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Abstract. Software Product Line Engineering (SPLE) has emerged in recent 

years as a viable way to maximize reuse when designing a family of related 

products. One of the main tasks conducted during the SPLE process is 

Variability Management (VM). VM is about identifying commonality among 

the different products being developed while capturing and cataloging 

variability. In real-life projects, VM models tend to encompass a very large 

number of variants reaching in many projects the order of thousands. 

Visualizing these models has been a major challenge for tool developers. In this 

work, we present our MUSA CASE tool which uses hyperbolic trees for 

representing VM models and supports gesture based interaction (using multi-

touch interfaces). The tool has been successfully used to develop a large scale 

case study. 
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1   Introduction 

Software Product-line Engineering (SPLE) has emerged as a major strategy for 

maximizing reuse when a family of related software systems is developed. In this 

approach, commonality-variability analysis [1] (Variability Management - VM) of the 

member products is a major phase of the process and plays an important role in its 

success.  

One of the main challenges within VM is the handling and visualizing “industry-

size” models which usually comprise a large number of variability points along with 

the dependency relationships that exist among them. The challenge comes from the 

large amount of information captured within a model (business related, dependency 

and relationships, etc.) as well as the current techniques and I/O devices used to 

visualize the model which do not inherently scale [13]. 

The MUSA CASE tool was designed to overcome these challenges [13], [14]. 

MUSA is based on our successful work on multiple-perspective based variability 

management which provides a rich modeling framework while using the concept of 

separation-of-concerns to alleviate the problem of information overloading. MUSA 

implements this theory using a mind-mapping modeling approach, hyperbolic trees, 

over the state-of-the-art in HCI, the multi-touch Microsoft Surface [2]. This provides 
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a scalable solution that taps on the latest in Natural User Interface (NUI) [3] design 

providing an intuitive and large display for VM. In addition, the MUSA solution 

provides interfaces over other multi-touch platforms including Windows 7 (using its 

native multi-touch support). 

The theory behind MUSA is highlighted in section 2. An overview of the MUSA 

CASE tool is then presented in section 3. Finally, section 4 ends with related work 

and conclusion. 

2   Technical Background 

The Four Views Model (4VM) forms the theoretical foundation upon which MUSA is 

designed as a Proof-of-Concept. The original version of the 4VM can be found here 

[4] and to appear here [5]. 

It is generally agreed that different stakeholders have interest in considering 

different views of the product line variability model [4],[6]. So, it is important for a 

VM mechanism to be able to extract and present relevant information about the 

family model in dedicated views for different groups of stakeholders (users, system 

analysts, developers, etc.). This could considerably contribute to alleviating the 

graphical overload when showing all the information in one view (as compared to 

using multiple views). This is one of the core concepts behind 4VM. 

The 4VM proposes a four view presentation of the feature model which are 

discussed below. 

2.1   Business View 

The Business View is aimed at the project business and management stakeholders. It 

acts as a portal for inputting and presenting information related to: 

- Feature implementation time: This indicates when a given feature is to be 

implemented. Planning for future releases of products, the features to be 

implemented in these products, and the timing, is a key step for the success 

and sustainability of a product line 

- Feature Cost/Benefit analysis: information related to the effort needed and 

cost involved in realizing features as well as their foreseen benefit. This 

provides valuable input to the overall project costing and the product 

versioning process 

- Open/Closed sets of features: it is rarely the case that the architect is 

furnished with a system’s comprehensive and complete set of features 

upfront. Rather, features are continuously added (and modified) to the initial 

feature model over time. Designing a system around an open and changing 

set of features is a very challenging task. To overcome this problem, some 

industries designate some features as closed, meaning that they can’t be 

changed (core features), while others are designated as open, meaning they 

can be modified by developers. 

- Negative features: these are the features that are not mean to be supported by 

the system (e.g. for security reasons) as opposed to supported features. 
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These properties are usually specified and used by the project managers to carry 

out system-wide business analyses which support decision making such as when to 

introduce features within a product line; what features are feasible from a business 

perspective, etc.  

2.2   Hierarchical & Behavioral View 

The Hierarchical and Behavioral View is the view provided by most existing feature 

modeling techniques. In this view, information related to the structure of the feature 

model and the behavior of the features is captured. Among other potential users, this 

view is mainly targeted at architects and developers. 

2.3   Dependency and Interaction View 

Due to the size and complexity of feature dependency and interaction within real-life 

systems, a separate view is created within the 4VM to model these relationships. The 

Dependency and Interaction View is complementary to the Hierarchical and 

Behavioral View. We define feature dependency and feature interaction as follows: 

- Feature Dependency: a feature-to-feature dependency where the inclusion of 

one or more features affects one or more features within the system. 

- Feature Interaction: a feature-to-architecture dependency where the inclusion of 

one or more features affects the architecture structure (different component sets 

and/or configurations, etc.). 

In this view, logic design is proposed to capture the dependency and interaction 

relationships. Once the relationships are modeled, standard logic algorithms (and SAT 

solvers) can be used to simplify the models. 

2.4   Intermediate View 

Finally, the intermediate view has been introduced in an attempt to bridge the gap 

between feature modeling and the architecture design. This gap exists between the 

two domains due to the fact that the feature model is based on end-user and 

stakeholder concerns while the architecture structure is designed to accommodate 

technical concerns.  

To bridge this gap, the intermediate view proposed attempts at injecting design 

decisions into the feature model to take it one step further towards the architecture 

domain. As such, it may be regarded as an intermediate stage between feature model 

and system architecture. 

3   Implementation 

MUSA was funded as a Proof-of-Concept project to demonstrate the theoretical 

foundation provided in 4VM. The MUSA system provides an end-to-end variability 
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management solution as shown in Figure 1 below. MUSA provides a rich and 

collaborative interface to elicit and manage requirements and variability from 

stakeholders while allowing for appropriate access to the variability model to different 

teams including: implementation, testing and deployment teams. In addition, MUSA 

automates model verification (with the use of SAT solvers) and maintains consistency 

among the different views with the help of a centralized Database (as shown in Figure 

1). MUSA is considered among the very first CASE tools to move into the NUI space 

in order to overcome scalability issues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The end-to-end MUSA System overview 

For example, with MUSA, users can user different gestures such as: pinching (for 

expanding nodes), panning (by moving two fingers on the screen to shift the model), 

three finger gesture (to center the model at the root node), etc.  

In addition, one of the main advantages of MUSA over other CASE tools within 

the domain of VM (see next section) is scalability. This is made possible with the 

adoption of hyperbolic trees [15] to represent VM rather than normal trees and other 

structures within the Euclidean space. 

Hyperbolic trees (a.k.a. hypertree) is a visualization method that maps graphs into 

the hyperbolic geometry. The result effect is similar to a fish-eye lens view where 

nodes in focus are placed in the center and given more room, while out-of-focus 

nodes are compressed near the boundaries. Focusing on a different node brings it and 

its children to the center of the screen, while compressing out of focus nodes. 

The advantage of this is that the standard tree suffers from visual clutter when the 

number of child nodes grow exponentially (in the order of 2
n
 for binary trees and 

much quicker for other types of trees), thus, requiring an exponential amount of space 
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to be displayed appropriately. However, hyperbolic trees employ hyperbolic space 

which provides more room compared with Euclidean space. This is because 

increasing objects’ size in Euclidean space would cause objects to increase linearly in 

size compared to hyperbolically in the hyperbolic space [15]. 

Figure 2 (using the MS Surface) and figure 3 (using Windows 7) below show an 

example VM of a case study developed with the MUSA toolset. In these figures, we 

notice color coding is used to distinguish between optional (blue) and mandatory 

features (yellow). 

 

 

Fig. 2. MUSA over the MS Surface Interface 
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Fig. 3. MUSA over the Windows 7 Interface 
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4   Conclusion and Related Work 

Over the past few years, a number of VM approaches have been developed ranging 

from research techniques to commercial products. 

On the research techniques front, Sinnema et al [7] introduced the COVAMOF 

framework and toolset which uses the COVAMOF variability view (CVV) to 

represent the view of variability for the product family artefacts. The graphical 

notation used is based on a simple 2D, unidirectional tree that becomes cumbersome 

to use as soon as the number of variants exceeds about the 50. The Feature Modelling 

Tool [16] was created as a plugin to visual studio (Figure 4 below). Yet again, in 

practice, the tool would be difficult to use and manage as soon as the number of 

variants exceeds 60 or 70. Other tools include FeaturePlugin (an eclipse plugin) by 

Antkiewicz and Czarnecki [8] and Kubmang by Asikainen et al [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. Feature Modeling Tool [16] 
 

The major challenge for most research techniques is scalability. The scalability 

issue arises from the graphical modeling techniques traditionally adopted (e.g. trees) 

and the I/O devices used (standard keyboard, mouse, and monitors). More recently, 

virtual reality technologies have been reported as being explored as a potential 

approach for VM. It is hard to see how such techniques could make their way to 

commercial environments due to the difficulty involved in integrating such 

approaches within existing industrial development settings. 

On the commercial products front, the main tools are from Pure-Systems [11] who 

have introduced the pure::variants [10] solution and BigLever [12] who developed the 

Gears toolset. Both are provided as part of a complete modeling framework. These 

commercial products have managed scalability by largely moving away from 

graphical representation of models. File system tree like structures and even text 
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listings (e.g. using MS Excel sheets) have been seen in use. Although such 

approaches scale and are in industrial use, adopting NUI interfaces such as the one we 

implemented in MUSA will increase productivity, time-to-market and allow for the 

creation and management of larger and more complex product families.  
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