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A B S T R A C T

The photovoltaic (PV) sector encounters challenges such as high initial costs, reliance on weather, susceptibil-

ity to faults, irregularities in the grid, and degradation of components. Predictive maintenance (PdM) aims to 

proactively identify issues, thereby enhancing reliability and efficiency but may lack specific fault details with-

out additional diagnostic efforts. This research presents an advanced PdM and fault diagnosis framework that 

integrates fault pattern analysis, severity assessments, and critical fault predictions. It aims to improve the func-

tionality of PV systems, minimize downtime, and enhance reliability by identifying and analyzing specific fault 

patterns. Consequently, our article provides a critical review of current Artificial Intelligence (AI) methodologies 

for PdM and fault diagnosis in PV systems. Moreover, this study highlights the significance of data standard-

ization and offers recommendations on how PdM, when combined with fault diagnosis, can utilize various data 

sources to anticipate faults in advance, assess their severity, and optimize system performance and maintenance 

activities. To the best of the authors’ knowledge, no such review study exists.
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Nomenclature

1SVM One-class Support Vector Machine

ABC Artificial Bee Colony

AE Autoencoder

AI Artificial Intelligence

ANFIS Adaptive neurofuzzy inference system

ANN Artificial Neural Network

ARIMA Autoregressive Integrated Moving Average

CBM Condition-based Maintenance

CM Condition Monitoring

CNN Convolution Neural Network

CT Current Transformer 

DAQ Data Acquisition 

DKASC Desert Knowledge Australia Solar Center

DL Deep Learning

DSS Decision Support System

DT Decision Tree

EFB Exclusive feature bundling

EL Electroluminescence

FCNN Fully Connected Neural Network 

FES Fuzzy Expert System

FPGA Field programmable gate array

GAN Generative adversarial network

GCPS Grid-connected photovoltaic System

GHI Global Horizontal Irradiance

GOSS Gradient-based one-side sampling

GTI Global tilted irradiance

ID one-dimensional

IMS Intelligent Monitoring System

IoT Internet of Things

IR Infrared Radiation

KNN K-Nearest Neighbors

KPI Key Performance Indicator

kVA Apparent power

kVAR Reactive power

KW/MW Active Power 

KWh Power generation

LightGBM Light Gradient Boosting Machine

LL Line-to-Line

LSTM Long short-term memory

MAE Mean absolute error

MAPE Mean absolute percentage error

ML Machine learning

MLP Multi-layer perceptron

MPPT Maximum Power Point Tracking

MSE Mean square error

MSRs Maintenance Strategies Routines

NPL Natural processing languages

O&M Operations and Maintenance

OC Open Circuit

ODM Operational Design Model

PCA Principal Components Analysis

PCS Power conversion system

PdM Predictive Maintenance

PID Pelvic inflammatory disease

PM Preventive Maintenance

PMU Phasor measurement unit

PS Partial Shading 

PSIM Physical security information management 

PV Photovoltaic 

PVGIS PV Geographical Information System

R 

2 coefficient of determination

RF Random Forest

RLU Rectified Linear Unit

RM Reactive Maintenance

RNN Recurrent Neural Network

RUL Remaining Useful Life

SADA Solar Array Drive Assembly

SAPVS Stand-alone PV system

SC Short Circuit

SVM Support Vector Machine

UAV Unmanned aerial vehicle

VER Vector Auto-regression

VT Voltage Transformer

1. Introduction

Photovoltaic (PV) systems are a prominent renewable energy tech-

nology known for their modular design and flexibility in meeting diverse 

electrical needs. By 2030, the globally installed PV capacity is projected 

to reach 630 GW [1]. However, PV systems face several challenges, 

such as natural wear and tear, component malfunctions (including 

faults and issues like cracked modules, hotspots, inverter problems, and 

tracker misalignment), adverse weather impacts (such as snow, dirt 

buildup, and wind), along with other concerns (like tightening loose 

cable connections, changing fuses, fixing SCADA errors, and addressing 

tracker failures). Protective measures like over-current and ground fault 

protection are essential, but nonlinear PV characteristics and compli-

cations from shading limit fault detection capabilities for PV systems. 

It also poses inherent complexity [2], often featuring nonlinearity [3], 

uncertainty [4], time-dependent correlations [5], multimodality [6], 

multi-periodicity [7], largeness in scale [8], or intermittent attributes 

[9], leading to problems and challenges in managing the acquired data 

for PdM and fault diagnosis. Apart from that, outliers [10] and mea-

surement noise in PV system data significantly impact the reliability 

and accuracy of data analysis, modeling, and decision-making processes 

[11]. Consequently, these factors can lead to undetected faults and

continuous energy losses, highlighting thus the necessity for efficient 

monitoring and fault diagnosis strategies for PV systems [12].

Research on PV system monitoring and fault diagnosis is grow-

ing due to technological advancements and improved access to data. 

We focus on techniques for timely detection and classification of 

PV component faults to maintain system functionality and cost-

effectiveness. Consequently, three major maintenance strategies are 

identified as Preventive Maintenance (PM), Reactive Maintenance (RM), 

and Predictive Maintenance (PdM). PdM stands out in assessing plant 

health through condition monitoring, minimizing thus, operational costs 

and enhancing equipment longevity through AI algorithms that pre-

emptively address faults [13]. It is considered the best approach for 

industrial component maintenance [14]. Various PdM methods have 

been suggested for evaluating plant health utilizing specific matrices and 

analyzing the progression of monitoring data. These techniques can be 

divided into physical model-based, knowledge-based, and data-driven 

approaches [15]. Among these, data-driven models, in particular, are 

pertinent to our research, as they solely depend on the monitoring data 

collected and the history of maintenance events. These models utilize 

Machine Learning (ML) algorithms designed to detect ideal plant oper-

ations and pinpoint failures. By examining both historical and real-time
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data, they can forecast possible equipment malfunctions, allowing for 

proactive maintenance to avoid damage. Nevertheless, effective PdM 

encounters obstacles like data quality issues, missing or redundant at-

tributes [9], outliers and measurement noise [10,11] and the necessity 

for extensive interconnected historical data.

While PdM offers early alerts for faults, it may not provide detailed 

information on specific fault types without additional diagnostic tech-

niques. PV systems exhibit various fault types, ranging from major to 

minor, with differing initiation speeds and severities that often vary 

over time. Combining PdM with fault diagnosis offers a holistic ap-

proach to addressing these issues, enabling precise fault prediction and 

identification. This approach is further guided by fault severity and pat-

terns, encompassing faults such as module cracking, hotspots, inverter 

failures, tracker misalignment, weather-induced issues (e.g., snow, soil-

ing, wind), and operational challenges like loose cable connections, 

fuse replacements, SCADA faults, and tracker repairs [16]). Predicting 

and identifying these faults ahead of time ensures timely maintenance 

and enhanced system reliability. Likewise, analyzing fault patterns and 

estimating the timeline before reaching a critical stage enables accu-

rate fault diagnosis and improved maintenance planning. Moreover, it 

is crucial to tackle challenges related to sensor degradation, sampling 

frequency, and variations in environmental conditions. Long-term de-

terioration or drift in sensors, often caused by extended exposure to 

sunlight, can lead to inaccuracies in essential data needed for fault 

identification and prediction.

To overcome existing challenges and enhance PdM and fault diag-

nosis in PV systems, this research proposes an innovative multi-stage 

framework that integrates fault pattern analysis, prognosis, severity 

estimation, and predictions regarding the time to reach critical fault 

levels. Therefore, in this paper, authors attempt to review state-of-the-

art work carried out by researchers within each stage of the proposed 

review framework (Fig. 2) leading to guidelines, helping engineers 

and researchers develop techniques and methods for advancing PdM. 

Consequently, addressing the entire PdM from the fault diagnosis per-

spective, emphasizing the comprehensive data collection process, nature 

of data, and diverse AI algorithms in designing a PdM model for PV sys-

tems. Various review studies exist in the literature around PdM and fault 

diagnosis but with certain limitations. Table 1 provides an overview 

of the review papers that focus on the application of AI to PV system 

conditioning monitoring and fault diagnosis analysis (grouped into two 

categories, i.e., Fault Detection and Diagnosis, and PdM). Several impor-

tant research gaps and limitations have been identified. Furthermore, 

Table 1’s last row compares our review study to previous review papers 

in the field, highlighting our notable contributions to this area.

The contributions of this study are given below:

• This research emphasizes the significance of AI-driven PdM and fault

diagnosis algorithms in establishing a robust framework to maintain 

the optimal functionality of the PV system.

• This work Investigates anomaly detection, Condition Monitoring

(CM), and PdM in the context of the classification of future fault 

forecasting simultaneously. This can serve as a valuable foundation 

for future studies into the advancement of the PdM.

• This study signifies various sources for PV system-related data and

PV measurement data to support fault diagnosis and PdM efforts. 

This study establishes several data categories such as sensor, histor-

ical, weather, IV curves, synthetic, and load-power demand data. It 

also focuses on the data standardization challenges and how they 

impact AI performance for PdM and fault diagnosis.

• This study explores the experimental validation of data collection

methods for PV systems, coupled with hardware analysis of AI 

systems for PdM and fault diagnosis, ensuring the robustness and ef-

fectiveness of the proposed methodologies in real-world applications.

• This work reviews existing PdM and fault diagnosis techniques com-

prehensively based on data-driven algorithms, providing insights

into state-of-the-art methodologies and their applicability to PV 

systems.

• Various AI-based algorithms for PdM and fault diagnosis in the con-

text of PV system components, input and output settings, data types, 

advantages and drawbacks have been critically evaluated in this 

study.

• This work presents a comparison of AI-based approaches for fault

diagnosis, highlighting aspects such as the severity of faults, fault 

patterns, and the estimated time until a critical condition is reached.

• This study analyzes fault diagnosis methodologies in terms of their

potential for future prediction, alignment with PdM objectives, real-

world hardware implementation, and verification processes, as well 

as delineation of the inputs and outputs of data-driven models, 

facilitating informed decision-making and proactive maintenance 

strategies.

The proposed work’s graphical overview and article structure are de-

picted in Fig. 1. Section 2 presents the methodology and research status 

of PdM. Section 3 discusses the traditional AI approaches applied in PdM 

and fault diagnosis. Section 4 provides a detailed overview of PV data 

sources and analysis. Section 4.6 describes experimental setup and ver-

ification of data collection and ML/DL hardware implementation. Fault 

diagnosis of PV systems is discussed in Section 5. Section 6 focuses on 

the discussion and future recommendations. Finally, the conclusion is 

presented in Section 7.

2. Methodology: research status of PdM

This section examines the present state of ML-based PdM algo-

rithms, focusing on pertinent questions that shape our understanding 

and investigation:

• Which ML techniques are used for PdM?

• What data is required to enable PdM?

• What is the source of data (synthetic or realistic)?

• How are the ML techniques used for PdM of PV systems?

• Do the ML algorithms for PdM primarily offer fault diagnosis or

anomaly detection capabilities?

• Is the feasibility of ML-based PdM algorithms in real-time applica-

tions supported by experimental verification?

To find appropriate articles for review, a search was conducted on 

Google Scholar using a range of keywords like ‘predictive maintenance’, 

‘fault diagnosis’, ‘condition monitoring’, ‘anomaly detection’, ‘defect’, 

‘failure’, ‘PV System’, ‘AI’, ‘ML’, ‘DL’, ‘classification’, ‘prediction’, ‘vari-

ous types of faults’, ‘various types of AI and ML/DL’, ‘data nature’. Based 

on the search results, over 150 articles were identified between 2018 and 

2024 and included in the present review.

2.1. Predictive maintenance (PdM)

PdM, sometimes called condition-based maintenance (CBM) [34], fo-

cuses on predicting equipment failures and determining the necessary 

maintenance actions to balance service frequency and costs effectively, 

(as shown in Fig. 2). PdM uses the system’s real operating conditions and 

components for Operation and Maintenance (O&M) optimization [35]. 

Data from measurement devices installed on the PV system including 

temperature, irradiance, current, voltage, power output, etc. are used 

for predictive analysis.

To avoid unexpected outages and costs from downtime a well-

implemented, sensitive, and efficient maintenance strategy is required. 

Numerous systems these days continue to depend on spreadsheets 

or even handwritten records to monitor equipment, effectively tak-

ing a reactive process towards maintenance. Consequently, intermittent 

downtime is anticipated and frequently encountered. However, many
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Table 1 

Research status of PdM and fault diagnosis.

Category Reference Methods Features Limitation(s)

Fault 

detection 

and diagnosis

[17], 2021 DL (A). Reviewed most frequent Deep Learning (DL) 

methods for fault detection and diagnosis. 

(A). Does not cover a relation between DL algorithms and 

data nature. 

(B). Enhancement prospects in the DL algorithms 

for fault detection and diagnosis.

(B). It does not explore the impact of data standardization, 

which could enhance model interoperability and scalability. 

(C). The economic perspective of fault diagnosis for both 

small- and large-scale PV facilities has not been discussed, 

which is crucial for assessing the cost-effectiveness and 

financial feasibility of implementing advanced diagnostic 

techniques. 

[18], 2021 AI & ML Focus on various methods for utility PV plant fault 

identification 

(A). A very limited number of AI techniques are 

considered. 

such as electrical parameters, AI, and thermal 

aging.

(B). Does not propose a framework for data extraction 

phases. 

(C). There is a complete lack of information regarding fault 

pattern analysis, severity assessment, and predictions for 

critical fault levels. 

[19], 2018 AI (A). Analysis of PV fault types and causes with 

emphasis on PV array. 

(A). Limited analysis of AI algorithms for fault detection 

and diagnosis. 

(B). Examined electrical methods for PV array, 

string fault detection, and diagnosis. 

(B). Mostly offline data for fault detection and diagnosis, 

neglecting insights into online monitoring setups or data. 

[20], 2022 ML (A). ML algorithms review for performance 

prediction and fault detection. 

(A). System information, data types, and future forecasting 

of the faults have not been discussed.

(B). Compared conventional techniques to an-

alyze PV systems from thermal and electrical 

perspectives. 

[21], 2021 ML (A). Reviewed AI algorithms and Internet of Things 

(IoT) applications for PV Systems. 

(A). Mostly focus on fault classification and detection. Fault 

prediction algorithms have not been discussed. 

(B). Comparison of AI (ML and DL) algorithms 

based on cost implementation, accuracy, and real-

time hardware feasibility. 

(B). Lacks in discussing the development of online detection 

methods for multi-defect/faults.

[22], 2021 AI (A). A systematic study on the AI hybridization 

models for PV fault diagnosis. 

(A). This review paper does not consider experimental 

investigation of the applied AI algorithm for fault diagnosis. 

(B). AI model comparisons are based on the 

data nature, model structure, and fault diagnosis 

performance. 

(B). The specific equipment of the PV system for the AI 

algorithm’s fault detection and diagnosis is not discussed.

[23], 2023 AI & ML (A). A review of diverse fault diagnosis techniques. (A). A Limited number of AI and ML techniques are

considered.(B). Fault awareness for solar PV systems 

(B). Only focus on fault classification—details on the fault 

pattern analysis, severity assessment, and predictions for 

critical fault levels are not addressed. 

(C). Lack of discussion on PV plant maintenance and fault 

detection. 

[24], 2023 ML (A). Reviewed ML algorithms used in PV fault 

detection. 

(A). Fault prediction and monitoring of PV plants are not 

considered. 

(B). A brief overview of ML and its concepts along 

with various widely used ML algorithms. 

(B). The data extraction process and data nature have not 

been addressed. 

(C). The main focus on fault detection accuracy and 

efficiency. 

(C). Limited application of ML algorithms for fault detection 

and classification has been introduced. 

[25], 2022 AI (A). Emphasized on AI-based research for PV plant 

fault diagnosis. 

(A). Limited AI and ML techniques are considered. 

(B). Highlighted fault types, features, and 

diagnostic performance of the ANN models. 

(B). Discussion on PV plant maintenance and future 

prediction of the faults is not considered.

[26], 2024 ML (A). Reviewed supervised learning-based ML for 

fault diagnosis in PV systems. 

(A). Focused on ML algorithms as part of the fault diagno-

sis only. However, analysis of data acquisition and online 

monitoring of PV systems is not discussed.(B). The study aims to explore multiple PV system 

faults and their types 

[27], 2022 Visual, thermal 

and electrical

(A). Consideration of most PV potential faults on 

AC and DC sides. 

(A). Infusion of monitoring architecture doesn’t consider 

performing PV fault detection and classification.

(B). Enumeration of specific PV fault detection and 

classification. 

(C). PV fault categorization based on visual, 

thermal, and electrical methods. 

[28], 2023 AI and 

thermography

(A). Various classifications of PV faults and fault 

detection techniques are presented. 

(A). Limited AI methods are considered. 

(B). Fault localization and classification by 

thermography methods. 

(B). No information on the improvement of fault 

characterization and identification. 

(C). Review of different AI tools for fault detection 

and classification.

(C). PV fault prediction using small datasets. 

(D). Does not propose the monitory system.

(continued on next page)

Applied Energy 393 (2025) 126108 

4 



A. Hamza, Z. Ali, S. Dudley et al.

Table 1 (continued)

Category Reference Methods Features Limitation(s)

PdM [29], 2022 ML and physical

techniques

(A). Reviewed forecasting techniques for ambient

and cell temperature, solar irradiance, and their 

connection to PdM. 

(A). The paper concentrates on forecasting weather pa-

rameters in the PdM process but needs to include fault 

classification for a better understanding of system behavior 

and targeted maintenance interventions.(B). Discussed the limited utilization of weather 

stations in PdM and forecasting of climate 

parameters. 

(C). Highlighted the correlation between PV PdM 

and forecasting.

[30], 2021 DL & AI (A). Explored various methods such as deep 

learning, ensemble learning, and transfer learning.

(A). A limited number of AI techniques are considered. 

(B). System information, data types, and fault diagnosis 

analysis have not been discussed. 

[31], 2020 Maintenance

types

(A). Focused on maintenance strategies to prevent

efficiency drops due to faults. 

(A). Omitting fault indicators and failure mode analysis 

significantly weakens the paper’s insights into system health 

and its optimization potential.(B). Reviewed techniques developed under 

maintenance strategies. 

(C). Emphasized fault prediction in PV systems to 

enable future expansion

[32], 2022 DL (A). Remote sensing, problem detection, and 

diagnosis of PV systems 

(A). The focus is solely on the type of maintenance. 

(B). Applications of DL and IoT for PV systems.
(B). There is no description of the data type or any future 

forecasts regarding faults. 

[33], 2022 Maintenance

approaches

(A). Highlights the present scenario of maintenance

approaches with possible causes of degradation. 

(A). Discusses PdM from environmental issues and 

perspectives only. 

(B). Current approaches and opportunities for PV 

PdM are provided.

(B). Operational perspectives (technical performance op-

timization, panel efficiency, inverter performance, and 

overall system health), and technological perspectives such 

as IoT sensors, data analytics, and ML are essential to be 

considered.

This Work – AI & ML (A). Discussion on PdM and future forecasting of

the faults. 

(B). ML-based PdM and fault diagnosis for PV 

Systems. 

(C). PdM potential framework for PV Systems. 

(D). PV data sources and analysis. 

(E). Experimental validation of ML algorithms for 

PdM and fault diagnosis. 

(F). Discussion about description of data and data 

types applied for PdM and fault diagnosis. 

(G). Exploration of PdM/ anomaly detection con-

cerning specific classes and future forecasting of 

faults. 

(H). Challenges of data standardization and its 

effects on AI performance for PdM and fault 

diagnosis.

-

Fig. 1. Flow diagram of this review work.

of these disruptions can be prevented or mitigated through appropriate 

maintenance strategies. The evaluation of PdM in relation to different 

maintenance strategies, focusing on costs and methods, is illustrated in 

Fig. 2, along with a financial comparison in Fig. 3. Table 2 outlines the 

advantages and disadvantages of each maintenance method as it pertains 

to the PV system.

2.2. Proposed PdM framework for PV system

An ML-based PdM framework for PV systems has been proposed in 

this study, illustrated in Fig. 4, which provides a structural approach 

to the deployment of AI-based PdM integrated with fault diagnosis 

(baseline for our review study).

2.2.1. Data acquisition

The process begins with data acquisition, a critical step for imple-

menting effective PdM and fault diagnosis in a PV system. This stage 

involves the systematic collection of comprehensive data. Real-time 

electrical parameters such as voltage, current, and power are captured 

using voltage sensors (including potential transformers and dividers) 

and current sensors (like current transformers and Hall effect sensors), 

delivering immediate and accurate assessments of system performance. 

IR cameras effectively capture thermal images, pinpointing potential 

hotspots that indicate faults based on module temperature distribution. 

Environmental conditions are rigorously monitored through a variety 

of advanced instruments, including humidity sensors (capacitive and 

resistive), rain gauges (tipping bucket and weighing models), soiling 

sensors (optical and ultrasonic), sky imagers/cloud cover sensors, and 

pyranometers/reference cells that measure solar irradiance. Moreover, 

the tilt and orientation of the PV module and array are precisely tracked 

using inclinometers/tilt sensors alongside GPS and compass systems.
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Fig. 2. Comparison of maintenance strategies based on costs and maintenance 

activities.

Fig. 3. Maintenance difference between PdM, RM and PM.

Additionally, simulated performance data generated from PV system 

simulation software, as well as calculated reference and total yields 

and power flow information sourced from these sensors, form integral 

components of the process. This multifaceted strategy, which harnesses 

a diverse array of sensor technologies and cutting-edge data analysis

methods, guarantees a comprehensive understanding of the PV system’s 

health. This approach enables precise fault detection and empowers the 

development of robust predictive maintenance strategies.

The complexity of data acquisition in PV systems is significantly in-

creased by the diverse outputs and collection frequencies of sensors. 

Each sensor type, whether high-frequency current and voltage sensors 

or slower irradiance and temperature sensors, produces data at varying 

rates and exhibits distinct signal characteristics. This demands a robust 

Data Acquisition System (DAS) that can effectively manage these het-

erogeneous sensor inputs. Modern DAS solutions must employ modular 

architectures to ensure seamless integration of different sensor types and 

provide tailored signal conditioning to meet specific sensor requirements 

[36]. Moreover, efficient data transmission is crucial. Communication 

protocols such as Modbus, TCP/IP, and various wireless technologies 

(including Wi-Fi and cellular) must be utilized to facilitate reliable data 

transfer to central monitoring stations or cloud platforms. The sub-

stantial volume and variability of data introduce significant challenges 

regarding standardization. It is imperative to ensure data consistency 

and interoperability among different sensor types and DAS components 

for effective data analysis and fault diagnosis. Implementing standard-

ized data formats and communication protocols is vital to overcoming 

these challenges, enabling seamless integration and efficient processing 

of the diverse data streams generated by the PV system.

2.2.2. Data processing

After acquiring data, the next vital step is data processing, which 

involves three main phases: data cleaning, data integration, and data 

transformation. Due to the diverse nature of PV system data, each phase 

should be customized according to the specific attributes of the data 

types. Firstly data cleaning involves cleaning raw sensor data to elim-

inate inaccuracies, noise, and incomplete readings, ensuring precision 

in analysis. To manage missing values in electrical parameters due to 

brief interruptions, techniques like linear interpolation or Kalman filter-

ing can be employed. In the case of thermal infrared images, using noise 

reduction methods like median filtering can effectively reduce sensor 

noise. Weather data, which is often impacted by sensor drift or failures, 

requires outlier detection and imputation methods to maintain accuracy. 

Secondly, data integration involves merging information from various 

sources. This process may include combining real-time sensor data with 

data from weather APIs, retrieving historical performance data from 

databases, and converting simulation results into a cohesive format. For 

example, irradiance data obtained from pyranometers can be integrated 

with cloud cover data from sky imagers and forecasted irradiance from 

weather APIs. This phase typically demands careful synchronization 

of timestamps and geospatial data. Third, data transformation is cru-

cial for preparing data for analysis and modeling. Techniques such as 

PCA can be employed to reduce the dimensionality of high-dimensional

Table 2

Maintenance techniques within a PV system framework.

Technique Features Limitation Summary

PM This maintenance helps in the minimization of

sudden failures and enhances the component 

lifespan.

(A). Cost is ineffective due to scheduled 

downtime.

(A). This technique is applicable where fault impact 

is acute and is suitable for machinery prone to wear 

and tear. 

(B). It can cause unnecessary maintenance 

whereas the machinery is still in use.

(B). Incompetent, as components rarely fail before 

their expected life cycle. 

(C). This technique can be suitable for components 

such as inverters, and PV arrays. 

RM (A). Lower upfront cost and minimal operational

interruption until any malfunction occurs. 

(A). More unexpected failure risks. Expensive 

downtown through failures. 

(A). It is suitable when the impact is not severe and 

on those components that have low failure chances. 

PdM (A). Enhances component overall safety and

reliability. It also decreases the overall mainte-

nance costs, maximizes component lifespan, and 

minimizes the downtown.

(A). Investment in the monitoring system and 

experts is required for the data analysis.

(A). Maintenance decisions are made solely on the 

data analysis by ML.

(B). For a system where the early detection of 

potential failures is crucial, the impact is significant.
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Fig. 4. Proposed ML integrated PdM structure with fault diagnosis.

datasets, like thermal IR images or weather data, while still preserv-

ing key information. Likewise, label encoding can categorize different 

types of faults identified from thermal anomalies or electrical fluctua-

tions. Additionally, feature scaling methods, including standardization 

or robust scaling, help standardize features to a similar scale, preventing 

any single feature from overshadowing others in the analysis. For time-

series data, such as voltage and current readings, techniques like Fast 

Fourier Transform (FFT) or wavelet transforms can be applied to uncover 

frequency-domain characteristics that signal faults. This comprehensive 

data processing pipeline effectively transforms raw data into a struc-

tured and informative dataset, which is prepared for fault diagnosis and 

PdM modeling.

After completion of the thorough data processing phase, feature engi-

neering is performed to derive significant and distinguishing information 

from the cleaned data, focusing on the specific goal of PdM and fault 

diagnosis. Due to the variety of dataset formats, feature engineering 

approaches are adjusted to fit these differences. For example, features 

derived from I–V curve analysis are essential for a precise assessment 

of PV module performance degradation. Key metrics including MPP

voltage and current, fill factor, and series/shunt resistance, are calcu-

lated directly from measured I–V curves. Any deviations from expected 

I–V curve characteristics serve as strong indications of module faults, 

such as shading, soiling, or cell degradation. Image-based feature ex-

traction using thermal IR imagery involves techniques such as texture 

analysis and histogram analysis to detect spatial thermal anomalies that 

signal faults. These techniques help identify hotspots, temperature gradi-

ents, and other thermal patterns, offering vital insights into the thermal 

distribution of the module. Additionally, time-series feature extraction 

from voltage, current, and power data employs statistical moments and 

frequency-domain transforms (such as FFT and wavelet) to uncover tem-

poral patterns and frequency components linked to both normal and 

abnormal operations. After feature extraction, the framework includes 

a data visualization and interpretation phase. This phase aims to con-

vert the extracted features into easily understandable formats, such as 

graphs, charts, and heatmaps, which help in identifying crucial patterns 

and insights regarding the health of the PV system. These visual aids are 

vital for experts to understand the system’s status and to make informed 

decisions regarding maintenance and troubleshooting issues.
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Table 3 

PdM framework design requirements for PV system components based on ML (mapping data types to ML algorithms).

For Data Suitable ML models Reflection on mapping and application significance

PV arrays (A) Sensor Data like:

(I). PV DC Current, DC-DC converter current, PV 

DC voltage, PV DC power. 

(II). Solar irradiance, humidity, wind speed/di-

rection, total radiation received by array surface, 

ambient light, and temperature. 

(III). Dust and soil accumulation. 

(IV). Azimuth and tilt angle. 

(B). Generation/weather profiles 

(I). Historic data 

(II). Synthetic data.

(A) Classification algorithms: 

(I). Hybrid ML models with autoencoders. 

(II). Long short-term memory (LSTM) models. 

(III). Time series analysis

(IV) Regression.

(A). Developing a correlation model between weather 

parameters and PV power generation for regenerat-

ing PV system dynamical behavior, i.e., array voltage, 

current, temperature and solar irradiation to reduce 

the installation and maintenance cost in terms of sen-

sors and real-time insights into PV system components 

such as PV arrays. 

(B). Temporal dependencies and patterns can be 

captured by LSTM. 

(C). To identify and control the deviation and unusual 

response of PV system components, classification 

models can be used. 

(D). Power generation patterns of the PV system 

can be identified by time series analysis such as the 

Autoregressive Integrated Moving Average (ARIMA) 

model and can predict the future generation trends 

over time. 

(E). The potential energy generated from PV sys-

tems can be predicted using regression models 

incorporating environmental and historical data. 

(F). Fault severity progression over time can be mod-

eled using LSTM, which captures degradation and 

aging effectively. 

(G). A multi-task learning framework can be explored 

to improve predictions by enabling LSTM to forecast 

severity progression while allowing boosting models 

to effectively classify or score fault severity levels. 

Inverter (A). Power flow measurements.

(B). Real-time operational data such as energy 

yield, and total operating time. 

(C). Historical data such as aggregated energy 

data on day, week, month, and year.

(A). Classification algorithms 

(B). Regression 

(C). Hybrid ML models with autoencoders 

(D). LSTM 

(E). Time series analysis

(A). Inverter conditions can be tracked through both 

real-time operational data and historical information, 

while classification models assist in detecting anoma-

lies and irregular behavior. (B). Real-time insights 

into inverter health can be modeled and monitored.

AC grid and 

transmission 

lines

(A). Instrument transformers such as Current 

Transformers (CT) and Voltage transformers 

(VT) for AC current and voltage, respectively. (B. 

Power meter for measuring active power (kW), 

reactive power (kVAR), and apparent power 

(kVA). 

(C). Frequency meter for monitoring the 

frequency of AC grid. 

(D). Load profiles 

(E). Maintenance records

(A). Classification algorithms 

(B). Regression 

(C). Hybrid ML models 

(D). LSTM 

(E). Time series analysis

(A). Regression models predict remaining life or es-

timate potential faults in transmission lines using 

historical and real-time data from CTs and VTs. 

(B). Time-stamped data from CTs, VTs, and power 

meters can be analyzed to detect changes and forecast 

line behavior using time series analysis and LSTM 

for anomaly detection by identifying deviations from 

learned patterns.

2.2.3. Implementation of AI

The next stage in the PdM framework covers the selection, imple-

mentation, training and validation of AI algorithms. The selection of AI 

techniques relies on the nature of the data and the application under 

consideration. Table 4 demonstrates the overview of designing a PdM 

framework for PV systems based on AI models and maps the poten-

tial AI applications to data types (providing guidelines to researchers). 

The AI algorithm is generally trained to recognize specific patterns in 

data that indicate the system’s deviation from the normal condition. AI 

algorithms identify outliers by recognizing the features important for dif-

ferentiation. To improve the accuracy and reliability, a validation step 

is performed, where the AI model is tested on the new set of data that 

has not been used for model training. In this way, the model will be 

generalized to new data and avoid over-fitting. After deploying the AI 

model and identifying anomalies, predictive alerts can be implemented.

2.2.4. PdM with fault diagnosis model

Following the AI training, the process advances to prognosis and 

fault classification. Prognosis entails predicting errors, assessing system 

degradation, forecasting performance, estimating the remaining useful 

life, and determining the likelihood and timing of failures. Subsequently, 

fault classification organizes identified problems into categories, which 

may include electrical or environmental faults, faults related to PV mod-

ules, or issues with PV module connections. This is followed by fault

localization, which identifies the precise location of faults to enable fo-

cused maintenance efforts. In the realm of PdM, the integration of fault 

classification and localization helps to discern patterns in the occurrence 

of faults, their severity, and the intervals between them.

The proposed framework enhances traditional PdM methods by 

adopting a more holistic approach to evaluating fault severity, con-

ducting temporal fault analysis, and classifying predictive faults. A key 

feature is the ability to quantify fault severity, which allows for a deeper 

understanding of system degradation beyond simple fault detection. 

For example, in PV systems, PS is examined based on its origin and 

effects. The analysis differentiates between shading caused by factors 

such as tree foliage, dust build-up, bird droppings, or shadows from 

utility poles, each of which presents unique shading patterns and sever-

ity levels. By developing metrics that account for the shaded area, the 

intensity of shading (derived by irradiance measurements), and the cor-

responding power loss, a detailed assessment of shading severity can 

be achieved, ranging from minor impacts on energy output to signifi-

cant performance decline. Similar to other faults such as OC and SC, 

their fault levels are defined based on the number of affected PV mod-

ules within strings or arrays, delivering a clear assessment of the fault’s 

severity. Incorporating fault duration into the analysis is crucial for 

accurate degradation modeling. By combining fault severity with aging 

data, it is possible to calculate degradation levels over time. This tem-

poral analysis allows for predicting the RUL of a system and optimizing
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maintenance schedules. By monitoring the progression of fault severity 

over time, dynamic thresholds can be established to prompt mainte-

nance interventions before the critical breakdown of the PV system 

occurs.

Furthermore, the framework focuses on recognizing fault patterns. 

The analysis of how fault severity progresses from initial detection (level 

1) to critical failure highlights distinct patterns that precede catastrophic 

breakdowns. These patterns are utilized to create predictive fault classi-

fication models. Specifically, after detecting an anomaly, the framework 

observes the anomaly’s pattern to determine its classification. By keep-

ing track of when faults occur and how quickly their severity increases, 

it estimates the time to critical breakdown. Dynamic thresholds, which 

are adjusted according to the temporal changes in severity, provide real-

time insights into the health of the system. This approach allows for the 

forecasting of faults and their classifications days to weeks in advance, 

from the initial anomaly detection to the expected critical breakdown. 

This capability supports proactive maintenance, reducing downtime and 

enhancing system reliability by allowing maintenance teams to con-

centrate on specific fault cases and facilitating prompt responses. The 

forecasting AI model incorporates various inputs, including the sever-

ity score, fault frequency, temporal patterns, estimated time to critical 

failure, severity level, and aging data. This model anticipates upcoming 

maintenance tasks and produces optimized maintenance schedules that 

are informed by severity-based predictions and dynamically modified 

thresholds.

The proposed framework presents an innovative fusion of AI-driven 

fault diagnosis and prognosis with PdM scheduling, addressing a gap in 

the current PV fault diagnosis and maintenance system. Furthermore, 

utilizing AI algorithms empowers the system to learn from both his-

torical and real-time data, enhancing its accuracy in predicting future 

maintenance needs. Overall, the suggested approach will significantly 

improve the effectiveness of PdM and fault diagnosis systems in PV 

installations, providing a robust answer to issues related to data inac-

curacies, environmental changes, and communication lags.

This proposed framework acts as the basis for the following review 

of related literature. Table 4 in Section 3 centers on PdM, anomaly de-

tection, and CM. It also investigates the use of various datasets for these 

tasks and underscores the capability to forecast faults in advance, often 

days or weeks prior to their occurrence. Table 6 in the fault diagno-

sis, Section 6, evaluates papers based on fault severity, fault occurrence 

time, and the ability to predict future faults, further progressing the 

conversation on fault diagnosis and prognosis with PdM.

3. AI based methods in PdM

In this article, we reviewed various AI algorithms used in PV pre-

dictive maintenance and fault diagnosis. Table 4 reports state-of-the-art 

research employing ML/DL algorithms for PV PdM, condition monitor-

ing, and anomaly detection. The reviewed papers are compared based 

on the category and type of algorithm used, equipment of the PV system, 

description of the data applied for PdM, real-time implementation/veri-

fication of ML/DL algorithm, data type, PdM/anomaly detection/condi-

tion monitoring as well as specific fault types considered. The important 

columns of Table 4 are briefly described as:

• Category: The first column categorizes the reviewed papers based on

the primary methodological approaches employed for PdM, includ-

ing DL, ANN, Supervised and Unsupervised ML and other relevant 

techniques. It combines and organizes the research papers reviewed 

into groups based on their similarities in methodological approach.

• ML methods: The ML algorithms utilized for PdM and anomaly

detection are specified in this column. These may range from su-

pervised learning techniques like classification and regression to 

unsupervised learning approaches such as clustering. The choice of 

ML algorithms profoundly influences the accuracy, efficiency, and 

interpretability of the PdM framework. These algorithms are later 

explained briefly.

• Equipment: The specific PV equipment or systems used are de-

scribed in this column. This includes details such as the types of 

solar panels, inverters, monitoring devices, or any other hardware 

components relevant to the study.

• Description of the data used for PdM: This column outlines the

nature and characteristics of the data used in the existing studies. 

This encompasses parameters such as sensor readings, environmental 

conditions, performance metrics, or any other relevant data sources 

collected from the PV equipment. A clear description of the data 

helps readers understand the input variables and the information 

available for training and evaluation of the machine learning models.

• Real-time implementation/validation: In this column, we exam-

ine whether the ML-based predictive maintenance framework has 

been implemented for real-time operation on hardware. This in-

dicates the practical applicability and scalability of the proposed 

solution in monitoring and managing PV systems in real-world 

settings. Real-time implementation enables timely detection and mit-

igation of faults or anomalies, thereby enhancing the reliability and 

performance of solar energy systems.

• Data type/source: This column describes the data types used for

PdM and anomaly detection in the photovoltaic system. The focus 

is on the source and nature of the data employed in the study. 

Data types may vary widely, ranging from simulated data gener-

ated by software tools like MATLAB or LabVIEW to real-world data 

collected from operational PV plants. Additionally, the column in-

cludes information on the format and structure of the data, such as 

numerical values, time-series data, images, or text, which influence 

the selection of appropriate data preprocessing techniques and AI 

algorithms.

• PdM, anomaly detection and condition monitoring: This col-

umn assesses whether studies under review apply PdM, anomaly 

detection, or CM, and pinpoints the particular factors used, includ-

ing system variables, fault indicators, or environmental conditions, 

for conducting these tasks. Anomaly detection involves identifying 

deviations from normal behavior or expected patterns in the data, 

which could indicate potential faults or abnormalities in the PV 

system. CM entails continuous observation of various parameters 

and performance metrics to evaluate the health and operational sta-

tus of PV equipment. Integrating anomaly detection and condition 

monitoring towards the PdM framework provides a comprehensive 

approach to identifying and addressing issues affecting the reliability 

and performance of the PV system.

• Specific class and future fault forecasting: Most papers focus

solely on detecting anomalies, without categorizing specific fault 

types or providing detailed explanations for the underlying causes of 

anomalies in offline analysis. Therefore, “Yes” indicates characteriza-

tion of anomalies into specific faults, and “No” means generalization 

without categorization of fault types. Furthermore, future fault fore-

casting capability (as “Yes” or “No”) is investigated, which refers to 

the ability to predict faults in advance (days or weeks before they oc-

cur). This allows for necessary maintenance actions that can prevent 

downtime and extend the equipment’s life.

Furthermore, Fig. 5 summarizes major AI (ML and DL) algorithms 

and their applications, and the most used AI methods are briefly ex-

plained in the subsequent sections. These include supervised learning 

models with the most common Artificial Neural Network (ANN), Support 

Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Naive 

Bayes (NB), K-nearest neighbors (KNN), ensemble techniques, gradient 

boosting algorithm, Fuzzy Expert System (FES), and unsupervised learn-

ing with Principal Components Analysis (PCA), Hierarchical clustering, 

K-Means, Fuzzy C-Means and semi-supervised learning with graphic and 

generative based models. Likewise, in deep learning, Convolution Neural 

Network (CNN), Long Short-Term Memory (LSTM), Bi-LSTM, Recurrent 

Neural Network (RNN), and Generative Adversarial Network (GAN) are 

discussed.

Applied Energy 393 (2025) 126108 

9 



A
.

 H
a
m
za
,

 Z
.

 A
li,

 S
.

 D
u
d
ley

 et
 a
l.

Table
 

4
 

A
 

summary
 

of
 

the
 

most
 

recent
 

published
 

work
 

on
 

PV
 

system
 

PdM.

Category Ref ML
 

methods Equipment Description
 

of
 

data
 

used
 

for

PdM

Real-time

implementa-

tion/validation

Data
 

type/source PdM,
 

Anomaly
 

detection,
 

or

Condition
 

Monitoring

Specific
 

fault

class
 

&
 

future
 

forecasting

DL [37]
 

CNN PV
 

panels Daily
 

electrical
 

power

signal

No Real
 

Data:
 

Measured
 

values

of
 

targeting
 

panels
 

and
 

two
 

neighboring
 

panels

PdM:
 

predicting
 

the
 

regular

pattern
 

of
 

shadows

No

[38]
 

LSTM PV
 

arrays Timestamp,
 

rainfall,
 

so-

lar
 

module
 

output
 

power,
 

temperature,
 

diffuse
 

radiation

No Real
 

Data:
 

Desert
 

Knowledge

Australia
 

Solar
 

Center
 

(DKASC),
 

Australia.

PdM:
 

Prediction
 

of
 

solar

module
 

output
 

power

No

[39]
 

K-Means
 

clustering
 

&
 

LSTM—anomaly
 

detection

String
 

modules
 

of
 

large-

scale
 

photovoltaic
 

plant

Electrical
 

current
 

of
 

string
 

modules,
 

PV
 

module
 

tem-

perature,
 

module
 

plane
 

global
 

irradiance

No Real
 

Data:
 

Obtained
 

from

inverters
 

including
 

output
 

current
 

of
 

string
 

modules
 

for
 

seven
 

combiner
 

boxes,
 

total
 

of
 

420
 

modules
 

electrical
 

current
 

and
 

8400
 

PV
 

modules.

Anomaly
 

detection:
 

Predicted
 

string
 

modules
 

output
 

current

No

[40]
 

LSTM
 

networks
 

and
 

auto-

encoder

PV
 

Arrays Data
 

include
 

battery
 

array

output
 

current,
 

solar
 

panel
 

temperature,
 

drive
 

shaft
 

temperature,
 

and
 

satellite
 

telemetry
 

parameters.

No Real
 

Data:
 

captured
 

from

small
 

satellite
 

Solar
 

Array
 

Drive
 

Assembly
 

(SADA).

Fault
 

prediction:
 

Early
 

fault
 

signals
 

identification

No
 

&
 

Yes:

Anticipating
 

faults
 

occurrence
 

ranging
 

days
 

in
 

advance.

[41]
 

CNN—isolated
 

learning
 

and
 

transfer
 

learning

PV
 

modules Infrared
 

images
 

of
 

normal

and
 

mechanical
 

loads
 

and
 

shading
 

(artificial)
 

for
 

arti-

ficial
 

defect
 

induction
 

are
 

taken
 

and
 

processed
 

for
 

various
 

PV
 

modules

No Real
 

Data:
 

Indoor
 

and
 

outdoor

thermography
 

setup
 

with
 

IR
 

camera,
 

PV
 

panel
 

and
 

variable
 

power
 

supply

Anomaly
 

detection:
 

Normal
 

and
 

faulty
 

behaviors

No

[42]
 

Intelligent
 

Monitoring

System
 

(IMS)
 

with
 

LSTM
 to

 

predict
 

PV
 

output
 

power,
 

NB,
 

KNN,
 

and
 

SVM
 

to
 

detect
 

and
 

classify
 

fault
 

events.

PV
 

modules,
 

PV
 

ar-

rays
 

as
 

a
 

stand-alone
 

PV
 

system

Power
 

forecasting
 

data:

irradiance,
 

temperature,
 

humidity,
 

power,
 

voltage,
 

and
 

current.
 

Feature
 

ex-

traction
 

data:
 

Temperature,
 

irradiance,
 

and
 

power.

No Real
 

data:
 

from
 

PV
 

experimen-

tal
 

setup:
 

3
 

features,
 

20
 

time
 

steps,
 

and
 

7300
 

samples.

Monitoring
 

and
 

fault
 

classification
 

system

Yes:
 

Array
 

and

string
 

degrada-

tion,
 

open
 

circuit
 

faults
 

&
 

No.

[43]
 

IoT
 

platform
 

architecture:

isolation
 

forest
 

for
 

anomaly
 

detection,
 

BiLSTM-multi
 

dense,
 

convolutional
 

LSTM.
 

bidirectional
 

LSTM,
 

LSTM,
 

and
 

RNN
 

for
 

PV
 

power
 

pre-

diction
 

and
 

monitoring
 

with

an
 

edge
 

server
 

Power
 

Plants
 

of
 

Seoul Temperature,
 

Humidity,

Wind
 

speed
 

in
 

𝑥
 

and
 

𝑦
 

direction,
 

irradiation
 

intensity
 

Cloud
 

den-

sity,
 

Sunshine
 

duration,
 

Generated
 

PV
 

power,
 

Model
 

structure,
 

hyperparameter

No Real
 

data:
 

PV
 

power
 

gen-

eration
 

data
 

from
 

2021
 

to
 

2023,
 

hourly
 

weather
 

obser-

vation
 

data
 

with
 

a
 

24-hour
 

data
 

length.

Early
 

anomaly
 

detection:
 

normal
 

and
 

abnormal
 

data

No

[44]
 

CNN Large-scale
 

photovoltaic
 

systems.

Real-time
 

images:
 

thermog-

raphy,
 

Electroluminescence
 

(EL)
 

and
 

ultraviolet
 

fluo-

rescence
 

imaging,
 

image
 

binarization.

No Real
 

Data PdM:
 

Generic No

[45]
 

ResNet-34
 

CNN
 

with
 

a
 

su-

pervised
 

contrastive
 

loss
 

and
 

KNN
 

classifier

105,546
 

PV
 

modules
 

from
 

six
 

PV
 

plants

4.16
 

million
 

IR
 

images

acquired
 

under
 

clear
 

sky
 

conditions
 

and
 

solar
 

irradiance
 

above
 

700
 

𝑊
 

∕𝑚
 

2

No Real
 

Data:
 

Images
 

from
 

IR

videos
 

of
 

PV
 

module
 

cap-

tured
 

by
 

drone-mounted
 

DJI
 

Zenmuse
 

XT2
 

camera.
 

39.4
 

images
 

providing
 

multiple
 

augmented
 

views.

Anomaly
 

detection:
 

Normal
 

and
 

anomalous

No
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[46] AutoEncoder LSTM,

facebook-prophet,
 

and

isolation forest

Two solar power plants. Weather measurements:

irradiation,
 

ambient,
 

and

module temperatures.
 

Generate rate:
 

AC
 

and DC

powers,
 

daily and total
 

yield

No Real
 

Data:
 

34 days of
 

data

from
 

plants in India with

15 min intervals.

Anomaly detection:
 

Normal

healthy condition and

abnormal
 

behavior

No

[47] 𝐴2
 -LSTM PV

 

Array -Simulink

model
 

and Greece Power

plant

Data include weather pa-

rameters:
 

ambient
 

and

module temperature,
 

wind

speed,
 

solar irradiance.
 

Inverter DC
 

power,
 

PV
 

ar-

rays current,
 

voltage and

power

No Simulated
 

Data:
 

dataset
 

spans

480 days with 10 min inter-

vals.
 

Real
 

Data:
 

365 days,
 

with

20 min intervals.

Anomaly detection:
 

Normal

healthy condition and

abnormal
 

glitch in PV

production

No

[48] CNN-LSTM PV System Irradiance on PV
 

surface

Ambient
 

temperature,
 

PV
 

output
 

current,
 

voltage,
 

and

power generation

Yes Real
 

Data Generic—Online

monitoring

No

ANN [49] ANN PV system Predicted and actual/mea-

sured values of
 

AC power

production

No Real
 

and
 

simulated
 

Data:

historical
 

store data of
 

solar

irradiance and tempera-

ture.
 

ANN
 

for model
 

power

production

PdM:
 

Predictive mainte-

nance alerts for avoiding

possible incoming faults

No & Yes

[50] Fully connected neural
 

network (FCNN)

PV module PV
 

modules string current

and voltage,
 

irradiance and

air temperature

No Simulated
 

Data:
 

Single PV

module connected directly to

an adjustable resistive load

and a current
 

and voltage data

acquisition system

Fault
 

detection No

[51] Residual
 

NN
 

with infrared

radiation (IR)
 

cameras.

PV modules IR
 

images of
 

different
 

solar

plants captured by UAV.
 

Images classified as classes:
 

No anomaly,
 

anomaly

classes:
 

cracking,
 

shad-

owing,
 

hotspot,
 

and hotspot
 

multi,
 

cell
 

and cell-multi,
 

diode and diode-multi,
 

soil-

ing,
 

vegetation,
 

and offline

module.

No Real
 

Data:
 

A
 

real
 

solar
 

plant

with
 

20,
 

000
 

IR
 

images,
 

and
 

12
 

different
 

solar defects.

Anomlay detection:

Prediction and classifi-

cation of
 

anomaly solar

modules

Yes:
 

Classify 12

anomaly types &

No.

(continued on next
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Table
 

4
 

(continued)

Category Ref ML
 

methods Equipment Description
 

of
 

data
 

used
 

for

PdM

Real-time

implementa-

tion/validation

Data
 

type/source
 

PdM,
 

Anomaly
 

detection,
 

or

Condition
 

Monitoring

Specific
 

fault

class
 

&
 

future
 

forecasting

[52]
 

Pattern
 

recognition
 

NN
 

and

unsupervised
 

clustering
 

techniques

PV
 

plant Plant
 

nominal
 

power
 

(MW)

and
 

active
 

power
 

(KW)

No
 

  

Real Data: Six PV plants
 

10 MW each,
 

 

more than 100
    

 inverters
 

of three
 

different
 

 

technology brands.
 

Generic
 

fault/status
 

prediction
 

up
 

to
 

7
 

days

Yes—specific
 

class
 

predic-

tion.
 

&
 

Yes—
 Predicting

 

fault
 

types
 

and
 

sever-

ity
 

in
 

the
 

future
 

(ranging
 

from
 

a
 

few
 

hours
 

to
 

seven
 

days).
 

[53]
 

Regression
 

NN Large-scale
 

and
 

remote
 

PV
 

farms

Clean
 

and
 

soiled
 

modules
 

data,
 

solar
 

irradiance,
 

module
 

temperature,
 

and
 

hourly
 

maximum
 

power
 

measurements.

No
 

  

Real Data: with 3308
 

observations.

Real-time
 

solar
 

monitor-

ing,
 

power
 

prediction,
 

and
 

anomaly
 

detection.

No.

Supervised

ML

[54] Regression
 

and
 

SVM small-scale
 

PV
 

generation
 

system

Solar
 

irradiance,
 

cell
 

and
 

ambient
 

temperature,
 

DC
 

current
 

and
 

voltage,
 

power.
 

No
 

  

Real Data: acquired from the
 

power conversion
 

system
 

 

 

Abnormal
 

condition
 

detection

No

[55]
 

XGBoost
 

regression
 

model Test-bench
 

PV
 

system
 

Meteorological
 

data:
 

Wind
 

speed
 

and
 

direction,
 

am-

bient
 

temperature,
 

and
 

in-plane
 

irradiance.
 

PV
 

module
 

data:
 

Back
 

surface
 

module
 

temperature,
 

DC
 

current,
 

voltage
 

and
 

power,
 

module
 

orientation
 

and
 

ele-

vation
 

angles,
 

array
 

energy,
 

PV
 

system
 

total
 

and
 

refer-

ence
 

yield,
 

performance
 

ratio,
 

AC
 

output
 

power.
 

No
 

  

Actual (Real):
 

Historical and

real-time performance data
   

and synthetic (simulated)
 

  

data using weather
 

parameters,
 

  

 

historical labeled-data with
  

field emulated failure.
  

Health-state
 

architecture
 

for
 

PV
 

system
 

monitoring

No

[56]
 

Ensemble
 

ML
 

Empirical
 

Analysis:
 

RF,
 

XGBoost,
 

CatBoost,
 

and
 

Light
 

Gradient
 

Boosting
 

Machine
 

(LightGBM)

PV
 

system DC
 

voltage
 

and
 

current,

instantaneous
 

power
 

gen-

eration,
 

power
 

factor,
 

frequency,
 

timestamp,
 

line-line
 

voltages,
 

phase
 

currents,
 

PV
 

output
 

power,
 

maximum
 

and
 

daily
 

power
 

generation.
 

No
 

  

Real data: from 99.9 kW PV
 

system
 

 

PdM:
 

Anticipating
 

the
 

maintenance
 

schedules.

No.

[57]
 

RF
 

regression,
 

Vector
 

Auto-

regression
 

(VER)
 

for
 

power
 

generation
 

forecasting

1
 

MW
 

solar
 

power
 

plant. Five
 

PV
 

modules
 

including

poly-crystalline,
 

thin-film
 

amorphous
 

silicon,
 

and
 

concentrate
 

PV.
 

Dataset:
 

Timestamp,
 

power
 

gen-

eration
 

(KWh),
 

aggregate
 

meter
 

reading
 

(kWh),
 

seed
 

data
 

(kWh),
 

insolation,
 

PR
 

(%),
 

etc.

No
 

  

Real Data: Datas
 

et gener-

ated
 

(2012–2020) with 12
   

structured and 1 instructed
    

column for maintenance
 

notes,
 

  

daily we
 

ather, and problem
  

observations.
 

Solar
 

power
 

forecast-

ing
 

using
 

maintenance
 

activities.

No.
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[58]
 

Statistical
 

and
 

ML
 

models Six
 

sub-plants
 

with
 

22
 

inverters
 

each

131
 

measurement
 

variables

sampled
 

every
 

minute
 

by
 

each
 

inverter.
 

Measurement
 

variables:
 

current,
 

volt-

age,
 

and
 

temperature.
 

Six
 

weather
 

stations
 

per
 

sub-plant.

No Real
 

Data:
 

Sensor
 

and
 

weather

data
 

to
 

form
 

a
 

multivariate
 

time
 

series
 

with
 

92
 

variables.
 

Each
 

inverter
 

is
 

generated
 

(June
 

2019–2022)
 

in
 

one
 

row
 

per
 

30
 

min

PdM:
 

Optimizing
 

maintenance
 

decisions

No.

[59]
 

NB,
 

one
 

vs.
 

rest
 

and
 

MLP

NN
 

 

One-class
 

Support
 

Vector
 

Machine
 

(1SVM)

algorithm

Grid-connected
 

PV

system
 

𝑉
 

𝑑𝑐
 

,
 

𝐼
 

𝑝𝑣
 

,
 

𝑉
 

𝑝𝑣
 

,
 

𝐼
 

𝑏
 

,
 

𝑉
 

𝑎𝑏𝑐 No Simulated
 

data:
 

IEEE
 

data-

port
 

Anomaly
 

detection:
 

normal

and
 

abnormal
 

behavior
 

N/A

[60]
 

Grid-connected
 

PV
 

system.

Meteorological
 

vari-

ables:
 

𝑇
 

𝑎𝑚𝑏
 

, 𝐺
 

𝑖,𝑐
 

, 𝐺
 

𝑖,𝑝
 

, 𝐺
 

ℎ,𝑝
 

and
 

electrical
 

variables:

𝑉
 

𝐷𝐶
 

, 𝐼
 

𝐷𝐶
 

, 𝑉
 

𝐴𝐶
 

, 𝐼
 

𝐴𝐶 .

No Real
 

Data:
 

Sampling
 

time

is
 

1
 

min
 

with
 

1440
 

samples
 

per
 

day.
 

LabView
 

software

is
 

used
 

to
 

perform
 

the
 

mon-

itoring
 

process.
 

Simulated
 

data:
 

Simulated
 

data
 

using
 

co-

simulation
 

between
 

PSIM
 

and
 

Matlab.

Anomaly
 

detection:
 

Normal
 

and
 

abnormal
 

features

No

[61]
 

O&M
 

Decision
 

Support

System
 

(DSS),
 

Failure
 

Detection
 

Algorithms,
 

Trend-based
 

Loss
 

Routines
 

and
 

Maintenance
 

Strategies
 

Routines
 

(MSRs).

Large-scale
 

1.8
 

MW

PV
 

system.
 

7824
 

PV
 

modules
 

in
 

326
 

parallel
 

strings
 

with
 

24
 

modules
 

each,
 

and
 

4
 

inverters.

Weather
 

data:
 

In-plane

irradiance,
 

module
 

back-

surface
 

and
 

inverter
 

temperature,
 

wind
 

speed,
 

and
 

direction.
 

Snowfall
 

and
 

rainfall
 

measurements.
 

Electrical
 

data:
 

Inverter
 

DC
 

voltage,
 

power,
 

AC
 

output
 

power,
 

and
 

array/system
 

performance
 

ratios.

Yes Real
 

Data:
 

PV
 

power
 

plant

historical
 

data
 

over
 

6
 

years
 

in
 

Larissa,
 

Greece.
 

Datasets
 

include
 

15
 

measurements
 

averaged
 

on
 

15
 

min
 

for
 

four
 

grid-connected
 

inverters
 

covering
 

2013
 

to
 

2018.

MSRs:
 

Corrective
 

actions Detecting
 

PV’s

underperfor-

mance
 

issues.
 

&
 

No.

[62]
 

Semiparametric
 

framework
 

and
 

block
 

bootstrap
 

method

PV
 

system
 

with
 

different
 

array
 

technologies

AC
 

power
 

output
 

data,

global
 

horizontal
 

and
 

dif-

fuse
 

horizontal
 

irradiance,
 

Relative
 

Humidity
 

(RH),
 

and
 

ambient
 

temperature

No Real
 

Data:
 

obtained
 

from
 

the

DKASC,
 

Australia

Generic
 

remaining
 

Useful
 

life
 

(RUL)

No.

Unsupervised

ML

[63] Monte
 

Carlo
 

Based
 

Pre-

Preprocessing
 

and
 

PCA
 

based
 

anomaly
 

detection

Solar
 

cell
 

production
 

plant

Ozone
 

concentration
 

level,

station
 

temperature,
 

flow,
 

and
 

pump
 

speed

No Real
 

Data:
 

obtained
 

from
 

Enel

Green
 

Power’s
 

3SUN
 

solar
 

cell
 

production
 

plant,
 

in
 

Italy

Anomaly
 

detection:
 

handle

outliers
 

and
 

intrinsically
 

deals
 

with
 

outlier
 

substitu-

tion
 

considering
 

temporal
 

locality
 

of
 

subsequent
 

samples.

No
 

&

Yes—predict
 

equipment’s
 

faults
 

rang-

ing
 

almost
 

two
 

weeks.

[64] Tree
 

ensemble
 

algorithm

based
 

on
 

XGBoost
 

hybrid
 

with
 

unsupervised
 

method

PV
 

Panels Historical
 

meteorological

and
 

PV
 

power
 

datasets

No Real
 

data:
 

from
 

6.95
 

MW
 

PV

plant

Instantaneous
 

performance

monitoring

Yes—Four
 

con-

dition
 

based
 

periods
 

&
 

No

(continued
 

on
 

next
 

page)
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Table
 

4
 

(continued)

Category
 

Ref
 

ML
 

methods
 

Equipment
 

Description
 

of
 

data
 

used
 

for

PdM

Real-time

implementa-

tion/validation

Data
 

type/source PdM,
 

Anomaly
 

detection,
 

or

Condition
 

Monitoring

Specific
 

fault

class
 

&
 

future
 

forecasting

[65]
 

Cluster-Based
 

Local
 

Outlier
 

Factor
 

(LOF),
 

simple
 

LOF,
 

KNN,
 

Multi-layer
 

Perceptron
 

(MLP)

Decentralized
 

PV
 

system
 

DC
 

current, voltage and
 

 

power
 

of
 

monitored
 

string,
 

global
 

horizon-

tal
 

irradiance,
 

plane
 

of
 

array
 

irradiance
 

and
 

air
 

temperature

No Real
 

data Anomaly
 

detection:
 

Certain

faulty
 

scenarios

No.

[66]
 

Reliability
 

block
 

diagram
 

and
 

PCA

Inverters
 

of
 

Grid-

connected
 

PV
 

system

Failure
 

and
 

repair
 

rates
 

of

PV
 

system
 

components:
 

PV
 

modules,
 

converter,
 

bypass
 

diodes,
 

connectors,
 

DC
 

and
 

AC
 

switch,
 

AC
 

and
 

differential
 

circuit
 

breaker
 

and
 

connector.

No Data
 

ranges
 

from
 

100
 

kW
 

to

2500
 

kW.

CM:
 

health
 

status
 

or

useful
 

life.
 

Avoiding
 

sud-

den
 

breakdowns
 

and
 

unexpected
 

maintenance.

No.

[67]
 

Self-organizing
 

map
 

and
 

KPI.

Three
 

PV
 

plants
 

up

to
 

10
 

MW
 

installed
 

capacity

Electrical
 

(AC/DC
 

currents,

voltages,
 

powers),
 

and
 

en-

vironmental
 

temperature
 

(internal
 

inverter,
 

panel,
 

ambient),
 

global
 

tilt,
 

and
 

horizontal
 

irradiance).

Yes Real
 

Data:
 

from
 

six
 

PV
 

plants

and
 

more
 

than
 

one
 

hundred
 

inverter
 

modules

Online
 

monitoring
 

of
 

anomalies

No
 

&

Yes—Anticipating
 

faults
 

up
 

to
 

seven
 

days

[68]
 

Closed
 

O&M
 

based
 

on
 

decision
 

support
 

system

PV
 

grid-connected
 

plant:

10.09
 

MW,
 

38,344
 

poly-

crystalline
 

silicon
 

PV
 

modules,
 

10
 

inverters
 

and
 

68
 

string
 

boxes.

Global
 

horizontal
 

and
 

dif-

fuse
 

irradiance,
 

module
 

temperature.
 

DC
 

current,
 

voltage
 

and
 

power,
 

AC
 

output
 

power.

No Real
 

Data:
 

Measurement
 

time:

1-year
 

period
 

Jan.
 

2021
 

to
 

Dec.
 

2021.
 

Historical
 

data
 

from
 

a
 

test
 

PV
 

power
 

plant
 

in
 

the
 

Mediterranean
 

region.

O&M:
 

detecting
 

faults
 

at
 

early
 

stages

No

Software

Simulation

[16]
 

 

PVSyst: PV software
 

 

PV
 

power
 

plant
 

PV
 

Modules: SC cur
  

-

rent,
 

𝐼
 

𝑚𝑝𝑝
 

,
 

OC
 

Voltage,

𝑉
 

𝑚
 

𝑝𝑝,
 

Module
 

efficiency.

Meteorological
 

data:
 

Meteonorm,
 

NASA,
 

and
 

plant
 

site
 

weather
 

data.
 

Simulation
 

data
 

(no
 

losses
 

and
 

with
 

default
 

losses),
 

plant
 

site
 

conditions,
 

and
 

minimum
 

losses.

No Real
 

Data:
 

obtained
 

from

18
 

MW
 

PV
 

solar
 

plant,
 

Pakistan

O&M—PdM:
 

Planned
 

out-

ages,
 

internal
 

tripping,
 

and
 

external
 

outages

PV
 

plant
 

internal

shutdowns
 

&
 

No.

Remarks:
 

In
 

the
 

realm
 

of
 

PdM,
 

“anomaly
 

detection
 

and
 

CM”
 

goes
 

beyond
 

simply
 

evaluating
 

the
 

equipment’s
 

current
 

status.
 

Organizations
 

and
 

researchers
 

aim
 

to
 

gain
 

more
 

profound
 

insights
 

into
 

the
 

equipment
 

condition
 

aiming
 

to
 

identify
 

the
 

underlying
 

causes
 

of
 

problems
 

and
 

predict
 

the
 

remaining
 

operational
 

lifespan.
 

This
 

paper
 

explores
 

methods
 

centered
 

on
 

categorizing
 

unusual
 

behavior
 

in
 

PV
 

system
 

equipment.
 

This
 

table
 

provides
 

valuable
 

insights
 

into
 

PdM
 

practices
 

and
 

focuses
 

on
 

anomaly
 

categories
 

and
 

their
 

future
 

predictions.
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Fig. 5. Major AI (ML and DL) algorithms and applications.

3.1. In-depth analysis and essential insights on PdM

Articles in Table 4 feature a diverse range of AI- and ML-based algo-

rithms for PdM. This research critically evaluates the current landscape 

of PdM methods in PV plants, demonstrating the necessity to progress 

beyond the detection of anomalies and condition monitoring to accu-

rate future fault prediction. The key purpose of Table 4 is to highlight 

the connection between anomaly detection, CM and PdM with specific 

fault classes and to forecast future prognostics.

• Anomaly Detection focused papers: Authors in [39] utilized K-

Means clustering and LSTM with data such as solar module electrical 

current, temperature, and plane global irradiance obtained from the 

inverter including string modules for seven combiner boxes, a to-

tal of 8400 PV modules to detect anomalies in the large PV facility. 

The method successfully identified anomalies in electrical current at 

the string level, clearly indicating potential issues. However, it fails 

to explain the deviation or to specify the actual fault, the severity, 

or the timing of the occurrence. Similarly, a develop-model transfer 

DL algorithm has been implemented in [41] to automatically de-

tect PV defective modules based on infrared images. However, this 

work exclusively identifies the differences between normal and de-

fective modules, without engaging in discussions about the specific 

types of defects present in the PV modules based on the infrared 

images. An intelligent IoT platform in [43] monitors multiple PV 

plants using prediction algorithms such as Bi, convolutional, bidi-

rectional LSTM, and RNN for the next day’s power generation and 

isolation-based forest for anomaly detection. The platform employs a 

threshold-based anomaly detection method, and every PV plant’s hu-

midity sensors identify certain outliers as anomalies. This platform 

utilized real PV power generation data from 2021 to 2023, with a 

24-hour data length. Authors in [46] explored various approaches 

for anomaly detection in PV systems, including autoencoders, isola-

tion forests, Facebook forest, and AE-LSTM, focusing on identifying 

healthy versus anomalous system behavior—primarily focusing on 

anomaly detection. Likewise, [45] applied ResNet-34 CNN to classify 

images of PV modules as normal or anomalous, while [51] classi-

fied anomaly types based on infrared images. However, the study 

has largely overlooked the future prediction of faults, assessment 

of severity, and timing of occurrences. Monte Carlo-based unsuper-

vised PCA algorithm is presented in [63] for anomaly detection in 

PV module production factories. The proposed pre-processing algo-

rithm effectively addresses outliers, surpassing standard methods by 

managing outlier substitution and considering the temporal locality

of samples. Following pre-processing, an anomaly detection model 

is constructed using PCA, with KPIs defined for each sensor based 

on model errors. This methodology facilitates the robust isolation of 

anomalies through KPI monitoring on unseen data streams, trigger-

ing alerts when specified thresholds are exceeded. Hamza et al. [47] 

present a 𝐴 

2 -LSTM method for detecting anomalies in PV plants re-

lated to power production issues. The algorithm involves clustering 

the data, utilizing an attention mechanism for feature extraction, and 

highlights that the selection of window size plays a crucial role in the 

model’s effectiveness for anomaly detection.

While these studies categorize anomaly detection as a component 

of PdM, it is crucial to recognize it as a foundational element rather 

than a comprehensive solution. To truly harness the full potential of 

PdM, it is essential to predict specific fault characteristics, the future 

occurrence of faults, their severity, and the timing of these events— 

capabilities that anomaly detection cannot achieve. While anomaly 

detection is useful for identifying potential issues, it lacks the nec-

essary predictive capabilities for effective PdM. It is an important 

starting point, but not a complete solution.

• Condition Monitoring focused papers: Intelligent monitoring sys-

tem offers an interoperable, scalable, and replicable solution for 

comprehensive monitoring of PV plants. It efficiently handles data 

acquisition, storage, pre- and post-processing, as well as malfunc-

tions and failures diagnosis. Furthermore, it assesses performance 

and energy yield while providing precise output power predictions. 

This system is implemented in [42] for monitoring and fault classi-

fication where LSTM is developed to predict PV output power under 

different environmental conditions. It also used an IoT platform to 

handle real PV experimental data, which consisted of 7300 samples 

with a 20-min timestep. Furthermore, ensemble learning techniques 

are used to detect and classify the faults. However, the paper fo-

cused on the CM of the PV plant. It activates maintenance measures 

only when a threshold is exceeded, which could be too late to avert 

a catastrophic failure. Additionally, it lacks information regarding 

the RUL of the components within the PV plant. Authors in [64] in-

troduced an unsupervised operation and maintenance method that 

utilizes non-continuous regression models, exploiting the XGBoost 

algorithm and KMeans clustering. This approach is particularly re-

sponsive to indirect faults and delivers immediate alerts regarding 

degradation. A health state architecture for a test bench PV system 

is developed in [55] using XGBoost regression models for both power 

predictions and classifiers for power-related faults. These models 

facilitate timely fault detection and continuous monitoring of PV sys-

tems, irrespective of the availability and quality of historical data.
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Similarly, in [61], DSS was presented, which effectively reduced 

costs and mitigated the energy impacts of underperformance inci-

dents in PV systems. DSS operates exclusively on collected raw field 

data and employs a robust, automated, data-driven diagnostic frame-

work to optimize PV energy output. Moreover, the proposed DSS was 

equipped with essential technical asset and financial management 

features, ensuring prompt remote and real-time failure detection. It 

also provides clear and actionable maintenance recommendations 

to address any PV underperformance issues decisively. A semi-

parametric degradation path model utilizing multivariate Bernstein 

bases is presented in [62], capable of accurately modeling nonlinear 

degradation and interactions of time-varying covariates for differ-

ent PV technologies. In this study, monocrystalline silicon showed 

an annual degradation rate of 1.12 %, equating to an RUL of 12.86 

years, while polysilicon had a rate of 1.22 % and an 11.39-year RUL, 

underlining the importance of incorporating time-varying covari-

ates in degradation analysis. Furthermore, authors in [68] developed 

a cloud-based platform that included functionalities for diagnosing 

and maintaining PV assets. It featured capabilities for data cleansing 

and modeling of PV systems, algorithms designed for early fault de-

tection, a method for analyzing energy loss breakdown and assessing 

the criticality of incidents, as well as a set of automatically gener-

ated recommendations to address issues related to underperformance 

(such as performance losses and failures) and data concerns.

Threshold-based CM and basic monitoring methods are inad-

equate as these approaches primarily react to current conditions 

instead of proactively forecasting future failures, and cannot quan-

tify fault severity in predicting RUL. To optimize PV field operations 

and enhance system performance, it is imperative to incorporate ad-

vanced PdM strategies. This includes analyzing long-term trends and 

accurately predicting future faults or losses, coupled with a robust 

fault criticality assessment tool. Advanced AI preventive and predic-

tive functionalities for PV asset diagnosis and maintenance require 

prioritization. This will ensure optimized maintenance scheduling, 

significantly reduced downtime, and improved safety across the 

board. 

• PdM focused papers: An observation mechanism of PV panels

through forecasting the daily electrical power curve using the power 

curves of adjacent panels has been illustrated in [37]. A CNN is 

utilized to forecast significant deviations in the power curve, sig-

nalling potential issues with the malfunctioning panel. Authors in 

[38] presented a comprehensive mapping of PdM technology, em-

phasizing the prediction of solar energy output from PV modules. 

LSTM techniques are utilized to identify degradation in solar mod-

ules. A prediction model is developed by [40] utilizing the gathered 

time series data. LSTM effectively captures the temporal character-

istics of sensor data, excelling at feature extraction from time series. 

An identifying model reconstructs the predicted sequence, where re-

construction error of the input sequence serves as a health indicator 

to assess the condition of the device. This proposed method identified 

potential failures several days earlier than traditional approaches. It 

mainly focuses on anomaly detection but lacks in identifying future 

fault classes. A model developed in [49] for predicting AC power 

output utilizes an ANN to estimate power production based on so-

lar irradiance and PV panel temperature data. ANN was trained on 

a dataset obtained from the monitored plant. Real-time trend data 

from the PV system is then compared to the model’s output, and 

resulting residuals are analyzed to identify anomalies and gener-

ate daily PdM alerts. The residuals are aggregated over one day 

and processed to detect out-of-threshold samples and signs of sys-

tem degradation. Trends are identified by calculating the TMA, with 

an automatically determined window size. This model demonstrated 

a high anomaly detection rate exceeding 90 %. Additionally, the 

algorithm identified trends indicating deviations from normal oper-

ational behavior, providing PdM alerts to support decision-making 

for operatives and helping prevent potential failures. However, the

shortcomings are the lack of details regarding potential causes be-

hind issues, and predicting the remaining lifespan. Additionally, 

there is no examination or approach focused on classifying or quan-

tifying the severity of anomalous behavior. Ref. [56] employed 

ensemble ML algorithms, including RF, XGBoost, CatBoost, and 

LightGBM to predict the regular maintenance requirements for a 

PV system. The developed method identifies DC voltage and cur-

rent as crucial factors influencing the system’s regular maintenance 

needs. Utilizing these vital features, the maintenance schedules are 

determined. Authors in [57] introduced a new approach to predict-

ing solar power generation by considering maintenance tasks, issues 

encountered at a power plant, and weather conditions. Power gen-

eration prediction is approached as a regression problem to analyze 

maintenance issues. The processed data set labels are used to train 

the RF regression model, while future maintenance data serves as test 

data. The findings indicate that maintenance issues could effectively 

forecast power generation. Further, authors in [58], explored two 

distinct pipelines for PdM. The first utilizes a Hidden Markov Model 

to assess degradation levels on a discrete scale, employing PCA for di-

mensionality reduction of multivariate time series data. This method 

provided valuable insights into the degradation process over time. 

The second pipeline applied an ML approach using RF regression af-

ter selecting features from the time series data. Both methods are 

evaluated based on their ability to predict RUL from a random point 

before failure. The paper fails to identify and analyze the relevant 

failure types associated with predictive maintenance, which signif-

icantly undermines its applicability and depth. Researchers in [67] 

present a maintenance strategy that detects potential malfunctions 

and predicts upcoming faults days in advance. Specifically, it out-

lined a new and adaptable solution for predicting inverter-level faults 

using a data-driven approach. Although the model demonstrates the 

capability to identify or forecast abnormal patterns and faulty oper-

ating states, it lacks in predicting the specific class of fault, limiting 

its effectiveness to recognizing only a generic faulty condition.

The examined PdM studies for PV plants reveal a significant short-

coming: there is a lack of integration of comprehensive fault classifi-

cation into their prognostic capabilities. While some studies focus 

on forecasting failures or estimating RUL, they do not effectively 

identify the specific type of fault that may occur. A successful predic-

tive maintenance approach should not only predict failures but also 

classify faults accurately, evaluate their severity, recognize recurring 

trends, and forecast when they will occur. Additionally, RUL estima-

tions should be specific to each fault class, allowing for more detailed 

and actionable insights. To improve maintenance scheduling, fu-

ture predictive maintenance strategies should include elements that 

enable proactive measures based on predicted fault class, severity, 

patterns, and occurrence timing, ultimately enhancing the reliability 

and performance of PV plants.

3.2. Evaluation of AI algorithms

This section assesses AI algorithms used for predictive maintenance 

and fault diagnosis, highlighting their classification accuracy and the 

specific faults they can detect. It also addresses the advantages and lim-

itations of these algorithms. Table 5 presents a summary of the critical 

features and constraints associated with AI algorithms relevant to this 

field.

3.2.1. Artificial neural network (ANN)

ANN consists of layers that use weights, biases, and activation func-

tions as depicted in Fig. 6 to efficiently process data. This makes them 

ideal for non-linear function approximation and pattern recognition in 

PV system diagnostics [69]. The most popular and widely used ANN 

type due to its capability to approximate complex non-linear functions is 

Multi-layer Perceptron (MLP), which is composed of a variable number
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Table 5 

Pros and Cons of AI algorithm for solar PV systems.

Algorithms Features Limitations

SVM (A). Ability to analyze and identify nonlinear relationships from

multi-dimensional data. Predict and identify a pattern in complex 

and multI–Variable datasets within the context of the PV system. 

(B). Effective in high-dimensional spaces, versatile with different 

kernels. (C). Less vulnerable to overfitting issues as compared to 

other algorithms. (D) Applicable for array performance and anomaly 

detection in PV system components such as arrays, inverters, and 

modules. 

(A). Limited expressiveness for complex relationships. 

(B). Very limited ability to identify and predict specific patterns of 

fault class. 

(C). Requires deep knowledge in selecting specific kernel functions.

ANN (A). Applicable for capturing complex features and handling high

dimensional data from the inverter. ANN can effectively model 

nonlinear patterns from the PV System. 

(A). Prone to overfitting in case of small PV modules dataset. 

(B). Needs expensive parameter tuning. 

(C). Less interoperability than other simpler models. 

RF (A). Can be useful in predicting remaining useful life, identifying

deviations in inverter behavior and anomalies in the PV dataset. 

(B). Robust, handles overfitting, good for high dimensional data 

(C). RF is capable of managing high-dimensional data and can also 

capture non-linear relationships in PV datasets. 

(A). Less interpretable, can be computationally expensive 

(B). May require a longer time to train large-scale PV modules and 

inverter data. 

(C). Less sensitive to outliers.

DT (A). Excellent for forecasting PV degradation, modeling inverter’s

complex non-linear behavior, and complex PV faults. 

(B). Robust and effective in handling high dimensional PV panels and 

inverter data. 

(C). Interpretable, handles non-linear relationships, features 

importance. 

(D). Excellent for anomaly detection and can handle high dimensional 

inverter and PV panel data. 

(A). Less interpretable as compared to other methods due to higher 

computational complexity. 

(B). May require a longer time to train large-scale PV modules and 

inverter data. 

(C) Prone to overfitting having insufficient PV panel data and 

sensitive to noisy inverter data.

GBM (A). XGBoost, LightGBM, and CatBoost are effective in handling

structured/tabular data (typical in PV system monitoring). 

(B). Handle various data types, including numerical, categorical, 

and ordinal, making them versatile for analyzing various PV system 

aspects, such as power output prediction or fault diagnosis.

(A). Optimal performance often requires tuning hyperparameters. 

This process can be time-consuming and may require extensive 

experimentation. 

(B). Gradient boosting models are considered black-box models, 

meaning they provide little insight into underlying relationships 

between input features and predictions. Also, they are sensitive to 

outliers. 

DL (A). Well suited for capturing nonlinear relationships from PV data

and handling inverter multi-dimensional data. 

(B). AE does not require labeled data for training, making it suitable 

for anomaly detection and unsupervised fault diagnosis in PV systems. 

(C). LSTM networks excel at capturing temporal dependencies in 

sequential data, making it suitable for time-series analysis in PV 

systems, such as predicting power output or detecting recurring 

patterns. 

(D). CNNs are adept at extracting spatial features from image-like 

data, advantageous for analyzing PV system components like solar 

panel images or thermal maps.

(A). Higher computational complexity due to complex and deep 

architecture. 

(B). With insufficient data from the panels and inverter, it can be 

prone to overfitting. 

(C). LSTMs may suffer from the vanishing gradient problem, affecting 

their ability to learn long-term dependencies in data sequences. 

(D). CNNs require fixed-size input data, which may necessitate re-

sizing or cropping PV system images or sensor readings, potentially 

leading to information loss.

Fig. 6. The structure of ANN.

of neurons. ANN is presented in several PdM works because of its effi-

ciency and ability to handle large, complex datasets effectively. In [49], 

ANN has been used to detect anomalies in the PV system, providing 

predictive alerts to the maintenance team for planning PdM interven-

tion. The experimental results indicated that the model achieves an

anomaly detection rate exceeding 90 %. Wavelet-based ANN has been 

proposed in [70] to identify fault location in an ungrounded PV sys-

tem. The network demonstrated reliable performance despite noise and 

changing conditions. Likewise, ANNs are widely used to characterize PV 

system failures. Authors in [71] proposed an ANN model to identify sev-

eral faults in PV arrays which are Partial Shading (PS), Line to Line (LL), 

Open Circuit (OC), degradation, bridge, bypass, and hybrid faults with 

an accuracy of 99.99 %. Furthermore, a new GA-based ANN has been 

developed for a GCPV system to classify various faults in PV arrays. An 

accuracy of 88.48 % is obtained with 3 PV arrays of 4 KW each. Further 

studies employing ANN can be found in Table 4 (Refs. [51–53]) for PdM, 

refer to Table 6, Refs. ([72–76]) for fault diagnosis.

ANN has high classification and prediction accuracy as well as a good 

approximation of a nonlinear function. However, ANN faces difficul-

ties in training a large number of weighting parameters. It also requires 

high computational resources, is prone to overfitting, and lacks physical 

meaning.

3.2.2. Support vector machine (SVM)

SVM was developed by AT&T Laboratories for tasks like classifica-

tion and regression [77]. It works by identifying the best hyperplane 

that maximizes the distance between various classes, as illustrated in 

Fig. 7. SVM is a very popular ML algorithm for having high precision, im-

plemented for both classification and clustering issues. Several authors

Applied Energy 393 (2025) 126108 

17 



A. Hamza, Z. Ali, S. Dudley et al.

Fig. 7. The basic idea of support vector machine [26].

implemented SVM for PV system PdM and fault diagnosis. Anomaly de-

tection using a one-class SVM is developed in [60] for monitoring the DC 

side of a grid-connected PV system and for assessing temporary shading 

to differentiate between normal and abnormal features. Supervised ML 

algorithms using SVM are proposed in [78] and [79] for the detection 

and classification of multiple faults in GCPV and 3 ∗ 4 PV array, respec-

tively. The obtained training and testing accuracy for SVM in [79] is 

98.2 % and 97 %, respectively. Multiple faults are considered includ-

ing OC, Short Circuit (SC), and inadequate irradiance. For a broader 

overview, refer to Table 4, which includes additional studies on SVM 

for predictive maintenance (Refs. [42,54]) and refer to Table 6 for SVM 

based fault diagnosis algorithms (Refs. [80–83]).

The disadvantage of SVM is its sensitivity to the choice of hy-

perparameters and kernel functions. SVM performance heavily relies 

on selecting suitable parameters, such as the regularization parameter 

and kernel type. Choosing an inappropriate kernel or hyperparam-

eter values results in suboptimal model performance or overfitting. 

Additionally, SVMs may become computationally expensive and less ef-

ficient, especially with large datasets, as they involve solving a quadratic 

optimization problem.

3.2.3. Decision tree (DT)

The Decision Tree (DT) algorithm divides data into subsets based on 

feature values, resulting in a hierarchical tree structure for classification 

through a series of if/else decisions. Each node acts as a decision point 

that directs samples to various branches until the desired level of class 

purity is obtained, promoting both accuracy and efficiency in classifica-

tion [84,85]. DT consists of root, internal, and leaf nodes as depicted in 

Fig. 8. Simulation results in [86] show that the DT model is capable of 

correctly predicting faults in a 4 KW GCPV system with 94.7 % accu-

racy and 1400 observation/sec prediction speed. For additional studies 

utilizing the DT algorithm, refer to Tables 4 and 6, Refs. [78,86]. DT 

involves repetitive attribute testing and branching (known as splitting), 

to identify optimal nodes for classification. This method is recognized 

for practical accuracy and computational efficiency [85].

A disadvantage of DT is susceptibility to overfitting, particularly 

when the trees are deep and capture noise in the training data. Deep 

trees tend to fit the training data too closely, resulting in poor generaliza-

tion to new, unseen data. Although techniques like pruning and setting 

depth limits can mitigate overfitting, finding the right balance remains a

Fig. 8. Attributes of DT.

Fig. 9. Random forest generation steps.

challenge. Additionally, DTs may struggle with capturing complex rela-

tionships and interactions within the data, especially when dealing with 

nonlinear patterns.

3.2.4. Random forest (RF)

RF method is an ML ensemble technique used mainly for classifi-

cation and regression tasks. It constructs numerous DTs by utilizing 

bootstrap sampling and selecting features randomly, resulting in a va-

riety of uncorrelated trees. In making predictions, each tree contributes 

a vote; for classification, the decision is determined by majority votes, 

while for regression, the predictions are averaged. This ensemble ap-

proach improves both the accuracy and reliability of the predictions 

[87]. The construction of RF is shown in Fig. 9 starting from datasets 

to decision trees. Several PdM and fault diagnosis algorithms based on 

RF are summarized in Tables 4 and 6, Refs. ([57,78,88–90,90–93]).

RF lacks in interpretability compared to simpler models. The en-

semble nature of the random forest, combining multiple decision trees, 

makes it challenging to trace individual predictors’ contributions to the 

model’s output. While Random Forest excels in predictive accuracy and 

robustness, especially with complex datasets and diverse feature types, 

the trade-off is a somewhat reduced interpretability, which can be a con-

cern in situations where understanding feature importance or explaining 

model decisions is crucial.

3.2.5. Gradient boosting methods (GBM)

Gradient boosting techniques like XGBoost, CatBoost, and LightGBM 

enhance PV fault diagnosis and PdM by improving model accuracy and 

efficiency. These methods utilize features such as regularization, par-

allelization, and handling of missing data, making them effective for 

identifying PV system faults.

XGBoost is a highly efficient and scalable algorithm for tree boosting 

in ML, noted for its remarkable predictive performance relative to RF 

[94]. It utilizes regularization to curb overfitting, supports parallel com-

putation for improved efficiency, and adeptly handles missing data [95]. 

These attributes make it exceptionally suitable for large datasets and for
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Fig. 10. Architecture of CNN.

a wide range of ML tasks. The effectiveness of XGboost can be used for PV 

system PdM and fault diagnosis. The XGboost-based intelligent and data-

driven O&M framework has been proposed in [64]. It provides O&M 

suggestions to the engineers regarding fault identification and evaluates 

various operational statuses of the plant. A health-state architecture for 

advanced PV system monitoring is demonstrated in [55] where XGboost 

regressed is used for predicting output power. Fault conditions are de-

tected with an 83.91 % sensitivity for synthetic power-loss events (5 % 

reduction) and 97.99 % sensitivity for field-emulated failures in the 

test-bench PV system. A PdM based on XGboost is deployed [56] to pre-

dict the maintenance needs of the PV system, with XGBoost proving 

to be the best model, achieving 98.62 % accuracy and 94.37 % preci-

sion. However, it requires careful and time-consuming hyperparameter 

tuning.

CatBoost is designed to minimize the need for extensive hyperparam-

eter tuning. It introduces novel strategies such as handling categorical 

features more effectively and implementing a robust method for dealing 

with missing data. This makes CatBoost less prone to overfitting, more 

resilient to default parameter settings, and often requires less manual 

tuning than XGBoost, addressing one of the disadvantages of the latter. 

CatBoost can handle categorical data during the training phase, elim-

inating thus the need for separate data preprocessing steps [96]. The 

disadvantage of Catboost is its relatively longer training time compared 

to simpler models as it employs a more sophisticated algorithm with 

additional optimizations. While CatBoost is efficient in handling cate-

gorical features and reducing the need for hyperparameter tuning, its 

training time may be a consideration, especially in real-time or resource-

constrained applications. LightGBM shares similarities with CatBoost in 

terms of being a gradient-boosting algorithm, but it uses a different ap-

proach that can help address certain disadvantages. It provides options 

for handling categorical features and supports parallel and distributed 

computing, contributing to its efficiency in comparison to CatBoost. 

While both CatBoost and LightGBM have their strengths, LightGBM’s 

focus on speed and scalability can be advantageous in scenarios where 

computational efficiency is a priority. Moreover, LightGBM is proficient 

in handling categorical features, similar to CatBoost, providing an addi-

tional advantage over XGBoost. This capability broadens its applicability 

and enhances its performance in diverse ML scenarios.

Studies on PDM that have implemented Gradient-boosting algo-

rithms are summarized in Table 4 (Refs. [55,56,64]). For fault diagnosis, 

refer to Table 6.

3.2.6. Deep learning approaches

DL is the unsupervised subset of the ML and is a training approach 

that uses NN with multiple layers. A neural network with more than two 

layers is referred to as DL. The main algorithms of the DL are CNN, LSTM, 

RNN, deep belief networks, generative adversarial networks, and other 

hybrid techniques. Recently, PdM based on DL algorithms is employed 

in PV power plants for reducing maintenance-related issues [97]. This 

subsection discusses the most utilized algorithms such as CNN, LSTM

and autoencoders for PdM and fault diagnosis. Further information on 

the rest of the DL algorithm can be found in [98].

CNN. CNN stands for Convolution Neural Networks. It is a special type 

of NN for data processing that has a known grid-like topology. Instead 

of relying on standard matrix multiplication, CNNs incorporate convo-

lution in one of their layers [99]. It consists of input, hidden, and output 

layers in which pooling or subsampling and convolution layers are used. 

Fig. 10 shows the structure of a deep CNN. Rectified Linear Unit (ReLU), 

one of the most popular activation functions is used in the CNN layers 

helping NN to accelerate the convergence speed. Fully connected lay-

ers in the CNN perform classification or regression tasks based on the 

learned features.

CNN can enhance the PdM and fault diagnosis for the PV System. 

Authors in [37] deployed CNN-based DL architecture for PdM of PV pan-

els, predicting the daily power curve of individual PV panels in relation 

to neighboring panels. Additionally, it helps in analyzing the deviation 

of the power curve between the predicted and observed/actual values to 

identify the malfunctioning. A hybrid DL model with multiple temporal 

windows in [48] is developed along with IoT to evaluate estimated out-

put power generation. The YOLOv3 CNN model has been trained on the 

thermal images of the solar panels [100] to compare the actual and esti-

mated fault values. A methodology based on CNN is developed in [101] 

to estimate a maintenance strategy’s impact and evaluate the potential 

benefits of adopting a strategy mainly based on predictive actions while 

considering realistic limitations associated with monitoring using auto-

matic fault detection tools. The results show that a predictive strategy 

reduces the need for urgent interventions by 10 % while maintaining 

average performance. CNN has been used in several notable studies for 

PdM, refer to Table 4, Refs. [38,40,42,43,46] and for fault diagnosis, 

Table 6, Refs. [74,81,89,102–104].

LSTM. Long Short-Term Memory, acronymized as LSTM is a

Recurrent Neural Network (RNN) variant, designed to manage long-

term dependencies [105]. It features memory cells and three gates 

(Forget, Input, Output) and is used in natural language processing (NLP), 

sequence-to-sequence tasks, and recognition applications. The general 

architecture of LSTM is illustrated in Fig. 11. Authors in [106] proposed 

a short-term PV power prediction model based on LSTM and K-nearest 

neighbors (KNN) to provide predictive data support for the power grid’s 

distributed photovoltaic output fluctuation model. Work in [38] focuses 

on controlling the degradation of PV modules that are exposed to a va-

riety of climatic loads. This study proposed an LSTM model for PdM 

involving an elaborative system capable of solving a time series prob-

lem. Autoencoder-LSTM, Facebook-Prophet, and Isolation Forest are 

proposed in [46] to identify PV system’s healthy and abnormal behav-

iors. Authors in [43] developed a method based on BiLSTM architecture 

to perform multiple PV plant monitoring using an IoT platform along 

with real-time anomaly detection and next-day power generation. The

Applied Energy 393 (2025) 126108 

19 



A. Hamza, Z. Ali, S. Dudley et al.

Fig. 11. Architecture of LSTM.

Fig. 12. Architecture of AutoEncoder.

results showed that BiLSTM is the best model with desirable error predic-

tors, such as Mean square error (MSE), Mean absolute percentage error 

(MAPE), Mean absolute error (MAE), and coefficient of determination 

(𝑅 

2 ) values of 0.0072, 0.1982, 0.0542, and 0.9664, respectively.

Several studies utilized LSTM for PV system’s PdM, refer to Table 4, 

Refs. [37,41,44,45] and for fault diagnosis, Table 6, Refs. [74,102,107– 

110].

AutoEncoder (AE). An autoencoder (AE) is an ML algorithm for di-

mensionality reduction and feature learning. It comprises an encoder 

that compresses input signals into a lower-dimensional latent space and 

a decoder that reconstructs the original input as shown in Fig. 12. The 

AE aims to minimize the difference between the original and recon-

structed data. It effectively reconstructs normal data with low error, but 

for anomalies, it will result in high reconstruction error, which will serve 

as an identifier for anomaly detection. A data-driven fault prediction 

model based on LSTM and AE has been developed in [40] for solar ar-

rays. A predictive model is developed by gathering time series data, with 

the reconstruction residual threshold for normal data determined using 

AE. During the identification process, the ultimate prediction result is 

derived by assessing the reconstruction error against the prediction se-

quence threshold. Studies employing AE for PDM and fault diagnosis are 

summarized in Tables 4 and 6 (Refs. [40,46,111,112]).

Different AI methodologies come with varying degrees of complexity, 

accuracy, advantages, disadvantages, and constraints. Table 5 outlines 

key benefits and drawbacks of SVM, ANN, DT, RF, and gradient boosting 

methods when it comes to developing PdM and fault diagnosis systems 

for PV technologies.

3.3. Experimental verification of AI model

Edge computing, commonly known as ’edge AI,’ integrates AI into 

embedded systems situated at the network’s periphery. This approach 

improves PdM and fault diagnosis for PV systems, offering advantages 

such as decreased latency, better privacy, and reduced data transmission 

expenses. By facilitating early detection of faults and accurate schedul-

ing of maintenance, ML-driven edge AI aids in minimizing downtime, 

avoiding expensive repairs, and enhancing the overall lifespan of PV 

systems. An embedded system designed for detecting and diagnosing 

PV module faults using thermal images and Deep CNN (DCNN) is pre-

sented in [113], where DCNN-based classifiers are embedded into a 

Raspberry Pi 4. The workflow model consists of Tensorflow (TF) model 

training and evaluation, TF model conversion to lite TF and deployment 

on an edge device. The system facilitates real-time analysis to support 

decision-making such as cleaning, changing PV modules, removing/re-

placing faults and diodes etc. Moreover, a GSM module (SIM808) is used 

to notify plant operators by SMS and email about the PV operational sta-

tus. Likewise, an edge computing framework based on Raspberry Pi is 

developed in [65] for condition monitoring in decentralized PV Systems. 

Edge, fog, and cloud layers are integrated into this framework for the 

effective identification of anomalies through online as well as offline 

configurations. Authors in [114] used embedded edge devices to de-

tect solar panel faults. Real-time PV panel EL videos are captured by a 

charged-coupled device (CCD) camera, and processed by the OpenCV 

and CNN based on an edge device processing unit that detects PV panel 

anomalies and faults. The rk3399 pro-vision chip is the edge device’s 

main control unit with a central frequency of 1.8 Hz and a CPU with 

64 64-bit processor arm. This chip is supported by the NPU NN unit 

to enable AI hardware acceleration. This chip is supported by a Neural 

Processing Unit (NPU) to provide AI hardware acceleration.

Deploying AI models on edge computing devices facilitates immedi-

ate anomaly detection and system alerts for PdM in solar power plants, 

improving reliability and reducing downtime. Integrating this technol-

ogy presents challenges due to limited computational resources and the 

need for real-time processing. However, it requires the development 

of optimized AI models and a collaborative effort between hardware 

and software to ensure effective implementation in maximizing the 

performance of PV systems.

4. PV data source and analysis for PdM and fault diagnosis

Advancements in data analytics play a crucial role in various PV 

system aspects, including operation management, load profiling, predic-

tive maintenance, fault diagnosis, and energy forecasting. These systems 

rely on sensors, control technologies, and methods for data transmission. 

Therefore, it is essential to understand the sources of PV data to perform 

effective analytics for maintenance and fault detection. The categoriza-

tion of photovoltaic data sources includes sensor data, historical data, 

weather data, IV curve data, load profiles, equipment metrics, and syn-

thetic data. To this end, data loggers are crucial to the PV system as they 

continually track and log information from different sensors and meters 

[54]. They collect real-time data on essential factors concerning solar 

energy production, system efficacy, and environmental conditions.

4.1. Sensor data

Sensory systems play a crucial role in data monitoring and col-

lection for operational and maintenance purposes in PV systems. Key 

units include phasor measurement units (PMUs), wireless networks, 

cloud storage, and IoT sensors [115]. Common sensor types include 

irradiance sensors (pyranometer, pyrheliometer), temperature sensors 

(thermocouple and thermistor), current/voltage sensors, power meters, 

anemometers (wind speed and direction), humidity sensors, tilt-angle 

sensors, and load current sensors. PV industries use station tempera-

ture, pump speed, flow speed, and ozone concentration mounted sensors 

for anomaly detection in the production line [63]. Authors in [49,54]
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utilized data loggers to collect measurements from pyranometers and 

thermometers, along with metering equipment for voltage, current, and 

generated power. Furthermore, real-time data on AC/DC currents, volt-

ages, ambient temperature, and solar irradiance in [60] is gathered using 

various sensors including Hall effect, AC adapter, resistive divider and 

K-type thermocouple. A ZigBee wireless system is developed in [116] 

to manage remote solar power operations, where a potentiometer is 

used as a tilt sensor. Moreover, authors in [46] used 22 inverter sen-

sors to measure the generation rate (AC and DC powers), irradiation, 

and ambient/module temperatures.

A key source for data mining is the IoT and authors in [48] collect 

real-time PV data via an IoT module and opera digital platform. Sensors 

are controlled by a microprocessor that wirelessly uploads information 

on irradiance, temperature, current, voltage, and power. Furthermore, 

authors in [43] proposed an IoT platform architecture for monitoring 

multiple PV facilities, tracking power generation and various parameters 

like DC voltage, power factor, and active/reactive powers. AI models 

can be trained on the data extracted from the sensors to know when the 

equipment such as PV arrays or modules is likely to fail. These sensory 

data offer valuable insights into the health and performance of the PV 

system components and help predict potential equipment failure.

4.2. Historical data

Historical data encompasses past trends and system details logged 

over time, helping identify patterns and relationships that enhance 

understanding of future occurrences. This data includes information 

on the timing, location, fault type, and maintenance activities within 

PV systems. Historical Records of equipment failures and maintenance 

schedules can be used to train ML models to forecast the likelihood of 

potential component failures in future. Such insights reveal common fail-

ure modes, enabling predictions about when similar issues may arise 

in the future, such as forecasting degradation in PV modules that have 

shown a history of failure.

Analysis in [52] used historical data of electrical and environmental 

inputs such as DC and AC electrical tags (current, power, and volt-

age), temperature tags (ambient, panel, and internal), and irradiance 

tags (Global tilted irradiance (GTI), Global Horizontal Irradiance (GHI)) 

extracted on a 5-min average by SCADA system for offline perfor-

mance assessment and normal training period selection. Author in [37] 

collected historical time-series power data for the target and neigh-

boring PV panels to identify faulty ones. The target panel’s known 

measurements are utilized in training and test data for the predictor. 

Furthermore, researchers in [39] collected one-year historical data for 

string modules output current (from August 2020 to August 2021 ) and 

used for anomaly detection using KMeans and LSTM. A total of 8400 PV 

modules and 7 combiner boxes were monitored. Authors in [117] opti-

mized O&M tasks by developing an AI-enabled power prediction model 

for individual inverters and used historical production data for train-

ing. A total of more than 7583 MPPT data is gathered every 5 min, and 

at least 6,369,720 batch data inputs for model training. Moreover, PV 

power forecasting based on maintenance activities reported in [57] used 

a dataset from a 1 MW capacity PV power plant from 2012 to 2020. 

Researchers in [118] detected anomalies for a GCPV system based on 

degradation rate by taking 5-year data from a data logger between 2012 

and 2017 with a 5-min interval. The historical dataset considered in-

cludes irradiance, module temperature, string voltage/current, and AC 

power.

4.3. Weather and load profile data

In PV systems, weather data and load profiles are key to under-

standing the factors affecting performance and helping predict faults. 

Weather data includes atmospheric conditions like temperature and pre-

cipitation. In [119], a model predicts PV energy using data such as 

irradiation and air temperature. A system in [38] uses weather fore-

casts to estimate solar module output based on historical rainfall (mL),

temperature ( 

◦ C), and radiation data (W/m 

2 ). Furthermore, authors in 

[64] investigate weather impact on low-power PV generation using me-

teorological data (such as rainstorms, blizzards, hail, and sandstorms) 

to develop reference curves for optimizing plant operations.

The load data, on the other hand, provides insights into power de-

mand at various times, allowing AI models to predict potential failures in 

PV components [120]. Various datasets are created from PV system com-

ponents, including transmission lines and circuit breakers for monitoring 

and management purposes [121]. Likewise, equipment metrics such as 

power, voltage, frequency, and current can contribute to power quality 

assessments, such as harmonic distortion and flicker index. Additionally, 

having a record of past faults, disturbances, trip times, and voltage dips 

helps in equipment diagnostics and analysis. Moreover, energy man-

agement data with remote telemetry units used for renewable energy 

tracking can also help in monitoring and fault prediction for the PV 

system [122].

4.4. IV curves data

IV curves can be used for PdM and fault diagnosis by monitoring 

deviations from baseline data, detecting anomalies indicating potential 

issues, and identifying specific faults. Monitoring IV curves may pro-

vide insights into the overall performance of the PV system and feed 

directly into AI algorithms. Significant deviations from the expected 

curves indicate systemic issues such as panel faults, inverter malfunc-

tions or mismatched panels. In [60], fault detection is performed, where 

unknown parameters of one diode model (ODM) are determined via an 

efficient heuristic algorithm based on I–V characteristic curves. Fault 

classification for line-to-line, open circuit, partial shading, and degra-

dation consisting of six operating conditions is investigated in [123]. 

Typically, IV characteristics are studied for a better understanding of 

fault patterns in PV modules. Authors in [124] employed IV charac-

teristics curves with 110,250 records wide dataset for fault detection 

and diagnosis in PV arrays. Each record has the format: temperature, 

irradiance, 𝑉 𝑚𝑝𝑝 

, Maximum Power Point (MPP) current 𝐼 𝑚𝑝𝑝 

, OC volt-

age 𝑉 𝑜𝑐 

, SC current 𝐼 𝑠𝑐 

, voltage measurement from PV cell 𝑉 𝐶𝑒𝑙𝑙 

, current 

measurement from PV cell 𝐼 𝐶𝑒𝑙𝑙 

, and operational status. Temperature 

and irradiance values are retrieved directly from the PV Geographical 

Information System (PVGIS) service. MPP voltage model 𝑉 𝑚𝑝𝑝𝑀𝑜𝑑𝑒𝑙 

, MPP 

current model 𝐼 𝑚𝑝𝑝𝑀𝑜𝑑𝑒𝑙 

, OC voltage model 𝑉 𝑜𝑐𝑀𝑜𝑑𝑒𝑙 

, and SC current

model 𝐼 𝑠𝑐𝑀𝑜𝑑𝑒𝑙 are retrieved from each generated IV curve. 

4.5. Synthetic data

Synthetic datasets are simulation-based generated data that mimic 

the characteristics and behavior of real-world PV systems under a con-

trolled environment. It is essential to recognize that real data is often 

not easily accessible; therefore, synthetic data is of critical importance. 

A synthetic database is developed in PdM for fault detection and di-

agnosis that typically includes simulation of PV modules under normal 

and faulty conditions such as partial shading, cell short circuits, bypass 

diode short circuits, etc [50]. Authors in [37] synthetically generated 

daily power curves of the target panel and the two neighboring pan-

els, along with actual measurements and applied CNN-based methods 

for predictive maintenance. Researchers in [60] developed a PV ar-

ray simulation model to describe the PV system’s normal condition 

using a co-simulation between Matlab/Simulink and Physical Security 

Information Management (PSIM). A distribution network with multiple 

DGs integration has been modeled in Matlab/Simulink environment in 

[125], where three-phase voltage and current datasets are generated for 

fault case scenarios.

4.6. Experimental setup for data collection

An experimental setup of an Analog-to-digital converter (DAQ NI 

USB 6008) with adjustable resistive load is developed in [50] to em-

ulate the fault scenarios and measurement for PV characteristics curves. 

A SCADA system is used in [52] for electrical and environmental to
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record historical data averaged on 5-min, and inverter’s manufacturer 

electrical parameters for the on-site inverter technology. Likewise, in 

[37], real measurements of the power curve from three adjacent panels 

over 157 days are provided by SOLA Sense Ltd. from a solar monitoring 

pilot system. The authors in [48] utilized an Arduino-based IoT mod-

ule to gather electrical and environmental data from a PV system. The 

system includes ambient sensors to measure solar irradiance and temper-

atures (module and ambient). Additionally, voltage and current sensors 

are also connected to the Arduino board. These sensors transmit data to 

the Arduino microprocessor via the Zigbee protocol, allowing for seam-

less wireless communication in open areas, which is essential for PV 

system deployment. In [67], a SCADA system is used to log data from 

various sensors, capturing 10 different signals with a sampling inter-

val of 5 min. These signals comprise both electrical and environmental 

measurements. In [60], a 34901 A 20-channel multiplexer integrated 

into the Data Acquisition (DAQ) and switch unit of an Agilent 34970 A 

device is used to collect measurements from multiple sensors, includ-

ing irradiance on an inclined plane, ambient temperature, DC current, 

and voltage. The sampling interval of 1 min is used, and data monitor-

ing is carried out using LabVIEW software. Moreover, a PVPM2540C 

device is used to gather IV curves and Artificial Bee Colony (ABC) al-

gorithms to identify unknown parameters of a single diode model. The 

researchers in [116] employed an Arduino, H-bridge motor driver cir-

cuit, and a DC motor to adjust the tilt angle of a PV panel in alignment 

with the sun, keeping the azimuth and elevation angles constant at noon. 

A high-precision and affordable monitoring system is designed in [42] 

for monitoring PV plants. The data from temperature, humidity, power, 

voltage, current, and irradiance sensors is transmitted to data loggers 

which consist of a microcontroller and ESP8266 for initial processing. 

The ESP8266 is a mini WIFI cost-effective IoT device that sends data 

to the server for recording and ultimate processing of the data (cloud 

computing). Furthermore, research conducted in [126] used an IEEE 

13-node test feeder, incorporating distributed generation sources and 

uncertainties using the RTDS RSCAD software. Phasor measurement 

units (PMUs) were strategically positioned in optimal locations to cap-

ture real-time data. These PMUs deliver real-time three-phase current 

signals, facilitating precise and prompt fault diagnosis.

In addition to electrical analysis, thermal details of PV systems 

(including damages) which are not visible to the human eye can be ob-

tained from various sources, especially through thermal infrared (IR) 

cameras. IR imaging is employed to assess the surface and internal 

temperature of PV panels. Authors in [41] used SmartView thermal 

imaging software to analyze the images captured by the IR cameras. 

Likewise, electroluminescence (EL) imaging of cells/panels captured by 

EL camera are used in [127] for automatic detection of PV cell defects. 

Moreover, infrared radiation cameras are used in [51] to capture 20,000 

real datasets for solar plant IR images to accurately predict and clas-

sify anomalies in solar modules. The temperature distribution on the PV 

modules is captured remotely by IR cameras and subsequently, ML/DL 

algorithms predict the normal and faulty modules along with classifying 

the anomaly type. Unmanned aerial vehicle (UAV) devices with IR cam-

eras are used to collect images due to convenience and easy application 

across real PV plant sites. Besides, authors in [113] used thermos-camera 

FLIR T540 type to capture IR thermography images of a PV array (4 

mono-crystalline modules) for fault detection and diagnosis.

4.7. Critical analysis of PV data sources 

4.7.1. Challenges in data standardization

A significant challenge in using AI for PdM and fault diagnosis arises 

from the diverse range of data sources and the absence of standard-

ized formats. Fault diagnosis systems typically depend on a mix of 

different data types, each offering distinct perspectives on the system’s 

health. For example, sensor readings, such as temperature, wind speed 

and direction, tilt angle, humidity [63], voltage, current, and gener-

ated power [49,54], AC/DC currents, ambient temperature, and solar

irradiance [60], tracking power generation, DC voltage, power factor, 

and active/reactive powers [43] analyzes the dynamic behavior of the 

PV system. These data sets are typically time-dependent with varying 

samples and units. Visual content, such as thermal and visual inspec-

tions, provides spatial insights into the condition of PV components 

[41,44,81,104]. However, these images vary in resolution, format (like 

JPEG, PNG, etc.), and colour depth. Even among a single data type such 

as IV curves, there are considerable differences. These variations can 

include the quantity of data points that make up the curve (110,250 

records [124] vs 5410 and 4612 data samples from the synthetic and 

real-time irradiation and temperature respectively [123]) and the stor-

age format (CSV, binary). Moreover, the use of synthetic data, such as 

[60] developed a PV array simulation model to describe the PV sys-

tem’s normal condition, synthetically generated daily power curves of 

the panels [37] highlights the issue of format diversity. Although these 

data mimic real-world sensor readings, their unique format, noise char-

acteristics, and discrepancies emphasize the need for standardized data 

representations.

The lack of standardization in data types and formats, including those 

for synthetic data, poses several challenges. It complicates data integra-

tion and impedes the creation of reliable AI models, as preprocessing and 

feature engineering become too specific to each application. This also 

impacts model portability; a model trained on one data format may not 

transfer easily to another. Most critically, without standardized formats, 

objectively comparing the performance of different fault diagnosis algo-

rithms is challenging, as each may need unique preprocessing tailored 

to its training data.

4.7.2. Impact on ML model performance

The absence of standardized data formats in PV PdM and fault 

diagnosis greatly influences the effectiveness and advancement of AI 

models. The variety of hardware and data collection methods employed 

in PV systems, as highlighted in Section 4.6, exacerbates this issue. 

This section explains how this diversity impacts data integration, fea-

ture engineering, model bias, as well as comparison and development 

costs.

• Data Integration challenges: Integrating data from different

sources is a major hurdle. Data acquisition systems such as DAQ NI 

USB 6008 in [50] typically generate time series data with a specific 

sampling rate of 10 K/S (10,000 per second) and numeric format. 

Similarly, [52] utilized SCADA system with 5-min averaging for ex-

tracting and collecting historical data. Almonacid-Olleros et al. [48] 

used an IoT module to capture analogue signals within a 0–5 V range, 

later converted into digital format. Mellit [113] utilizes a Raspberry 

Pi 4 to retrieve data from Firebase and convert the IR thermal image 

to the desired dimensions (e.g., 224 × 224). In contrast, [51] used 

the public dataset released in 2020 by Raptor Maps Inc., which com-

prises IR images measuring 40 × 24 × 1 pixels (1 channel) taken by 

aircraft and UAVs with spatial resolutions between 3.0 and 15.0 cm 

per pixel. The variation among data sources makes data fusion chal-

lenging, necessitating tailored scripts and preprocessing procedures 

for each source. Integrating data from SCADA systems, IoT environ-

mental sensors, and IR thermal images processed via Raspberry Pi, 

which come in various formats and sampling rates, poses consid-

erable challenges in terms of synchronization and alignment. This 

makes it very challenging to create a unified dataset for training AI 

models that are robust and generalizable.

• Feature Engineering Complexity: Different types of data formats

have a direct effect on feature engineering. The distinction between 

processing data from a PMU [126], which delivers real-time three-

phase current signals for accurate and timely fault diagnosis and 

localization, and analyzing EL imaging of cells/panels captured by 

EL camera [127] is undeniable. The PMU provides real-time mon-

itoring of voltage, current, and frequency across multiple points in 

the grid by precisely measuring the phase angle and magnitude of
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the electrical signals, crucial for maintaining system stability, while 

the EL camera effectively detects failures in PV modules by capturing 

emitted light when a voltage is applied. This method produces high-

resolution digital images that highlight defects such as cracks and 

degradation, ensuring that potential issues are identified with preci-

sion. A thorough understanding of these two powerful technologies 

is imperative for effective monitoring and optimization of perfor-

mance. Extracting features from PMU data for fault detection may 

include determining the magnitude and phase angle of voltage and 

current phasors, in addition to tracking the frequency and the rate 

at which these values change. However, detecting faults from EL im-

ages entails examining the intensity and distribution of emitted light 

to pinpoint defects. This requires the development of custom fea-

ture engineering processes for each data source, which complicates 

automation and standardization significantly.

• Difficulty in Model Comparison and Benchmarking: Comparing

and benchmarking AI models present considerable challenges when 

data formats differ. For instance, consider two diagnosis models: one 

trained on data from a DAQ NI USB 6008 [50] and the other from 

a PMU [126]. The discrepancies in data formats and sampling rates 

require each model to undergo unique preprocessing steps. This com-

plexity makes direct performance comparisons almost impossible, as 

variations in these steps can significantly influence the results.

• Increased Development Time and Costs: The lack of standardized

data formats drastically escalates financial costs and development 

time for AI-driven PdM and fault diagnosis systems, particularly 

during hardware implementation and verification. Deploying AI al-

gorithms on embedded systems invariably requires multiple data 

processing units, significantly inflating the overall system cost. For 

example, when implementing DCNN classifiers using thermal im-

ages on a Raspberry Pi 4 in [113], the workflow’s dependency on 

TensorFlow for training and evaluation, coupled with the necessity 

of a GSM module (SIM808) for data transmission, not only inflates 

the bill of materials but also demands complex data pipelines that in-

crease labour costs. Moreover, adapting a model for processing event 

log videos from a CDD camera using OpenCV on an RK3399 Pro-

Vision chip equipped with an NPU [114] requires specialized video 

processing, data format conversions, and model optimizations, lead-

ing to elevated engineering time and potential software tool costs. 

These disparate hardware and software configurations—driven by 

non-standardized data formats inevitably result in exhaustive efforts 

and need for specialized skills, thereby significantly increasing the 

overall costs of developing and deploying AI-based PdM and fault 

diagnosis solutions on edge devices.

• Bias and Inconsistency: Non-standard data formats undeniably in-

troduce bias into models. When data from a specific sensor type 

collected through a more standardized interface proves easier to 

process, the model will inevitably skew towards that sensor type, 

regardless of its actual usefulness for fault diagnosis. For instance, 

if data from a particular weather station is consistently easier to 

handle, the model will disproportionately emphasize this data, ne-

glecting other, more pertinent weather sources. This can create a 

model that performs well for certain faults while failing significantly 

with others.

5. Fault diagnosis

PdM provides early fault alerts but lacks detailed information on 

specific fault types without extra diagnostics. Integrating PdM with 

fault diagnosis provides a comprehensive approach, allowing for ac-

curate fault prediction, identification, and diagnosis. To complement 

this process, it is essential to consider both fault severity and fault 

timing. Fault severity assesses how critical a fault is, allowing for the 

prioritization of diagnostic actions based on its potential impact, with 

severe faults warranting immediate attention. Likewise, understand-

ing fault timing, including when faults occur and their duration, helps

identify patterns and recurring issues. This leads to improved classifica-

tion models and greater diagnostic precision. Together, these elements 

strengthen the overall effectiveness of fault diagnosis and classification, 

leading to a more proactive and resilient maintenance strategy for PV 

systems.

Faults in PV systems are of various natures, such as electrical faults 

(e.g., fuses, DC box, wiring, diode bypass, grounding system), as well 

as physical and environmental issues, PV inverter failures, and grid-side 

failures [19]. These faults can be either temporary or permanent de-

pending on their duration and can be due to internal or external factors, 

resulting in the system’s performance degradation. A permanent fault, 

enduring over an extended period, may result from factors like aging 

or issues such as loose or disconnected electrical wiring in the system. 

In contrast, a temporary fault occurs within a specific timeframe, of-

ten caused by external factors like the accumulation of dust, dirt, or 

snow on the PV module surface. Additionally, shadows cast by nearby 

structures, such as buildings or trees, as well as passing clouds over-

head, can also contribute to a transient decline in PV performance [128]. 

Faults in general are classified according to their general characteris-

tics and stages. This section provides an overview of common types of 

PV system faults depicted in Fig. 13. This study focuses extensively on 

faults in PV arrays, providing a detailed examination of their character-

istics. While it acknowledges faults in other components, the main aim 

is to explore in depth the specific types of issues encountered within PV 

arrays.

Table 6 reports a comprehensive critical review of existing litera-

ture on fault diagnosis where papers are compared based on (i) type of 

ML algorithm used, (ii) PV system, capacity and data type, (iii) inputs 

and output of ML algorithms for fault diagnosis- faults type, (iv) Fault 

daignosis (FD) ML accuracy (v) real-time implementation/verification 

of ML developed algorithms, (vi) indication of fault severity levels, (vii) 

estimated fault time and (viii) future fault forecasting. The important 

columns of Table 6 are explained below which will help engineers and 

researchers to select suitable fault diagnosis methods pertinent to spe-

cific requirements. A critical discussion of Table 6 is provided in the 

subsequent section.

• Inputs/outputs of ML algorithm: This column outlines the inputs

and outputs of the ML algorithm employed for PV fault diagno-

sis. Inputs typically consist of various data sources and parameters 

collected from the PV system, such as sensor readings, environmen-

tal conditions, performance metrics, or other relevant data sources. 

These inputs serve as the basis for training the ML algorithm to recog-

nize patterns indicative of faults or anomalies. Outputs, on the other 

hand, represent diagnostic results produced by the ML algorithm, 

which may include classifications of detected faults, confidence 

scores, or other indicators of system health.

• FD AI Accuracy: This column outlines the accuracy of the AI

algorithms under consideration. It includes information on vali-

dation, testing, and training accuracy percentages, which demon-

strate how effectively the algorithm diagnosed and classified faults. 

Furthermore, Mean Squared Error (MSE) and Normalized Root Mean 

Square Error (NRMSE) are also provided for certain AI algorithms to 

further evaluate their performance. These metrics are essential for 

understanding the reliability and efficiency of the algorithms in use.

• Fault Severity level and Estimated Fault time: The columns la-

beled “Fault Severity Levels” and “Estimated Fault Duration” in 

Table 6 show whether each paper discusses fault diagnosis with vary-

ing severity levels, such as mild, moderate, or extreme, as well as 

the duration of faults from when they start until resolved. A “Yes” 

indicates that the paper covers these aspects, which contribute to 

the development of prompt and efficient maintenance strategies. 

Conversely, a “No” denotes that these topics are not addressed.

• Future Fault Prediction: The papers on fault diagnosis reviewed

in the table mainly focus on classifying faults into their respec-

tive type classes, paying little attention to predicting future faults,
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Fig. 13. Classification of major faults in PV system.

assessing their severity, and estimating the time of faults. Integrating 

these aspects into fault diagnosis systems could greatly improve their 

predictive and diagnostic effectiveness. Consequently, the relevant 

column marks “No” for studies that overlook this feature and “Yes” 

for those that incorporate it.

In addition to the comprehensive information in Table 6, following 

points can be observed:

• Among 53 articles reviewed, only three [76,86,129] focused on real-

time implementation, i.e., experimental verification of AI model on 

the embedded system.

• Very few papers focused on the PV system’s AC side, which includes

inverters, transmission lines, and grids. Most researchers considered 

major faults that can occur on the DC side of the PV system, including 

PV modules, strings, and arrays.

• Articles reviewed primarily focus on fault diagnosis, detection, and

classification based on historical and current data. This typically in-

volves collecting and preprocessing data, annotating data based on 

the known fault types and classes, and training the AI algorithm to 

detect and classify faults. Although this method has proven effective 

in diagnosing issues, it has limitations. Traditional fault algorithms 

depend on historical data and do not account for the dynamic nature 

of systems over time. Historical data often overlooks the tempo-

ral dependencies that are vital for understanding system behavioral 

changes over time and identifying potential faults.

• Predicting faults involves anticipating fault types and their sever-

ity based on current and historical data, ranging from a few hours 

to weeks in advance. This approach enables us to detect faults be-

fore they occur, reducing downtime and optimizing maintenance 

by avoiding unnecessary inspections and concentrating only on the

parts where faults are likely to happen. The papers reviewed however 

do not consider fault anticipating and prediction. Thus, it is crucial 

to include fault anticipation for modern PdM. Furthermore, to effec-

tively address a component-level fault, it is essential to combine fault 

prediction with fault classification for guided maintenance pertinent 

to the specific fault category. Knowing fault types helps prioritize 

issues and optimize resources for improved PV system performance 

and longevity.

• Table 6 summarizes the detection and association of common faults

presented in Fig. 13 to the respective AI algorithms. Overall, exist-

ing AI algorithms with different configurations can detect almost all 

the faults in the PV system’s DC and AC sides. However, some faults 

such as Pelvic inflammatory disease (PID), back-sheet adhesion loss, 

intermittent faults, gradual and minor PV components degradation, 

and environmental influence (soiling, dust accumulation) appear to 

be challenging for AI algorithms to detect. This may be due to the 

detection process’s difficulty in gathering high-quality and volume 

data, unpredictable fault nature and unrecognized cybersecurity is-

sues affecting PV systems. SC, OC, PS, LL, bypass diode, and sensor 

faults are the most studied types because of their stronger signature 

and easy reproducibility in simulation/real tests. Various training 

parameters are used in AI algorithms for fault detection and clas-

sification such as irradiance, module and ambient temperature, AC 

and DC values (voltage, current), strings and system level voltages, 

humidity, IV characteristics of PV arrays, Inverter and grid currents 

and voltages, load demand data and frequency etc.

• Regarding AI algorithms, visible faults such as cell cracks, cell multi,

soiling, vegetation, shadowing, hotspot, discolouration, and delam-

ination are usually detected by DL algorithms. The other ones like 

OC, SC, PS, degradation faults, etc., are detected by supervised ma-

chine learning algorithms. DL algorithms such as CNN are effectively
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the
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system
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Reference ML
 

methods PV
 

system,
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and
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type

Input/output
 

setting FD-AI
 

accuracy Fault
 

severity

levels

Estimated
 

fault

time

Real-time

implementation

Future
 

fault

prediction

[130],
 

2023 Extreme
 

Learning
 

Machine,
 

SVM,
 

NN

GCPV
 

system,
 

250
 

kW
 

and
 

Simulated
 

data

Input:
 

Minimum,
 

maxi-

mum,
 

average,
 

and
 

range
 

values
 

for
 

currents,
 

volt-

ages,
 

and
 

powers.
 

Outputs:
 

Healthy
 

and
 

3
 

faults:
 

on-

string,
 

string
 

to
 

ground,
 

string
 

to
 

string

Validation:
 

99.1663
 

%,
 

Testing:
 

97.9727
 

%

No No No No

[91],
 

2024 RF
 

Classifiers GCPV
 

system,
 

9.54
 

KW
 

and
 

Simulated
 

data

Inputs:
 

weather
 

(solar
 

irradiance,
 

module
 

temper-

ature),
 

and
 

PV
 

output
 

(𝐼
 

𝑚𝑝𝑝,

𝑉
 

𝑚𝑝𝑝
 

,
 

𝑃
 

𝑚𝑝𝑝)
 

parameters
 

at

MPP,
 

Outputs:
 

Healthy
 

and
 

4
 

faults:
 

Three
 

SC
 

and
 

three
 

shaded
 

modules,
 

OC,
 

LL
 

99.4
 

% No No No No

[71],
 

2022 ANN PV
 

array,
 

5
 

kW
 

and
 

Simulated
 

data

Inputs:
 

𝑃
 

𝑚𝑝𝑝
 

,
 

OC
 

voltage

𝑉
 

𝑜𝑐 , SC
 

current
 

𝐼
 

𝑠𝑐
 

,
 

𝑉
 

𝑚𝑝𝑝
 

,
 

and
 

𝐼
 

𝑚𝑝𝑝
 

,
 

Outputs:
 

Healthy

and
 

7
 

faults:
 

PS,
 

LL,
 

OC,
 

degradation,
 

bridge,
 

bypass
 

diode,
 

hybrid
 

fault

99.9
 

% No No No No

[131],
 

2023 Fuzzy
 

logic
 

system PV
 

array,
 

-and
 

Simulated
 

data

Inputs:
 

Extracted
 

fea-

tures,
 

Fuzzy
 

sets
 

for
 

each
 

fault
 

type
 

(fuzzy
 

sets).
 

Outputs:
 

Degree
 

of
 

mem-

bership
 

for
 

each
 

fault
 

type
 

(membership)

96
 

% No No No No

[132],
 

2023 Adaptive
 

neuro-fuzzy
 

inference
 

system
 

(ANFIS)

PV
 

module,
 

80
 

W
 

and
 

laboratory
 

real
 

data

Inputs:
 

PV
 

current
 

and
 

voltage
 

characteristics,
 

Outputs:
 

Normal
 

and
 

6
 

faults:
 

inverter,
 

feedback
 

sensor,
 

grid
 

anomaly,
 

MPPT
 

controller,
 

PV
 

mis-

match
 

and
 

boost
 

converter
 

controller
 

fault

95.4
 

% No No No No

[88],
 

2023 Isolation
 

forest
 

and
 

rule
 

based
 

algorithm

Solar
 

power
 

plant,
 

and
 

Real
 

sensor
 

data

Inputs:
 

AC
 

and
 

DC
 

power,
 

irridiation.
 

Outputs:
 

Anomaly
 

outliers:
 

Normal
 

and
 

anomalous
 

data

98.86
 

% No No No No

[111],
 

2023 AE
 

NN
 

algorithm PV
 

system,
 

9.54
 

KW
 

and
 

Real
 

field
 

data

Inputs:
 

𝐼
 

𝑚𝑝𝑝
 

,
 

𝑉
 

𝑚𝑝𝑝
 

,
 

𝑃
 

𝑚𝑝𝑝
 

,
 

irradiance,
 

𝑇
 

𝑚𝑜𝑑 . Outputs:

Healthy
 

system
 

and
 

7
 

fault
 

cases:
 

different
 

modules
 

(1,234,510)
 

SC,
 

first
 

string
 

disconnected

99–100
 

% No No No No.

[123],
 

2022 CatBoost,
 

LGBM,
 

and
 

XGBoost
 

algorithms

PV
 

arrays,
 

4.8
 

KW
 

and
 

Simulated
 

data

Inputs:
 

Current,
 

voltage,
 

power
 

ratio,
 

array
 

yield,
 

array
 

efficiency
 

and
 

ar-

ray
 

capture
 

loss.
 

Outputs:
 

Healthy
 

and
 

six
 

fault
 

cases:
 

Intra
 

and
 

Inter
 

string,
 

OC,
 

SC,
 

PS,
 

Degradation
 

fault
 

in
 

string
 

and
 

array.

99.996
 

% No No No No.

(continued
 

on
 

next
 

page)
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Reference ML
 

methods PV
 

system,
 

capacity
 

and
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type

Input/output
 

setting FD-AI
 

accuracy Fault
 

severity

levels

Estimated
 

fault

time

Real-time

implementation

Future
 

fault

prediction

[78],
 

2021 Supervised
 

ML

algorithms:
 

DT,

SVM,
 

KNN,
 

NB,

Discriminant
 

Analysis

(DA)
 

and
 

RF.

GCPV
 

system,
 

15
 

kW
 

and

Simulated
 

data

Inputs:
 

Squared
 

Prediction

Error
 

(SPE),
 

𝑇
 

2
 and

Squared
 

Weighted
 

Error

(SWE)
 

statistics,
 

first

retained
 

principal
 

compo-

nents.
 

Outputs:
 

Healthy

and
 

five
 

fault
 

classes:

Inverter,
 

grid
 

connection,

PV
 

side
 

sensor,
 

PV
 

PS
 

and

OC

Testing:

99.64
 

%,

training:

99.87
 

%

No No No No.

[133],
 

2022 EL
 

and
 

ML
 

methods PV
 

array,
 

960
 

W
 

and
 

Real
 

Laboratory
 

experimental
 

data

Inputs: 𝐼
 

𝑠𝑐 , 𝑉
 

𝑜𝑐 , 𝐼
 

𝑚𝑝, 𝑉
 

𝑚𝑝
 

,
 

𝑃
 

𝑚𝑝, fill factor, 𝐼
 

1 , 𝐼
 

2 from
 

IV
 

curves,
 

Outputs:
 

nor-

mal
 

and
 

five
 

faults
 

cases:
 

PS
 

with
 

degraded
 

PV
 

mod-

ules,
 

Dust
 

accumulation
 

(homogeneous
 

dirt)
 

with
 

diode
 

SC,
 

PS
 

(one
 

PV
 

module)
 

with
 

dust
 

accu-

mulation
 

(homogeneous
 

dirt),
 

OC
 

(one
 

PV
 

module
 

disconnected)
 

with
 

PS,
 

LL
 

(between
 

two
 

PV
 

modules)
 

with
 

degradation.

Catboost:
 

80
 

%,
 

MLP
 

(ANN):
 

80.66
 

%,
 

EL
 

stacking
 

classifier:
 

81.73
 

%

No No No No.

[102],
 

2023 CNN,
 

LSTM,
 

and
 

Bi-

LSTM
 

networks

A
 

10
 

×
 

10
 

PV
 

array
 

test
 

bed
 

with
 

a
 

central
 

inverter
 

topology
 

and
 

Simulated
 

data

Inputs:
 

String
 

voltages,
 

system
 

voltage
 

and
 

cur-

rent,
 

𝐺,
 

and
 

𝑇
 

.
 

Outputs:
 

Normal
 

and
 

three
 

fault
 

cases:
 

Module
 

faults
 

at
 

string
 

level.

Bi-LSTM:
 

99.94
 

%,
 

99.54
 

%,
 

99.98
 

%.

No No No No.

[134],
 

2023 Distributionally
 

robust
 

logistic
 

regression
 

method

PV
 

array- three
 

PV
 

strings,
 

with
 

four
 

PV
 

modules
 

in
 

series,
 

960
 

W
 

and
 

Real
 

laboratory
 

test
 

data

Inputs:
 

𝐼
 

𝑚𝑝𝑝
 

,
 

𝑉
 

𝑚𝑝𝑝
 

,
 

and
 

𝑃
 

𝑚𝑎𝑥
 

.

Outputs:
 

Normal
 

and
 

three
 

fault
 

causes:
 

LL,
 

OC,
 

and
 

PS.

≥
 

98
 

% No No No No.

[107],
 

2022 Clustering
 

algorithm
 

and
 

transfer
 

LSTM

GCPV
 

system,
 

PV
 

array

with
 

three
 

series
 

parallel
 

column
 

and
 

Real
 

plant
 

data

Inputs:
 

Historical
 

data
 

𝐺,
𝑇
 

,
 

and
 

humidity,
 

PV
 

power
 

with
 

30
 

min
 

time
 

inter-

val,
 

prediction
 

data
 

of
 

𝑇
 

,
 

𝐺,
 

and
 

humidity.
 

Ouputs:
 

Prediction
 

of
 

power
 

gen-

eration
 

and
 

fault
 

severity
 

diagnosis:
 

quantitative
 

fault
 

severity

– Quantitative

fault
 

severity
 

threshold

No No No.

[90],
 

2023 RF PV
 

arrays
 

and
 

Simulated
 

data

Inputs:
 

Module
 

and
 

ambi-

ent
 

temperature,
 

current,
 

DC
 

powers,
 

irradiation,
 

AC
 

power,
 

DC
 

energies,
 

and
 

wind
 

speed.
 

Outputs:
 

Two
 

fault
 

cases:
 

DC
 

power
 

faults

≥
 

98
 

% No No No No.
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[135],
 

2020 EL
 

method
 

based
 

on
 

probabilistic
 

strategy

PV
 

array
 

Simulink
 

model
 

and
 

Simulated
 

data

Inputs:
 

fault
 

features
 

ex-

tracted
 

from
 

I–V
 

curves.
 

Outputs:
 

Normal
 

and
 

LL
 

fault
 

cases:
 

LL
 

faults
 

under
 

low
 

mismatch
 

levels
 

and
 

high
 

fault
 

impedance.

99
 

%
 

and
 

99.5
 

%

No No No No.

[79],
 

2023 SVM 3
 

×
 

4
 

PV
 

array
 

and
 

Simulated
 

data

Inputs:
 

I–V
 

characteris-

tic
 

curves
 

of
 

PV
 

arrays,
 

SC
 

current,
 

OC
 

voltage,
 

max-

imum
 

power
 

current,
 

and
 

maximum
 

power
 

voltage.
 

Outputs:
 

three
 

fault
 

cases
 

and
 

normal
 

condition:
 

OC,
 

SC,
 

irradiation
 

fault

Training:
 

98.2
 

%
 

and
 

testing
 

accuracy:
 

97
 

%

No No No No

[136],
 

2021 Domain
 

adaptation
 

and
 

deep
 

convo-

lutional
 

generative
 

adversarial
 

network,
 

lightweight
 

transfer
 

CNN
 

with
 

adversarial
 

data
 

augmentation

Emulator-based
 

grid-tied
 

PV
 

system,
 

1.5
 

kW
 

and
 

experimental
 

lab
 

data

Inputs:
 

Real-time
 

cur-

rent
 

data
 

captured
 

by
 

CT
 

Outputs:
 

series
 

arc
 

fault
 

detection

99.72
 

% No No No No

[72,73,108,109,137,
 

138]- 2021–2024.
 

Remarks:
 

Papers
 

by

the
 

same
 

authors,
 

im-

plementing
 

different
 

ANN
 

algorithms
 

for

the
 

same
 

system
 

and

faults

salp
 

swarm
 

algorithm
 

(SSA)
 

with
 

Supervised
 

ML,
 

Bi-LSTM,
 

GA

based
 

ANN,
 

One
 

class
 

ML
 

classifiers
 

based
 

on
 

PCA
 

under
 

varying

irradiance,
 

Enhanced
 

NN
 

Method-Based

Multiscale
 

PCA,
 

LSTM
 and

 

BiLSTM

GCPV
 

system,
 

3
 

PV
 

ar-

ray
 

system
 

4
 

kW
 

each
 

and
 

Simulated
 

data

Inputs
 

: Out
 

put
 

current

and voltage
 

of
   

𝑃 and

𝑃𝑉
 

𝑉
 

1
 

,
 

2  

grid DC
 

voltage, grid
 

currents
 

(phase
 

a,
 

b,
 

c).
 

 

Outputs
 

: Healthy and 20
  

 

different
 

faults: PV array

1
 

 

: Bypass doide
 

 

(𝐵𝐷1) 

,

connectivity (
 

𝐶
 

𝑓 )
 

 

,1  

𝐿𝐿 ,1
𝐿𝐺 PV array 2

 

: (  

1
 

𝐵𝐷
 

2) 

,

(  𝐶𝑓 )  

 

, 𝐿𝐿
 

,
 

 

𝐿𝐺 .
 

Multiple
 

2 2
 

2
faults:

  

 

𝐿𝐿
 

1 + 𝐿𝐺 ,
 

1  

𝐿𝐿 +
 

1
𝐵𝐷 ,

    

1 𝐿𝐿2+𝐿𝐺 ,2 𝐿𝐺2+  

  

   

𝐶
 

𝑓 .
 

2
     

Mixed faults
 

: + ,

𝐿𝐺
 

𝐿𝐿1 𝐿𝐿2
+ 𝐿𝐺2  

,1 𝐿𝐿
 

,1 𝐵
 

 +
 

𝐷 

1
 𝐿𝐺  

1 + 𝐶
 

𝑓 𝐿𝐿
 

,
  

 

1
 

1 + 𝐵𝐷2 +
 𝐿𝐺 ,

 

1  

𝐵𝐷
 

1 + 𝐵𝐷 +
 

 
 

 

2 𝐿𝐺 ,
 

2
𝐵

   𝐷    

 

1 + 𝐵𝐷
 

2 + 𝐿𝐿 ,
 

2  

𝐿𝐿
 

1 +
𝐵𝐷

 

+
    

  

 

1 𝐶
 

𝑓2 + 𝐿𝐺2
    

SSA—DT
 

&
 

SVM:
 

99
 

%,
 

Bi-LSTM:

100
 

%,
 

GA:
 

88.48
 

%,
 

One
 

Class
 

ML:
 

99
 

%,

MSPCA-ANN:
 

Train:
 

91.49
 

%,

Test:
 

93.63
 

%,
 

BiLSTM:
 

Test

and
 

Train:
 

100
 

%.

No No No No.
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fault

time

Real-time

implementation

Future
 

fault

prediction

[139],
 

2024 Digital
 

twin
 

and
 

shifted
 

windows
 

(swin)
 

transformer
 

optimized
 

by
 

particle
 

swarm
 

optimization

GCPV
 

system
 

10
 

PV
 

array,
 

49KW
 

and
 

Simulated
 

data

Inputs:
 

DTY
 

and
 

current
 

ratios,
 

Outputs:
 

five
 

dif-

ferent
 

types
 

of
 

fault
 

and
 

PS
 

conditions:
 

LL,
 

open-

module,
 

shorted-module,
 

open-string,
 

shorted-string,
 

PS
 

conditions.

Classification
 

accuracy:
 

98.55
 

%

No No No No.

[110],
 

2023 Bi-LSTM GCPV
 

System—3
 

PV
 

array,
 

4
 

kW
 

each
 

and
 

Simulated
 

data.

Inputs:
 

11
 

different
 

lev-

els
 

of
 

solar
 

irradiance,
 

PV
 

output
 

voltage,
 

DC
 

bus
 

volt-

age,
 

grid
 

currents.
 

Outputs:
 

Healthy
 

and
 

nine
 

fault
 

cases:
 

failures
 

in
 

individ-

ual
 

PV
 

components,
 

simple
 

faults
 

PV
 

arrays,
 

mixed
 

faults
 

in
 

two
 

arrays,
 

and
 

complex
 

faults.

100
 

% No No No No

[140],
 

2023 Supervised
 

ML
 

with
 

Data
 

Dimensionality
 

Reduction
 

Strategy

GCPV
 

system
 

emulator
 

and
 

Simulated
 

data

Inputs:
 

Current
 

and
 

voltage
 

at
 

PV
 

array,
 

DC
 

voltage,
 

inverter
 

phase
 

currents,
 

and
 

voltages,
 

estimated
 

current
 

and
 

voltage
 

magnitudes,
 

estimated
 

current
 

and
 

volt-

age
 

frequency.
 

Outputs:
 

Normal
 

and
 

six
 

fault
 

cases:
 

Inverter,
 

feedback
 

current
 

sensor,
 

grid
 

anomaly,
 

PV
 

array
 

mismatch
 

with
 

PS
 

and
 

OC,
 

MPPT/IPPT
 

con-

troller,
 

boost
 

converter
 

controller

KNN:
 

97
 

% No No No No.

[112],
 

2023 Deep
 

AE
 

based
 

semi-

supervised
 

learning
 

module
 

followed
 

by
 

a
 

hybrid
 

SVM-LR

two
 

stage
 

GCPV
 

system
 

and
 

Experimental
 

lab
 

data

Inputs:
 

Historical
 

data
 

samples
 

of
 

𝐼
 

𝑝𝑣
 

, 𝑉
 

𝑝𝑣
 

,
 

𝐺𝑎𝑛𝑑𝑇
 

.
 

Output:
 

Healthy
 

and
 

six
 

fault
 

cases:
 

LL
 

fault
 

in
 

a
 

string
 

with
 

mismatch
 

level
 

of
 

10
 

%
 

and
 

80
 

%,
 

OC
 

fault,
 

a
 

cross-string
 

LL,
 

PS
 

of
 

one
 

panel
 

in
 

a
 

string,
 

and
 

LG
 

fault
 

with
 

30
 

%
 

mismatch
 

level.

99.67
 

% No No No No.

[74],
 

2023 LSTM,
 

CNN
 

and
 

NN. GCPV
 

emulator
 

system
 

and
 

Simulated
 

data

Inputs:
 

Squared
 

predic-

tion
 

error,
 

𝑇
 

2
 .

 

squared
 

weighted
 

error,
 

and
 

first
 

retained
 

principal
 

compo-

nents.
 

Outputs:
 

Healthy
 

and
 

five
 

faulty
 

cases:
 

PV
 

sensor
 

fault,
 

PV
 

array
 

level,
 

three-phase
 

inverter,
 

grid
 

external
 

connection
 

fault

LSTM:
 

95.12
 

%,
 

ANN:
 

94.55
 

%,
 

CNN:
 

61.24
 

%
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[129],
 

2023 Open
 

source
 

ML

platform
 

(edge
 

impulse)

PV
 

modules
 

and
 

Real
 

data:
 

IR
 

images

Inputs:
 

Database
 

of
 

2000

infrared
 

thermography
 

image
 

for
 

PV
 

modules.
 

Outputs:
 

Normal
 

and
 

3
 

fault
 

cases:
 

Dirt,
 

degrada-

tion,
 

and
 

dust/sand
 

deposit
 

on
 

PV
 

modules.

Mean
 

accuracy:
 

93.4
 

%

No No Yes:

Development
 

of
 

edge
 

device
 

(Nano
 

33
 

LBE
 

sense).

No.

[141],
 

2023 Density
 

ratio-based
 

batch
 

active
 

learning
 

fault
 

diagnosis
 

method
 

integrated
 

with
 

adap-

tive
 

Laplaciangraph
 

trimming

PV
 

array—Chroma
 

62150
 

H-1000
 

S
 

solar
 

array
 

simulator
 

and
 

Experimental
 

lab
 

data

Inputs:
 

Outputs:
 

Normal
 

and
 

7
 

fault
 

cases:
 

inverter,
 

feedback
 

sensor,
 

grid
 

anomaly,
 

PV
 

array
 

mis-

match
 

with
 

10
 

to
 

20
 

%
 

nonhomogeneous
 

PS
 

and
 

15
 

%
 

OC
 

in
 

PV
 

array,
 

MPPT/IPPT
 

controller,
 

boost
 

converter
 

controller.

≥
 

85
 

% No No No No.

[142],
 

2022 EL-based
 

FDD
 

paradigms

GCPV
 

System
 

and
 

Simulated
 

data

Inputs:
 

PV
 

current,
 

three-

phase
 

currents,
 

PV
 

voltage,
 

and
 

three
 

phase
 

voltages,
 

Output:
 

Healthy
 

and
 

five
 

faulty
 

cases:
 

Inverter
 

(OC
 

on
 

one
 

switch
 

at
 

a
 

time),
 

grid
 

connection
 

(switch
 

to
 

the
 

standalone
 

operation
 

for
 

protection
 

reasons),
 

output
 

PV
 

current
 

sensor
 

(poor
 

connection
 

and/or
 

erroneous
 

reading),
 

PV
 

panel
 

(10
 

%
 

to
 

20
 

%
 

PS),
 

PV
 

panel
 

connection
 

(OC,
 

SC,
 

sudden
 

disconnection).

100
 

% No Yes No No.

[103],
 

2022 CNN PV
 

panels
 

and
 

Simulated

data

Inputs:
 

PV
 

string
 

volt-

age
 

and
 

current,
 

𝑇
 

and
 

𝐺
 

level,
 

fault
 

label.
 

Outputs:

Normal
 

and
 

four
 

faulty
 

con-

ditions:
 

Degradation,
 

LL,

OC,
 

PS.

Training
 

accu-

racy:
 

97.64
 

%,
 

Testing
 

ac-

curacy:

95.20
 

%

No No No No.

[92],
 

2022 RF
 

classifier GCPV
 

System
 

and
 

Simulated
 

data

Inputs:
 

𝑉 ,
 

𝑝𝑣
 

𝐼 , ,𝑝𝑣 𝑉 , ,𝑑𝑐  

𝑖𝑎   

𝑖𝑏  

 

𝑖
 

, 𝑣
 

, 𝑣
 

, 𝑣
 

, |
  

| | |

 

, ,
 

𝑐
 

𝑎
  

𝑏   

  

𝑓 𝑓
   

𝑐 𝐼𝑎𝑏𝑐
 

𝑉𝑎𝑏𝑐
, ,𝐼  𝑉    

fault label. Outputs:
  

 

 

Normal and six
 

fault cas
 

es:
  

 

Inverter, feedback
 

sensor,
 

grid
 

anomaly, PV array
  

mismatch based
 

on PS and
     

 

OC, cont
 

roller, and boo
 

st
 

converter.

100
 

% No No No No.
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and

data
 

type

Input/output
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fault

time

Real-time

implementation

Future
 

fault

prediction

[143],
 

2022 Ensamble-based
 

supervised
 

and
 

unsupervised
 

ML

10
 

series
 

connected
 

PV
 

modules,
 

2.2
 

kW
 

&
 

32
 

mod-

ules,
 

4.16
 

kW—Simulated
 

and
 

lab
 

experimental
 

data

Inputs:
 

G,
 

total
 

output
 

power.
 

Outputs:
 

Normal
 

and
 

3
 

cases
 

of
 

faults:
 

Low
 

and
 

high
 

percentage
 

PV
 

faults,
 

faulty
 

PV
 

string.

Naive
 

Bayes:
 

94
 

%–100
 

%

No No No No.

[144],
 

2024 Radial
 

basis
 

function PV
 

array—PV
 

modules
 

connected
 

in
 

series
 

with
 

three
 

parallel
 

strings—
 Experimental

 

lab
 

data

Inputs:
 

irradiation
 

level
 

and
 

temperature,
 

Outputs:
 

Normal
 

and
 

eleven
 

fault
 

cases:
 

PS,
 

LL
 

including
 

intra
 

and
 

cross
 

string,
 

OC,
 

and
 

hybrid
 

faults.

MSE
 

for
 

whole
 

data:
 

0.110,
 

for
 

test
 

data:
 

0.065

No No No No

[80],
 

2024 SVM N/A—Experimental
 

lab
 

data

Inputs:
 

PV
 

array
 

out-

put
 

voltage
 

and
 

current,
 

output
 

power,
 

irradi-

ance,
 

and
 

temperature.
 

Outputs:
 

Normal
 

and
 

four
 

fault
 

cases:
 

Random
 

and
 

fixed
 

shading,
 

and
 

aging
 

degradation

faults
 

with
 

known
 

char-

acteristics:
 

99.5
 

%
 

and
 

with
 

unknown
 

characteristics:
 

95.2
 

%.

No No No No

[89],
 

2022 Isolation
 

forest
 

algo-

rithm
 

with
 

Continuous
 

Wavelet
 

Transform
 

and
 

CNN

IEEE
 

34-bus
 

distribu-

tion
 

test
 

feeder—3
 

solar
 

PV
 

installations,
 

200
 

kW
 each—N/A

Inputs:
 

three-phase
 

cur-

rent,
 

ground
 

mode
 

current
 

and
 

statistical
 

features.
 

Ouptus:
 

Normal
 

and
 

3
 

fault
 

cases:
 

Single-line-to-ground,
 

LL,
 

and
 

three-phase
 

faults.

classification
 

accuracy:
 

96
 

%–99
 

%

No No No No.

[145],
 

2022 EL
 

approaches:
 

boost-

ing
 

and
 

bagging
 

and
 

Double
 

Exponentially
 

Weighted
 

Moving
 

Average
 

chart.

PV
 

plants,
 

9.54
 

kW
 

and
 

Real
 

experimental
 

data

Inputs:
 

Ambient
 

and
 

cell
 

temperature,
 

tilt
 

global
 

irra-

diance,
 

PV
 

array
 

DC
 

current
 

and
 

voltage,
 

maximum
 

dy-

namic
 

PV
 

power,
 

inverter
 

AC
 

current,
 

AC
 

power,
 

grid
 

AC
 

voltage.
 

Outputs:
 

Normal
 

and
 

five
 

anomaly
 

conditions:
 

PV
 

string
 

OC,
 

circuit
 

breaker,
 

inverter
 

dis-

connection,
 

PS
 

(pylons),
 

2
 

PV
 

modules
 

SC

≥
 

90 No No No No.

[81],
 

2022 CNN
 

combine
 

with
 

SVM

PV
 

modules
 

and
 

Real
 

data:
 

Dataset
 

1:
 

2624
 

defective
 

and
 

good
 

EL
 

images
 

and
 

Dataset
 

2:
 

1028
 

images
 

of
 

good
 

and
 

corroded/cracked.

Inputs:
 

Electroluminescene
 

images.
 

Outputs:
 

Good
 

and
 

defective,
 

crooked/cracked

Classification
 

accuracy
 

for
 

Dataset
 

1:
 

99.49
 

%
 

and
 

Dataset
 

2:
 

99.46
 

%

No No No No
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[146],
 

2022 Supervised
 

ML

algorithms

Small
 

scale
 

GCPV
 

system-

2
 

Parallel
 

strings
 

of
 

six
 

PV

modules—Real
 

data:
 

data
 

measurement
 

time:
 

16
 

June

2020
 

to
 

16
 

Sep
 

2020

𝐼Inputs
 

: five features:
 

 

𝐼𝑒𝑥𝑝
(normalized current),

𝑉 ∕
 

  

𝑉 (normalized volt-𝑒𝑥𝑝
𝑃  

age), (normalized
 

𝑃𝑒𝑥𝑝
𝑉

 

power), ,
 

𝑉
 

𝑜𝑐𝑟𝑒𝑓  

and PV
 

module condition under
 

  

 

experimental
 

test. Outputs:

 

Normal and ei
 

ght faulty
 

 

conditions:
 

Connector, PID,

 

PS, pole shading and build-
   

ing shadow
 

condition, SC
 

bypass
 

 

diode,
 

soiling, glass
 

breakage

NN:
 

93
 

%,
 

RF:

92.5
 

%,
 

Nearest

Neighbor:

92.3
 

%,
 

SVM:

91.7
 

%,
 

DT:

89.8
 

V,
 

Linear
 

SVM:
 

89.2
 

%,
 

LR:
 

76.6
 

%

No No No No.

[124],
 

2023 LR
 

with
 

cross-

validation

One
 

diode
 

model—Real
 

𝑇
 

,
 

GHI
 

and
 

simulated
 

data
 

of
 

other
 

features

Inputs
 

:
 

𝑇
 

, GHI,
 

𝑉 ,
 

𝑚𝑝𝑝
 

𝐼 ,
 

𝑚𝑝𝑝
𝑉

 

,
 

,
 

  

𝑜𝑐 𝐼
 

𝑠𝑐
 

𝑉 , -𝑐𝑒𝑙  
 

𝑙 𝐼 , and op
 

𝑐𝑒𝑙𝑙  

 

 

erational
 

status. Ouputs
 

:

 

Normal and four cases
 

of
  

 

 

faults:
 

OC,
 

SC,
 

mismatch,

and unidentified
 

fault
  

97.11
 

% No No No No.

[147],
 

2022 Adaptive
 

variational
 

mode
 

decomposition
 

and
 

deep
 

minimum
 

variance
 

random
 

vec-

tor
 

functional
 

link
 

network

PV
 

based
 

DC
 

microgrid
 

and
 

Simulated
 

data

Inputs:
 

Input
 

𝐼
 

𝑑𝑐
 

with
 

AVMID-CSCFA
 

algorithm
 

and
 

EWKU
 

Index:
 

sig-

nificant
 

modes
 

features.
 

Outputs:
 

Normal
 

and
 

8
 

classes
 

of
 

faults:
 

Pole-to-

pole,
 

pole-to-ground,
 

series
 

arc,
 

shunt
 

cross-string
 

arc,
 

shunt
 

intra-string
 

arc,
 

load-

switching,
 

PS,
 

changes
 

in
 

PV
 

irradiance

100
 

% No No No No.

[148],
 

2022 Multiple
 

ML
 

algo-

rithms
 

from
 

SK-Learn
 

library
 

of
 

python
 

and
 

a
 

DL
 

model

two
 

PV
 

strings
 

of
 

three

panels,
 

1.8
 

kW
 

and
 

experimental
 

lab
 

data

Inputs:
 

Current
 

and
 

volt-

age
 

sensor
 

output
 

from
 

the
 

first
 

and
 

second
 

string,
 

𝑇
 

and
 

𝐺
 

for
 

different
 

seasons—summer
 

and
 

win-

ter.
 

Outputs:
 

Normal
 

and
 

faulty
 

conditions

Overall
 

clas-

sification
 

accuracy:
 

99.2
 

%,
 

F1-

Score
 

of
 

ML
 

models:
 

Adaboost:
 

0.59,
 

DT:
 

1,
 

Navie
 

Bye:
 

0.88,
 

SVM:
 

0.994.

No No No No.
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[93],
 

2022 RF
 

and
 

modified
 

in-

dependent
 

component
 

analysis.

GCPV
 

system
 

and
 

Simulated
 

data

Inputs:
 

PV
 

output
 

current
 

and
 

voltage,
 

DC
 

bus
 

volt-

age,
 

grid
 

phase
 

currents,
 

and
 

voltages,
 

𝐼
 

𝑓
 

,
 

𝑉
 

𝑓 , target. 
Outputs:

 

Normal
 

and
 

Four
 

faults
 

cases:
 

Inverter,
 

PS,
 

voltage
 

sag,
 

and
 

OC

99.88
 

%
 

and
 

99.43
 

%
 

for
 

scenarios
 

1
 

(SMOTE)
 

and
 

2
 

(Random
 

under
 

sampler)

No No No No.

[86],
 

2022 DT GCPV
 

system,
 

4
 

kW
 

and
 

Laboratory
 

data

Inputs:
 

PCC
 

current
 

and

voltage
 

signals
 

features
 

from
 

Wavelet
 

transform.
 

Outputs:
 

Normal
 

and
 

four
 

fault
 

cases:
 

Shade,
 

inverter
 

(AC
 

and
 

DC
 

side),
 

array
 

(LG,
 

LL,
 

and
 

OC),
 

and
 

panel
 

(external
 

and
 

internal).

94.7
 

% No No Yes—Field
 

pro-

grammable
 

gate
 

array
 

(FPGA).

No.

[149],
 

2023 PSO
 

with
 

back
 

propagation
 

NN

4*3
 

PV
 

array
 

with
 

DC
 

load
 

and
 

Simulated
 

data

Inputs:
 

𝑉
 

𝑜𝑐
 

,
 

𝐼
 

𝑠𝑐
 

,
 

𝑃
 

𝑚
 

,
 

𝑉
 

𝑚
 

.

Outputs:
 

Normal
 

and
 

five
 

faulty
 

conditions:
 

PS,
 

aging
 

cells,
 

temperature
 

and
 

PS
 

combined,
 

temperature
 

and
 

cell
 

aging
 

combined.

95
 

% No No No No.

[75],
 

2022 ANN Four
 

PV
 

parks,
 

Greece,
 

99.84
 

kW
 

and
 

Real
 

data—
 Jan.

 

2013
 

to
 

Dec.
 

2016
 

at
 

15
 

min
 

intervals.

Inputs:
 

In-plane
 

irradi-

ance,
 

panel
 

back
 

sheet
 

temperature,
 

ambient
 

temperature.Outputs:
 

AC
 

power.
 

Faults:
 

String
 

fault
 

behavior,
 

PV
 

panel
 

and
 

shading
 

fault.

Normalized
 

root
 

mean
 

square
 

er-

ror
 

(nRMSE):
 

Below
 

5
 

%

No No No No

[150],
 

2024 Gradient
 

Boosting
 

techniques

6*6
 

TCT
 

PV
 

Array- Grid-

connected
 

PV
 

system—
 7.2KW

Inputs:
 

PCA
 

based
 

features:
 

current,
 

voltage
 

and
 

power
 

ratio,
 

array
 

and
 

total
 

array
 

yield.
 

Outputs:
 

Healthy
 

and
 

seven
 

fault
 

cases:
 

OC,
 

SC,
 

PS,
 

Array
 

and
 

string
 

degradation,
 

Inter
 

and
 

Intra
 

fault.

Training
 

accu-

racy:
 

Catboost:
 

98.90
 

%,
 

LGBM:
 

99.06
 

%,
 

Adaboost:
 

97.01
 

%,
 

Model
 

accu-

racy:
 

Catboost:
 

98.45,
 

LGBM:
 

99.23
 

%,
 

Adabost:
 

97.44
 

%.

No No No No.

[76],
 

2023 ANN
 

and
 

Stacking

Ensemble
 

Machine
 

Learning-based
 

algorithm

PV
 

array—three
 

PV

modules
 

in
 

parallel
 

con-

nection,
 

each
 

60
 

W—Real
 

Experimental
 

lab
 

test
 

data

Inputs:
 

First
 

dataset:
 

Solar

irradiance,
 

air
 

and
 

cell
 

tem-

perature,
 

and
 

PV
 

output
 

power.
 

Second
 

dataset:
 

I–V
 

curves.
 

Outputs:
 

Normal
 

and
 

five
 

fault
 

conditions:
 

Single
 

fault:
 

PS
 

and
 

dust
 

deposit.
 

Multiple
 

faults:
 

OC
 

and
 

dust
 

accumulation,
 

PS
 

and
 

dust
 

accumula-

tion
 

with
 

shunted
 

diode
 

in
 

shaded
 

PV
 

module.

Classification

Accuracy:
 

96.8
 

%,
 

ANN
 

RMSE
 

(W):
 

0.05

No No Yes—Embedded

ML
 

system
 

ESP8266
 

microcontroller
 

for
 

real-time
 

deployment.

No.
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[104],
 

2023 CNN
 

and
 

fine-tuned
 

model
 

based
 

on
 

Visual
 

Geometry
 

Group
 

(VGG-16)

Unit
 

for
 

Developing
 

Solar
 

Equipment
 

and
 

Real
 

data—
 Thermal

 

images

Inputs:
 

Binary
 

and
 

multi-

class
 

classification
 

of
 

fragmented
 

thermal
 

images.
 

Ouputs:
 

Normal
 

and
 

five
 

faulty
 

cases:
 

Bypass
 

diode
 

failure,
 

partially
 

covered
 

PV
 

module,
 

shading
 

effect,
 

SC
 

and
 

dust
 

deposit.

VGG-16
 

aver-

age
 

accuracy:
 

99.91
 

%
 

and
 

fault
 

diagnosis:
 

99.90
 

%.

No No No No.

[151],
 

2023 Deep
 

Stack-based
 

Ensemble
 

Learning
 

approach

GCPV
 

system
 

and
 

Simulated
 

dataset

Inputs:
 

𝐺,
 

𝑇
 

,
 

OC
 

voltage,
 

SC
 

current,
 

form
 

factor,
 

maximum
 

current,
 

maxi-

mum
 

voltage,
 

maximum
 

power,
 

and
 

boost
 

converter
 

output
 

power.
 

Ouputs:
 

Normal
 

and
 

five
 

fault
 

cases:
 

OC,
 

SC,
 

PS,
 

bridge
 

and
 

degradation
 

faults.

Fault
 

detection
 

accuracy
 

with-

out
 

noise
 

data:
 

98.62
 

%
 

and
 

with
 

noisy
 

data:
 

94.87
 

%.

No No No No.

[82],
 

2023 XGboost,
 

LGBM,
 

LR,
 

Support
 

Vector
 

Regression,
 

Relevant
 

Vector
 

Machine

150
 

PV
 

power
 

stations,
 

54
 

MW
 

and
 

Real
 

data—
 from

 

240
 

PV
 

station
 

projects
 

with
 

120
 

sites.

Inputs:
 

Solar
 

irradiation,
 

rated
 

capacity,
 

output
 

power,
 

voltage,
 

and
 

cur-

rent
 

of
 

each
 

inverter
 

under
 

MPPT.
 

Outputs:
 

Power
 

prediction,
 

alerts
 

about
 

different
 

faults:
 

Shadowing,
 

inverter
 

ther-

mal
 

degradation,
 

fuse
 

burnt,
 

site
 

outages,
 

and
 

other
 

faults:
 

equipment
 

maintenance,
 

broken
 

mod-

ule,
 

inverter
 

shut-down
 

by

miss
 

  

Inputs
 

: 20,000 infrared
 

 

images—Real online data—
 

Infrared solar modules  

  
 

datasets Outputs
 

:
 

Normal
 

condition and 11
 

fault
   

 

classes:
 

Cell and
 

cell-multi,
 

 

hotspot and hotspot-
 

 

multi,
 

soiling, vegetation,

operation,
 

and so on.
 

Fault
 

detec-

tion:
 

Precision
 

99.2
 

%,
 

fail-

ure
 

mode
 

classification:
 

92.3
 

%

No No No No.

[83],
 

2023 Exemplar
 

effi-

cient
 

model
 

with
 

Neighborhood
 

Component
 

Analysis
 

and
 

SVM

PV
 

modules
 

shadowing,
 

offline
 

module.
 

Accuracy:

93
 

%,
 

F1-score:
 

89.80
 

%,
 

preci-

sion:
 

91.55
 

%,
 

and
 

sensitivity:
 

88.38
 

%

No No No No.

[152],
 

2022 Wavelet
 

analysis
 

and
 

Ensembled
 

KNN
 

ML
 

classifier

6*6
 

Series
 

parallel
 

PV
 

array
 

and
 

Simulated
 

data

Inputs:
 

Decompose
 

of
 

current
 

signals
 

through
 

Wavelet
 

Transform
 

Outputs:
 

Normal
 

and
 

three
 

fault
 

cases:
 

SC,
 

OC
 

and
 

PS
 

faults.

Classification
 

Accuracy:
 

96.29
 

%

No No No No.
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preferred for images and two-dimensional data, RNN-LSTM is for 

temporal dependencies-based fault detection and SML models are 

suitable for one-dimensional (1D) data.

6. Discussions and recommendations: challenges and solutions

The future of AI algorithms for PdM and fault diagnosis in PV systems 

appears promising, as they can greatly enhance efficiency and reliability. 

Some key challenges, solutions and recommendations for PV systems 

PdM and fault diagnosis are provided in this section as follows:

• PdM integrated fault diagnosis: A key unit for consideration is

PdM, which involves monitoring and analyzing data from the en-

tire system to predict potential faults. However, it may not always 

provide detailed information about specific fault types without ad-

ditional diagnostic efforts. PdM integrated fault diagnosis enhances 

the understanding and root cause of equipment health deteriora-

tion. Fault diagnosis provides a systematic way to identify and 

categorize specific issues within the system. By adding this feature, 

PdM predicts potential failures and provides insights into their na-

ture. This knowledge is instrumental in proactively addressing and 

mitigating the root causes, allowing for more targeted and effec-

tive maintenance strategies. Understanding fault types can inform 

decision-making, prioritize critical issues, and optimize resource 

allocation for better overall PV system performance and longevity.

• Fault Severity, Pattern and Estimated Time: A promising ap-

proach for ML in fault diagnosis and PdM of PV systems involves 

the integration of metrics like fault severity, patterns, frequency, 

and estimated time to critical levels. By utilizing these indicators, 

ML models can facilitate severity-based predictions and establish 

threshold-driven maintenance alerts, ensuring that maintenance is 

conducted proactively based on predictive data. These algorithms 

can anticipate the need for maintenance well ahead of serious is-

sues by predicting faults and their categories anywhere from minutes 

to days in advance. Recognizing fault types, along with their sever-

ity, allows for the prioritization of critical issues. This ensures that 

immediate attention is given to high-severity faults, while routine 

maintenance can address less critical ones. By incorporating fault 

time, recurring patterns or trends can be identified, helping to distin-

guish between transient issues and long-term degradation. Not only 

does this holistic approach optimize resources, but it also enhances 

the performance and longevity of PV systems, facilitating targeted 

interventions and reducing downtime.

• Weather Forecasting: Conventional forecasting methods for

weather parameters in PdM primarily utilize linear models neglect-

ing the nonlinear factors influencing solar irradiance due to their 

unpredictable and time-dependent nature [29]. While linear statisti-

cal approaches are effective in analyzing historical data, particularly 

for short-term predictions, they struggle with nonlinearities and fluc-

tuating weather conditions. Therefore, accounting for these irregular 

behaviors is crucial for developing an effective PdM model that can 

accurately estimate weather parameters to enhance the performance 

of PV systems.

• Correlation model: The cost of gathering data from the PV panels

poses significant challenges in terms of data capturing, transmission 

as well as the expenses and maintenance (including false data) of 

measurement equipment (on-site sensors). To address the expenses 

associated with measurement equipment, utilizing nearby weather 

stations to predict climatic factors appears to be a viable solution. 

There is a possibility to develop a correlation model between weather 

parameters and PV power generation for regenerating PV system dy-

namical behavior, i.e., array voltage, current, temperature, and solar 

irradiation.

• Consideration of various environmental conditions:

Deterministic fault detection models for PV systems can some-

times yield false predictions when environmental conditions are not 

considered. Non-faulty PV plants may show outputs similar to faulty

ones under certain weather, leading to incorrect alarms. It’s crucial 

to differentiate between actual faults and variations due to weather. 

Therefore, effective fault detection should incorporate insights 

from PV system performance across various weather conditions 

(like winter, cloudy, summer, and sunny) into the PdM and fault 

diagnosis algorithms.

• Prediction horizon and window lengths: The fault diagnosis

model predicts fault type within a defined horizon, typically analyz-

ing each fault configuration separately without considering transi-

tions. By including transitional data—beginning with fault-free input 

and later incorporating instances of short or open circuit faults, the 

model can respond more swiftly to faults, enhancing its sensitivity 

and robustness.

• Data’s nature and temporal dependencies: The quality of the data

in PdM and fault diagnosis is critically important as the perfor-

mance of AI algorithms is often limited to data representation [153]. 

Lack of attribute importance and data with redundant attributes 

generates poor ML performance. The predictions of AI algorithms be-

come less reliable without consideration of temporal dependencies. 

Consequently, the AI algorithm can enhance fault detection accu-

racy by leveraging both specific attribute attention and the temporal 

relationships between historical and real-time data.

• Data Standardization: The lack of standardization in data types

and formats, including those for synthetic data, poses several chal-

lenges. It complicates data integration and hinders the creation of 

reliable AI models, as preprocessing and feature engineering be-

come too specific to each application. To effectively tackle the 

intricate challenges in standardizing PV data, immediate and focused 

industry-wide initiatives must be undertaken, utilizing frameworks 

like ISO 13374–1:2003 [154] and ISO 13373–1:2002 [155] for CM. 

Establishing uniform data formats and protocols is imperative, par-

ticularly for the integration of diverse data sources such as IV curves, 

load, and weather parameters. This will decisively resolve data 

integration issues. Standardized formats will not only streamline fea-

ture engineering but also ensure consistent preprocessing pipelines, 

thus eliminating bias and inconsistencies in AI model training. The 

creation of openly accessible benchmark datasets, complete with 

comprehensive metadata, is essential for enabling objective model 

comparisons and evaluations, while simultaneously reducing devel-

opment costs by eliminating the need for customized preprocessing 

for each dataset. Future research must prioritize benchmarking 

studies across various data formats, develop automated data inte-

gration techniques, and validate synthetic data to guarantee robust 

AI training. This approach will foster a more consistent, reliable, and 

cost-effective strategy for PV system analysis.

• Real-time monitoring and experimental hardware: One approach

to enhancing ML-based PdM applications for PV systems is by en-

abling real-time fault detection and diagnosis. Currently, only a few 

prototypes utilizing ML for fault diagnosis in real-time applications 

have been developed in laboratory settings, with no commercial de-

vices available to date. Developing an experimental hardware setup 

for PdM and fault diagnosis using AI on an affordable chip is a 

potential future direction. ML algorithms are adept at analyzing 

real-time sensor data and identifying patterns that may indicate po-

tential faults, thus facilitating maintenance and minimizing the risk 

of power outages. Consequently, the future aim is to build a sys-

tem that can handle real-world disruptions caused by environmental 

factors and noise from measurement devices.

• Economic Considerations in AI-driven PdM and Fault Diagnosis

in PV Systems: While AI-driven PdM and fault diagnosis methods 

have proven effective in identifying and forecasting faults in PV sys-

tems, their economic viability is still not well-studied. A majority 

of current research emphasizes the development of engineering and 

mathematical models aimed at improving fault detection accuracy 

and PdM capabilities. However, there is a lack of systematic stud-

ies evaluating the cost-effectiveness and return on investment (ROI)
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of these methods. While large-scale PV plants can take advantage 

of economies of scale, making AI-driven PdM and fault diagno-

sis financially viable, small- and medium-sized PV facilities face a 

more intricate challenge regarding their financial feasibility. The 

considerable initial investment, necessary infrastructure, and high 

computational needs linked to implementing AI can create major 

obstacles for smaller PV system operators. When it comes to AI-

driven PdM, it’s essential to focus not only on technical precision but 

also on cost-effectiveness, especially for medium- and small-sized PV 

plants, where budget limitations may hinder adoption. A comprehen-

sive economic evaluation framework is essential for analyzing the 

cost-benefit ratio of AI-based fault diagnosis in various sizes of PV 

systems, providing a balanced view of the feasibility of implemen-

tation. Moreover, future studies should connect the advancements 

in engineering-focused AI with their economic practicality, making 

sure that PdM solutions are both technically effective and financially 

sustainable for PV operators of all sizes. Additionally, a thorough 

evaluation should go beyond basic ROI calculations to include as-

pects like risk mitigation, enhanced long-term planning abilities, and 

potential environmental advantages. By bridging the gap between 

technological progress and economic viability, the full potential of 

AI in PV fault diagnosis can be achieved, facilitating its widespread 

and sustainable adoption across a range of PV system sizes.

• Fault isolation and 5G communication: Generally, fault detection

and diagnosis algorithms focus solely on fault labelling and clas-

sification. The isolation of malfunctioning parts and the impact of 

isolating faulty components from the PV system on the overall sys-

tem generation is however not considered. The underlying question 

is how a power shortage to demand will be delivered at the consumer 

end in case of isolating faulty components from the PV System. 5 G 

communication technology can be used for efficient and effective 

communication between multiple power system entities for demand 

response (application of networks to power systems).

• Digital twin for PdM: A digital twin is a virtual counterpart of a

physical object, process, or system, operating as a real-time digital 

version. It is created by gathering extensive data from a system, al-

lowing for safer, cost-efficient, and effective management of intricate 

processes. In the context of PV systems, digital twins can simulate 

components like PV arrays, modules, and inverters, utilizing sensor 

data to monitor performance, identify issues, and refine maintenance 

efforts. By considering factors such as fault severity, frequency, pat-

terns, and advanced predictions for fault classification (ranging from 

minutes to days), digital twins improve PdM capabilities. These mod-

els can anticipate maintenance requirements, initiate prompt actions 

based on predictive insights, and support a more accurate and proac-

tive maintenance approach. Consequently, fault detection, diagnosis, 

and forecasting can be carried out with greater precision, reducing 

downtime and prolonging the lifespan of PV systems. For example, 

[156] proposed a digital twin model for proactive maintenance of 

the manufacturing industry.

7. Conclusion

The paper presented a comprehensive review of PdM system archi-

tecture with a fault diagnosis perspective and associated data prefer-

ences. First, we presented an overview of PdM architecture, providing 

an excellent foundation for researchers and engineers interested in gain-

ing insights into PdM architecture for PV systems. The recommendations 

for integrating PdM with fault diagnosis algorithms and future fault pre-

diction will lead to the avoidance of future equipment failures in the PV 

system, increasing thereby the operational efficiency and resilience of 

the network. The following summaries emphasize the main conclusions 

and comparisons for a quick overview.

• Critical evaluation of existing review articles: Table 1 provides an

overview of existing review papers that focus on the application of AI 

to PV system condition monitoring and fault diagnosis analysis, and

compares these studies to our work, clearly highlighting our notable 

contributions to this area.

• Maintenance techniques within PV system framework: The advantages

and disadvantages of each maintenance method for a PV system are 

outlined in Table 2, emphasizing the important characteristics of 

each technique related to operational effectiveness.

• AI driven PdM framework for PV system components: Table 3 illus-

trates the overview of designing a PdM framework for PV systems 

based on AI models, and maps the potential applications of specific 

AI algorithms to certain data types.

• Critical summary of most recent work on PV system PdM: Table 4 re-

ports the most popular ML/DL algorithms used for PdM, condition 

monitoring, and anomaly detection for the PV system.

• AI algorithm pros and cons for solar PV systems: Table 5 outlines the

advantages and disadvantages of using SVM, ANN, DT, RF, and gradi-

ent boosting methods in the development of PdM and fault diagnosis 

systems for PV systems.

• Critical summary of most recent work on PV system fault diagnosis:

Table 6 reports the most popular ML/DL algorithms used for fault 

diagnosis in a PV system.

Furthermore, key contributions are summarized below:

• Our work focuses on the integration of PdM with fault diagnosis of

PV systems. By adding this feature, PdM can predict potential failures 

and provide insights into their nature. This knowledge is instrumen-

tal in proactively addressing and mitigating root causes, allowing for 

more targeted and effective maintenance strategies. To the best of 

our knowledge, none of the previous literature on PdM has explored 

this idea.

• While numerous review papers have concentrated on fault diagnosis

for PV systems, this work extends the literature by systematically 

incorporating fault severity based on time-dependent degradation 

patterns. By considering this concept, we establish severity-based 

predictions and threshold-driven maintenance alerts, ensuring that 

maintenance is conducted proactively based on predictive data. This 

approach optimizes maintenance scheduling. To the best of our 

knowledge, no previous review or technical paper has considered 

such an analysis.

• We also developed an innovative framework combining predictive

maintenance with fault diagnosis, outlining how it will function. 

Based on this framework, we created Table 3, where we map which 

AI techniques will utilize specific data for individual components to 

execute PdM, taking into account fault diagnosis and other indicators 

such as fault severity and time duration. Additionally, our framework 

emphasizes the prediction of faults well in advance of their occur-

rence, a consideration that is typically absent in the existing fault 

diagnosis literature.

• We further discussed the nature of the data used for PdM and fault

diagnosis, as well as the challenges it presents to AI performance. 

Additionally, fault diagnosis varies across industries, creating fur-

ther complications, which raises the need for standardization across 

the entire fault diagnosis sector. This type of work has not been 

previously reported in the literature.

• We also shed light on the cost-effectiveness of AI-based fault diag-

nosis techniques for PV systems of different sizes. Large PV facilities 

often have the necessary resources and funding for such analyses, 

while medium and small PV systems tend to lag. We explore how to 

create a framework to support these smaller systems.

By considering all these points and aiming to enhance the entire 

PdM and fault diagnosis process, we aim to prolong the lifespan of PV 

systems. The integration of these concepts into a cohesive framework 

represents an innovative contribution to this field. Future research stud-

ies should concentrate on developing a digital twin for the PdM model, 

as well as on forecasting, fault detection and classification, conducting
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real-time monitoring, and experimentally validating PdM and fault di-

agnosis algorithms in real-time scenarios. Furthermore, consider factors 

such as integrating weather forecasting for PdM, fault isolation, and 

the introduction of 5G communication between faulty PV systems and 

neighboring microgrids, these can enhance the precision of identifying 

potential failures in individual components within the PV system.
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