9].

Fig. 4. Feature Modeling Tool [16]

The major challenge for most research techniques is scalability. The scalability

issue arises from the graphical modeling techniques traditionally adopted (e.g. trees)

and the I/O devices used (standard keyboard, mouse, and monitors). More recently,

virtual reality technologies have been reported as being explored as a potential

approach for VM. It is hard to see how such techniques could make their way to

commercial environments due to the difficulty involved in integrating such

approaches within existing industrial development settings.

On the commercial products front, the main tools are from Pure-Systems [11] who

have introduced the pure::variants [10] solution and BigLever [12] who developed the

Gears toolset. Both are provided as part of a complete modeling framework. These

commercial products have managed scalability by largely moving away from

graphical representation of models. File system tree like structures and even text

120 Pre-proceedings of CAISE'11 Forum

listings (e.g. using MS Excel sheets) have been seen in use. Although such

approaches scale and are in industrial use, adopting NUI interfaces such as the one we

implemented in MUSA will increase productivity, time-to-market and allow for the

creation and management of larger and more complex product families.

Acknowledgments. The work on the MUSA project has been funded by the

European RD Fund through INI under the Proof of Concept funding scheme [2008-

2010]. It has also received further funding under the Challenge Fund scheme at the

University of East London [2010-2011]. We thank all the postgraduate students at the

CITE school at UEL who contributed to some of the testing and development of the

MUSA toolset as part of their thesis work.

References

1. K. C. Kang, J. Lee, and P. Donohoe, "Feature-Oriented Product Line Engineering," IEEE

Software, vol. 19, pp. 58-65, (2002)

2. Microsoft Surface, http://www.microsoft.com/surface/

3. Natural User Interfaces, http://en.wikipedia.org/wiki/Natural_user_interface

4. R. Bashroush, I. Spence, P. Kilpatrick, TJ Brown, and C. Gillan. "A Multiple Views Model

for Variability Management in Software Product Lines," Proceedings of the Second

International Workshop on Variability Modelling of Software-intensive Systems. Essen,

Germany, (2008)

5. US Patent Application No 12/349,797, Inventor: Rabih Bashroush, Title: “Multiple

Perspective Feature-based Variability Management”, (Patent Pending)

6. B. Nuseibeh, J. Kramer, and A. Finkelstein, "A Framework for Expressing the Relationships

Between Multiple Views in Requirements Specification," IEEE Transactions on Software

Engineering, vol. 20(10), pp. 760-773, (1994)

7. M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch, "COVAMOF: A Framework for

Modeling Variability in Software Product Families." In proceedings of Third Software

Product Line Conference 2004, Boston, (2004)

8. M. Antkiewicz and K. Czarnecki, "FeaturePlugin: feature modeling plug-in for Eclipse." In

proceedings of the 2004 OOPSLA workshop on eclipse technology eXchange, (2004)

9. T. Asikainen, T. Männistö, and T. Soininen, "Kumbang: A domain ontology for modelling

variability in software product families," Advanced Engineering Informatics, Elsevier

Science Publishers B. V., vol. 21, pp. 23-40, (2007)

10. D. Beuche, "Variant Management with pure::variants," pure-systems GmbH (2003)

11. Pure-Systems Pure::Variants, http://www.pure-systems.com/Variant_Management.49.0.html

12. "BigLever Software Gears," http://www.biglever.com/solution/product.html

13.R. Bashroush. "A NUI Based Multiple Perspective Variability Modelling CASE Tool,"

Muhammad Ali Babar, Ian Gorton (Eds.): ECSA 2010. Lecture Notes in Computer Science,

Volume (6285), Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-15113-2, August 2010

14.R. Bashroush. "A Scalable Multiple Perspective Variability Management CASE Tool".

Proceedings of the 14th International Software Product Line Conference (SPLC), South

Korea. September 2010.

15.Lamping, John; Rao, Ramana; Pirolli, Peter (1995). "A Focus+Context Technique Based on

Hyperbolic Geometry for Visualizing Large Hierarchies". Proc. ACM Conf. Human Factors

in Computing Systems, CHI. ACM. pp. 401–408.

16.Grupo de Investigacion en Reutilizacion y Orientacion a Objeto (GIRO) – Feature Modeling

Tool. Available from: http://www.giro.infor.uva.es/FeatureTool.html[last visited May 2011]

http://www.giro.infor.uva.es/FeatureTool.html

