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Abstract

A confocal microscope provides a sequence of images of the corneal layers and structures at different depths from which medical
clinicians can extract clinical information on the state of health of the patient’s cornea. A hybrid model based on snake and particle swarm
optimisation (S-PSO) is proposed in this paper to analyse the confocal endothelium images. The proposed system is able to pre-process
images (including quality enhancement and noise reduction). detect cells, measure cell densities and identify abnormalities in the analysed
data sets. Three normal corneal data sets acquired using a confocal microscope, and three abnormal confocal endothelium images
associated with diseases have been investigated in the proposed system. Promising results are presented and the performance of this system
is compared with manual and two morphological based approaches. The average differences between the manual and the automatic cell
densities calculated using S-PSO and two other morphological based approaches is 5%. 7% and 13% respectively. The developed system
will be deployable as a clinical tool to underpin the expertise of ophthalmologists in analysing confocal corneal images.

Keywords : Confocal Microscope; Cornea; Endothelium Layer, Snake, Particle Swarm Optimisation.

1. Introduction

The cornea is the transparent surface component of the
eye covering important internal structures including the iris,
lens, and anterior chamber as illustrated in Fig. 1. Damage
to the cornea caused by disease or injury can critically affect
the quality of vision. The cornea comprises proteins, fibrils
and various cells in a highly organised structure [1]. The
fixed focusing power provided by the air to cornea surface
is one of the cornea’s major functions, which together with
the contribution provided by the adjustable internal lens
causes the light rays passing through to produce a sharp
image on the retina. Another function of the cornea is to
protect the retina by filtering dangerous ultraviolet light.
The cornea also works as a shield to protect the internal
structures from attack by microorganisms.

The cornea joins smoothly with the non-transparent
sclera and has lateral dimensions of around 12.6 mm in the
horizontal direction and 11.7 mm in the vertical direction.
The thickness of cornea varies and ranges from about 520
um at the centre to about 650 pm at the periphery [2, 3]. The
cornea has a tear film on its front surface and three main
internal layers separated by two thin membranes. The
corneal structure is shown in Fig. 2. The corneal layers are
the outermost epithelium layer, separated by Bowman’s
membrane from the central stroma layer, which is separated
in turn by Descemet’s membrane from the innermost
endothelium layer.

Confocal microscopy of the cornea offers several
advantages over conventional microscopy. It provides

images showing the cell structures in different corneal
layers, which can be obtained with typical minimum depth
separation of about 5 pum, and they can be immediately
viewed and used for diagnostic purposes. The employed
images in the current work are from a Confoscan 4
microscope, produced by Nidek, Inc., Freemont, CA.
During a typical scan, the microscope locates the rear of the
cornea (no signal back from aqueous humour) and steps
forward by the specified increment until it reaches the
anterior surface of the cornea (no signal back from the tear
layer). This cycle is repeated 3 times during a 20 seconds
scan providing around 350 images. The acquired two-
dimensional images are useful to provide important clinical
information on the corneal state of health and to analyse
corneal structures in the whole volume of the cornea, not
Just at a specific depth. Because of the spherical shape of
corneal layers, which causes non-uniform reflection of
illumination light in the different corneal areas, and the
different attenuation of light along the various illumination
paths; acquired images do not usually have a uniform
luminosity and contrast, exhibiting darker areas in the
peripheral regions of the images [4].

Confocal microscopy offers clinicians one of the most
detailed views of corneal structures and pathologies. It helps
clinician to establish the presence of ophthalmic pathology
caused by bacterial, viral, parasitic and fungal infections [5,
6]. It provides detailed images of each layer of the comea.
The endothelial cells are located immediately posterior to
Descemet’s membrane, and are characterised by a regular
hexagonal hyper-reflective pattern or regular honeycomb
mosaic, surrounded by hypo-reflective borders without
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obvious nuclei reflections. No vessels or nerves are present
in this layer. Sometimes, the nuclei of the cells may be
visualised [7-10]. Examples of corneal original images of
stroma and endothelium layers are shown in Fig. 3(a) and
Fig. 3(b) respectively.

Injuries, infections, dystrophies and ocular diseases
(such as lattice dystrophy), dry eye, genetic conditions and
changes due to ageing can all reduce the ability to see
clearly, sometimes causing pain and discomfort as well. It is
possible to see some of these corneal conditions developing,
while others are difficult to monitor. Treatments can involve
eye drops, other medications, contact lenses, surgery (such
as corneal gratt operations), etc. Small changes in the cormea
can significantly affect its wvisual performance [l1].
Therefore, it is important to analyse the endothelium cells
count and density, as they may affect the comea
transparency and the visual quality.
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Fig. 1. Human cye structure [12].

The confocal microscope’s generation of a large number
of images per patient per scan, makes their analysis a
challenging task for an ophthalmologist with a large number
of patients in a busy clinical setting. Ophthalmologists could
use an efficient system to reduce the analysis time and speed
up the treatment process, by giving them the opportunity to
look at individual layers on demand, leading to faster and
more accurate diagnosis. Our research aim is to develop an
as yet unavailable complete analysis system for the main
corneal layers (epithelium, stroma and endothelium). Due to
the nature of these layers and the information (clinical
parameters) required from each of them, the developed
system has four main parts. First, pre-process (quality
enhancement, noise removal) the data sets provided to the
clinicians by the confocal microscope (this step is shared
between the three main parts) and classify the corneal
layers. Second, analyse stroma data and visualise stroma
corneal images as well as each individual keratocyte cell as
a volume for further clinical analysis. Third, analyse the

epithelium layer and detect nerves. Fourth, analyse the
endothelium layer which is presented in this paper.

Two existing systems providing a capability to analyse
the endothelium are the HRT Rostock Cornea Module and
the Confoscan 4. The former offers a semi-automated
endothelial cell counting feature, and calculates the cell
number and the cell density. The Confoscan 4 allows
automated or semi-automated and manual endothelial image
analysis. However, many researchers and clinicians use the
semi-automated or manual mode to be able to apply the
correction tools to correct the mistakes made by the
automated analysis. Hence there is a need to improve the
automation of endothelium analysis. This work introduces a
novel approach for analysing the corneal endothelium
images produced by a confocal microscope and proposes a
system which is fully automated and has the capability to
calculate cell number, cell density as well as minimum,
maximum and average cell areas.

The paper shows how an advanced hybrid algorithm of
image processing and evolutionary techniques provides
extendibility to the approach and offers analytical
advantages in this problem domain. Here we address the
problem of the automatic estimation of endothelial cell
densities from healthy images and abnormal images
displaying Fuchs’ dystrophy, advanced Fuchs’ disease and
posterior polymorphous corneal dystrophy (PPCD). In this
paper we study approaches based on the Snake-Particle
Swarm Optimisation (S-PSO) algorithm and morphological
image processing operations to extract individual corneal
endothelial cell contours. Most researchers in this field
calculate the statistical measures of endothelium cells
collectively, that is one set of statistical measurements for
each image. The main advantage of the S-PSO algorithm is
that it takes the endothelium cell analysis to the individual
cell level. In this method, for each endothelium cell in the
image a cell profile is created with an individual contour. Of
course this leads to better understanding and analysis of the
endothelium cell structures as well as better calculations of
statistical indexes. The developed system will improve the
efficiency of the clinical practice as it will provide the
clinicians with a system which is automated, has the ability
to analyse large number of images, detect any abnormality
in the processed images, and provide an instant statistical
analysis for each image. Colour coding of cell density gives
a quick qualitative analysis of the images acquired. This
type of analysis is commonly used in many ophthalmic
diagnostic devices such as corneal topographers and retinal
optical coherence tomographers. In addition, there are
further benefits to patients as it allows easier explanation of
their corneal abnormality/disease in a simple graphical way.
The time taken to analyse multiple images/scans using
existing systems is about 10-15 minutes per eye but using
this new software the time taken is significantly less at
around 2 minutes. Overall, the benefits for the clinician are
significant as it will allow him/her to be presented with data
in an easy to understand way which will allow the diagnosis
and differentiation of endothelial diseases such as Fuch’s
dystrophy and posterior polymorphous dystrophy. Also, in
assessing the corneal endothelium following corneal
lamellar transplantation surgery which is difficult using
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specular microscope due to interface between the donor and
host cornea.

SE St Epithelium

layer

Stroma

E——— T
membrane

Frrlnthalinm
Fig. 2. Cornea structure,

In summary, the main objective of the research
presented here is to develop a robust system to analyse
corneal endothelial cells and extract clinically useful
information to help an ophthalmologist diagnose the
endothelium layer rapidly and accurately. This paper is
organised as follows. Section 2 presents the current state of
the art of the technical and clinical related corneal research
work focusing on the endothelium layer. Section 3 presents
the proposed methodology including the data sets employed,
the preprocessing system and the experiment description.
The results and analysis are presented in Section 4, while
the conclusions are presented in Section 5.

a b

Fig. 3. Original confocal corneal examples: (a) Stroma layer, (b)
Endothelium layer.

2. State of the Art

The following two subsections summarize the current
state of the art research related to the corneal endothelium
layer. This is covered from both the technical and clinical
points of view.

2.1 Current Technical Endothelium Related Research
Work

The work in [13] provides a method to derive
endothelium cell density without identifying the cell

contours as most other techniques do; based on the
assumption that endothelial cells appear approximately as a
regular tessellation of hexagonal shapes. The problem with
this method is that doesn't take into account that this is not
always the case. The technique estimates the inverse
transpose of a matrix that generates this cellular lattice, from
which the density is easily obtained. The basis matrix may
vary noticeably from one region to another because cells
have different sizes and spatial orientations throughout the
corneal image. Therefore, in order to minimize the effects of
this variability, a local estimation is performed. This also
provides an estimation of the variability of the corneal
density closely related to the variation of cell sizes. An
inverse phase-contrast microscope was used to acquire the
endothelium images from corneas kept in the Berlin cornea
bank. In our study a confocal microscope was used to
acquire the endothelium images directly from patients.

The work in [ 14] presents a software tool for automated
morphometric analysis of corneal endothelium images. This
tool uses an analogue cellular neural network (CNN)
algorithm that allows both the recognition of cell shape and
the measurement of endothelial cell area. The algorithm
consists of a combination of classical image processing
procedures linked together with some CNN operations. In
particular, two main parts can be distinguished. One
processes the original image in order to obtain the
skeletonised structure of the cells” borders. The second
processes this skeletonised image to detect the cells’
corners, and then rebuilds the cells and so determines their
shapes. The images were acquired by specular microscopy
which is ideal for imaging the central corneal endothelium
and provides high contrast between the different endothelial
tissues.

The work of [15] addresses the problem of automatic
estimation of endothelial cell density from microscopy
images of donor corneas using Fourier analysis. By means
of a two dimensional discrete Fourier transform (DFT), a
spatial frequency analysis is applied to the acquired images.
This mathematical technique extracts information regarding
the various spatial frequencies within the image, relating to
the repetitive patterns present in the image. These images
were acquired from the Cornea Bank Berlin as follows. The
corneas were kept in hypotonic balanced salt solution (BSS)
for a better microscopy visualisation of the endothelial cells
by osmotic stimulation. Endothelial cell images were
acquired before organ culture or after de-swelling in organ
culture medium (minimum essential medium (MEM) with
2% fatal calf serum (FCS)) containing 6% dextran 5000, in
order to have a low number of folds in the Descemet’s
membrane and a large area of endothelial cells in focus.
Only corneas with clearly visible endothelial cells after
osmotic stimulation were used. Finally these corneas were
imaged using an inverse phase contrast microscope.

The authors of [16] developed a system for extracting an
estimate for the cell density from the spatial frequency
information in the image. They applied a spatial frequency
analysis using the 2D DFT, and the transformed images
showed a specific type of frequency content that appears as
a circular band around the origin with radius changes
depending on the analysed image. Making comparisons of
different images, they found that the radius of this band is
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modulated by the frequency of the repetitive pattern of cells.
A Zeiss Axiovert optical microscope was used to acquire
these endothelium images.

The algorithm developed in [17] comprises a neural
network based segmentation module, and a second “expert
correction” module, to cope with wrong results still present
in the segmented image; this module includes recovery of
missing contours and tentative merging or splitting of cell
bodies. To correct for non-uniform illumination and reduce
the amount of noise in images, the authors applied a
parabolic correction and a band-pass filter respectively. This
system is heavily dependent on the expert correction, and
used images pgathered from different ophthalmic
instruments, for each of which a specific neural network has
been realised; however nothing is said about these
instruments in this reference.

The authors of [18] proposed a robust method for
segmenting grey-scale images of corneal endothelial tissue.
They started with the extraction of markers of the corneal
cells using a dome extractor based on morphological grey-
scale reconstruction. Then, binary images of the corneal cell
network are produced. From these images, they derived
histograms of the cell sizes and numbers of neighbours.
They also constructed a neighbourhood graph of the corneal
cells that gives information on the distribution of cells with
large number of neighbours in the ftissue. A top-hat
transformation segmentation tool was used for detecting the
thin dark cell outlines that separate any two neighbouring
cells. An alternated sequential filter (ASF) of small size was
employed in order to remove impulse noise while
preserving the valleys (separating lines between cells). Then
morphological reconstruction is used to detect the cells.
They assigned a gray-level value equal to each cell’s area
(number of pixels) and computed a histogram of cell sizes
for each image. To determine the number of edges of a
corneal cell, they used contour tracking algorithms that
determine the adjacency graph of the corneal tissue.
Furthermore, they proposed a model for corneal cell death
and rearrangement of corneal tissue, and verified the
accuracy of this model by matching its output with the
numerical results they obtained from the previous analysis.
The employed images were acquired using a specular
microscope, where the specular reflection of light from the
boundary between the endothelial cells and the aqueous
humour forms the images.

The authors of [19] developed analyser software
providing tools for automatic error detection and correction,
and for measuring endothelial cell density (ECD) and
performing morphometry on multiple zones of three images
of the endothelial mosaic obtained using a specular
microscope.

The authors of [20] proposed a tree-structural image-
processing method that can be applied to images that have
different statistics in different regions. This method prepares
two types of nodes; one type represents known image-
processing filters, and the other represents conditional
branches which, using the statistics of the cell images, can
determine the divergent direction. Moreover, the proposed
method used genetic programming (GP) to optimise their
combination. The images used in the experiment are two

cultured Macaca fascicularis corneal endothelial cell images
acquired using a phase-contrast microscope.

The work in [21] proposed a detection method of cell
field contours in corneal endothelium images. The algorithm
presents a set of single-cell contour models (a cell field),
that statistically describe individual cells in terms of shape
a-priori information and a-posteriori image representation.
Each cell is individually identified on an image given a
starting point and an appropriate optimisation algorithm.
Interaction between cell models can be used to introduce
further information and improve the overall model
identification for a cell field. Results show an improvement
in the cell contours recognition when single cell models
extend to field models.

None of the previously mentioned studies have
employed confocal microscope in the image acquisition.
Most of these studies have used a specular microscope,
which is ideal for imaging the central corneal endothelium.
It achieves high contrast between the different endothelial
tissues, produces good highly focused images with
negligible light scatter. However, the specular microscope is
less effective for imaging structures elsewhere in the cornea.
For example, the mid-stroma and epithelium are associated
with significant scattered light, which obscures the image. A
summary of these studies is presented in appendix I at the
end of this paper.

The authors of [22] state that limited data are available
for comparisons of performances between the different
types of confocal microscopes. The ability to serially
produce images of thin layers from the cornea is the primary
advantage of laser scanning confocal microscopy. The depth
of focus for different confocal microscopes varies and is 5-7
um for the laser confocal microscope, whilst it is 7-9 pm for
the Tandem scanning confocal microscope and 26 pum for
slit scanning systems [23]. Endothelial cell density
measurement has been compared between Confoscan 3 and
HRT RCM. All the cell density results (for abnormal and
normal subjects) obtained with the RCM were higher than
those obtained with the Confoscan 3 [24]. The studies [22,
25] compared measurements of cell density and image
contrast with contemporary Confoscan 4 and HRT RCM.
They observed agreement between the two devices for cell
density measurement. HRT RCM offers a semi-automated
endothelial cell counting feature, it calculates only the cell
number and the cell density. The authors of [26, 27] stated
that the software of the Confoscan 4 microscope allows
automated or semi-automated and manual endothelial image
analysis. However, due to the errors in the fully automated
mode results, many researchers use the semi-automated or
manual mode so as to apply the correction tools to correct
the mistakes made by the automated analysis. The study in
[28] reported that the Confoscan 4 automated cell detection
software differed significantly from manual cell detection in
both normal and DSEK eyes. Furthermore they conclude
that the automated programs significantly overstated
endothelial cell density. The results reported in [29] show
that endothelial cell count was significantly lower in the
automated than in the semi-automated and manual analysis
for both ConfoScan 4 and specular EM 1100 microscopy.
Qur paper proposes a new automated quantitative analytical
approach for evaluating confocal microscope images of the
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corneal endothelium. Moreover, it enables the user to
measure not only the cell number and cell density but also
some additional parameters such as the minimum,
maximum and average areas of cells.

2.2 Clinical Endothelium Related Research Work

This section describes clinical research work which
focuses on endothelial corneal diseases. These diseases
include Fuchs® endothelial dystrophy, which appears as
roundish hypo-reflective images with an occasional central
highlight at the level of the endothelium as shown in Fig.
4.a. Fig. 4.b shows advanced Fuchs’ endothelial dystrophy,
where many roundish low intensity areas of different sizes
with diffuse central light spot between the hyper-reflective
endothelial cells clearly appear. Iridocorneal endothelial
syndrome has areas of highly abnormal cells characterised
by marked epithelial-like appearance; a loss of regularity in
size and shape are found as shown in Fig. 4.c [8].

In posterior polymorphous corneal dystrophy (PPCD)
vesicles are observed at the level of the endothelium. They
appear as round lesions containing endothelial cells with
surrounding haze, as shown in Fig. 4.d, and appear as a
prominent hyper-reflective band lesion at the level of
Descemet’s membrane [8, 30]. It has a well-delineated
roundish shape (the biggest forms 5.8% and the smallest
forms 3.5% of the field of view) with low intensity that is
nears black on a low intensity background. These rounded
shapes have diagonal patterns surrounded by a hazy halo
that has high grey-scale values. A case report in [31]
observes the appearance of endothelial vesicular lesions in
curvilinear ~ patterns  with  associated endothelial
pleomorphism and polymegathism. In patients with more
advanced posterior polymorphous dystrophy, very
prominent corneal nerves at the level of Bowman’s
membrane are delineated.

Fig. 4. Endothelium abnormal cases: (a) Fuchs™ endothelial dystrophy,
(b) Advanced Fuchs™ endothelial dystrophy, (c) Iridocorneal endothelial
syndrome (d) Posterior polymorphous corneal dystrophy.

3. The Proposed Methodology

3.1 Preprocessing Stage

The data set acquired using a confocal microscope
usually includes some black images with no usable data,
mostly at the beginning and the end of the image sequence.
A statistical approach, using the mean, has been employed
to detect these images; any image with mean value in the
range 0-10 (grayscale values) is removed from the data sets
to be processed. This range was chosen after performing
several tests and cross validation runs on all the processed
data sets. The remaining images are then pre-processed, to
enhance quality and reduce noise, by Fourier filtering using
a DFT combined with band-pass Butterworth filter of order
4 and range of frequencies 30-120. Different filter orders
and frequencies ranges were tested on the processed data
sets, and the best results achieved using these values. Fig.
5.a and Fig. 5.b show original endothelium image, and
corresponding pre-processed image respectively.

A watershed approach is then applied to the
preprocessed image by calculating a Euclidian distance map
and dilating each of the points, which represent the peaks or
local maxima, as far as possible, using the stopping criteria
which will be either until the edge of the image is reached,
or the edge touches a region of another growing point [32].
The watershed approach works best for smooth convex
objects that don’t overlap too much. To benefit from this
property of the watershed algorithm, a Gaussian smoothing
filter is employed as a prior step to the watershed transform.
Experiments have been performed to find a suitable filter
window size for the proposed application. Each image
processed by the watershed transform is then eroded using a
Euclidian distance map to generate an ultimate point
representing the final point that would be removed if the
available objects were eroded to completion [33]. In this
application the watershed transformation produces some
over segmentation of endothelium cell but these points are
useable as cell centers from which the contour evolution of
the approach described in following section starts.

a

Fig. 5. Pre-processing step. (a): Original endothelium image, (b): The
pre-processed image.

3.2 Snake- Particle Swarm Optimisation

S-PSO is a hybrid active contour model of snake model
(S), and particle swarm optimisation (PSO). The active
contour model has been widely used in image processing
applications such as boundary delineation, image
segmentation, stereo matching, shape recognition and object
tracking. Traditional active contour models converge slowly
and are prone to local minima due to their complex nature.
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The S-PSO scheme has been introduced to evolve contours
over time and improve the quality of results. This model
inherits particle navigation scheme from PSO and modifies
it to reflect the requirements of active contour modelling.
The combination of PSO dynamics with snake model
kinematics enables S-PSO to successtully overcome active
contour difficulties [34].

The snake model is a controlled continuous spline
governed by internal and external forces [35]. The internal
forces act as a smoothness constraint and the external forces
(also called image forces) push the snake towards prominent
image features such as lines, edges and contours. In the
parametric implementations, a snake is formed by a number
of discrete points called snaxels (snake pixels or control
points). The formal representation of a parametric snake p
as a time varying curve is as follows [34]:

p(s,t) = (x(s, t),y(s, t)), s € [0,1] §))

where t is the time, s is the arc length and the goal is to
evolve the snake to minimize the total snake energy, which
is sum of integral of internal energy and the integral of
external energy of snake; it is given by:

Esnake = Iol Eint(p(s))ds + fol Eext(p(s))ds
(2)

The integral internal snake energy, (Eq. 3), consists of two
terms which are the first and second derivatives of the snake
with respect to s. These terms, respectively, control contour
behaviors as a membrane and as a thin plate and are
regulated by tension coefficient a(s) and rigidity coefficient

B(s).
Eine = (@()Ips($)1* + () Ipss()12) /2 (3)

The external snake energy determines the direction that
the snake should evolve in the image. Features of interest in
the image correspond to lower energy and hence the snake
is encouraged to move towards them. Various external
energy features can be employed such as image intensity,
image gradient, object size or shape. One common
definition used for gray-level images is the gradient of the
Gaussian function:

Ept(p(5)) = —v(S) VG, I(x, )|* (4)

where y(s) is the coefficient for external energy, ¢ is the
standard deviation for Gaussian function and [{x,y) is the
image intensity. The snake model is usually formulated as a
minimization problem and the best contour is obtained by
solving the following Euler-Lagrange equation. P, and P,
are second and fourth order derivatives of respectively:

apss(s) - ﬁpssss(s) - VEext =0 (5)

The second part of the snake-PSO hybrid algorithm, is
the PSO component. PSO is a population based
evolutionary optimisation algorithm which consists of a
number of particles that are potential solutions to the

optimisation problem [36]. Each particle has a position and
a velocity which are initialized with random values. Using
an iterative process, each particle’s position on the search
space is updated by revising its velocity according to its best
experience and also its neighbors’ experiences.

The hybrid model helps to overcome the major
drawbacks of traditional snakes; initialization and poor
convergence to the boundary concavities, while benefitting
from PSO robustness and simplicity. The hybrid S-PSO
model consists of a population of particles where each
particle is a control point for the snake (active contour). All
particles together form the contour and hence the population
is the final solution. As the algorithm runs, each particle
updates its position and its velocity according to its personal
best experience, local best experience, and also according to
the internal force of the snake and external force of the
image. This gives the S-PSO dynamics a wider range of
informative guidance to update the particle positions so that
it converges to the desired region of interest (ROI). The
Snake-PSO hybrid explores the search space according to
PSO trajectory disciplines. The velocity update equation in
S-PSO [34] is given in Eq. 6. After the velocities are
updated, the new particle position is calculated by
combining the velocity vector with the current particle
position.

v;(t+1) = wv;(t) + clrl(pbesti(t) — xi(t))
+czr2(lbesti(t) — xi(t)) + c373 (f(t) — xi(t))
+c4(f.Image;) (6)

where vt} is the velocity of particle i at time ¢, with
coefficient @ which is called the inertia weight and controls
the impact of the previous velocity and prevents radical
changes. phest;(1) and lbest(1) are the personal best velocity
and the local best velocity terms respectively. (7 is the
average of positions at time step £, approximating the center
of mass of particles. This term pushes the snake to contract
or expand with respect to the sign of its weighting factor, r;.
This term speeds up the algorithm and is particularly useful
when the snake is static and there is no other compelling
force. f Image; is the normalized image force corresponding
to external energy from snake model principles. For particle
i, [ Image; gives the image force at the position specified by
that particle. Coefficients r;, r» and r; are random numbers
introducing stochastic behavior into the algorithm. Weights
for controlling each component of the algorithm are
represented by acceleration factors ¢, to ¢; and are
calculated dynamically in a way that if there is a higher
image force ¢, always gets a higher value than other
coefficients. It ensures that if snake is next to the object
boundary, it will latch to the object of interest. Image force
can be any arbitrary function depending on the application,
but generally external energies such as image gradient and
gradient of Gaussian functional are enough for satisfactory
performance. It must also be noted that image force does not
vary by time and it is calculated only once for an image [ 34,
37]. S-PSO can be used for both detection and delineation of
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ROTI as well as tracking the detected object. In the proposed
endothelium application it has been deployed for detecting
and extracting precise contour of the endothelium cells. This
detection has been found to lead to accurate cell density
measures and clinically important statistical information
about the cells.

3.3 S-PSO Procedure Description

The developed approach wuses two input images
generated in the preprocessing step; the first one is the set of
ultimate points and the second one from the watershed
transform. The process is fully automated and does not rely
on any user interaction or user defined parameters. Otsu’s
global threshold method based on gray-level histograms
[38] is applied on the first image to discard noise and
artifacts associated with the ultimate points. The result is an
estimation of the center of cells. Then, we run the S-PSO
algorithm for every cell center, i.e. an initial point-like
structure is started in every position obtained from first
image. These structures (snakes) are evolved in an iterative
optimisation process governed by S-PSO mechanism and
the image force. The second watershed generated image is
used to calculate the image force (f/mage) for the S-PSO
algorithm. The optimisation process stops when all snakes
converge to cell boundaries and all cell contours are
detected.

Cell contours are curves that represent the shape of each
individual endothelial cell. For every cell the center of mass,
perimeter and area of the cell are calculated. It might happen
that the first input image produces more than one cell center
for a single cell. Having individual cell profiles, the
proposed algorithm finds duplicate cells and keeps only the
unique cell structures. Since for the cells at the image edges
only part of the cell is visible in the acquired image, to
achieve higher precision, the algorithm detects these cells
and does not include them in calculating the statistical
measures, which will be discussed in section 4. The main
steps of the S-PSO algorithm for extracting endothelial cell
information can be summarised as follows:

- Processing input files, cleaning center image and
defining estimated cell centers.

- Calculating image force based on the image
obtained from watershed algorithm.

- Creating one snake for every estimated cell center.

- Initialising the internal weight parameters for the
S-PSO algorithm.

- Calculating the social and cognitive parts. In this
step, we update the phest value (the best velocity
the snaxel ever experienced) and the /hest value as
average of velocities of neighboring particles.

- Moving snaxels. For each snaxel its velocity is
evaluated and then each snaxel wvelocity and
position is updated.

- Detecting snake. This step checks the convergence
of snake contour to the cell outline, i.e. choosing
the snake with the lowest total energy calculated. If
the results are not satisfactory, the algorithm goes

back to the step calculating the social and cognitive
parts. The outcome of this step is the cell contour.

- Cell analysis. Statistical measures such as number
of cells, cell density, and average, minimum and
maximum cell area are calculated for each
processed image.

3.4 Experiment Description

A block diagram of the S-PSO based endothelium
analysis system is presented in Fig. 6. The acquired
endothelium images go through the preprocessing stage to
enhance the image quality and reduce the noise and to
generate the ultimate points, and calculate the image force,
which are used as inputs for the S-PSO algorithm.

The approach uses the following sets of parameters
chosen to suit the proposed corneal endothelium analysis.
First, the number of particles is 100. That is the number of
snaxels used to define a parametric model of cell contour.
The higher the number, the smoother the contour will be.
Values which are too high will slow the S-PSO evolution
process and might impede the convergence process. Second,
the number of iterations is set to 100; that is the maximum
number of iterative steps for evolving a snake. Third, the
gradient sigma coefficient for calculating the image force is
set to the value 3. Fourth, w, which is the inertia coefficient
for the snaxel velocity in S-PSO, is set to 0.02. Fifth, the
thresholds thx and thy are set to 6 pixels. These are
thresholds for maximum tolerance for the distance between
center of mass of two contours used in finding duplicate cell
contours. Sixth, the threshold tha is set to 25 pixels. This is
the threshold for maximum tolerance for the area of two
contours used in finding duplicate cell contours.

After fixing all the experimental internal parameters of
the S-PSO, we have curve evolution using the S-PSO. Then
unique cell shapes are obtained and the partial cells at the
image edges are discarded. Afterward, individual cell
contour profiles and statistical measures are extracted.
Further statistical analysis is carried out on the processed
images, which includes calculating the following features
from the data probability distribution: skewness; a measure
of the asymmetry of the data around the mean, kurtosis; a
measure of the peakedness of the distribution, and standard
deviation (dispersion). The images are divided into tiles of
30x30 pixels overlapping by 15 pixels [39, 40] and the three
statistical features are calculated for each tile. Finally, the
processed images are mapped and displayed.

3.4.1  Morphological Approaches

The performance of the proposed S-PSO approach has
been compared with those of two alternative approaches
based on morphological operations. These morphological
algorithms also require some parameters and assumptions.
The minimum and maximum endothelial cell areas are
initialised at the beginning to speed up the process, they are
set to be 10 um? and 10.8 mm? respectively. These limiting
values used by the algorithms are in compliance with the
physiological characteristics of the cells. The input image
resolution is 768 x 576 pixel, and the size of each pixel is
0.6um.

The first algorithm is implemented in MATLAB. It
starts by taking as input the preliminary image obtained
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from the watershed algorithm. Then Otsu’s global threshold
method [38] based on gray-level histograms is applied on
the input image to get a binary map of all the closed areas.
The next step employs a region boundary tracing function.
We adopted the Moore-Neighbor tracing implementation
modified by Jacob's stopping criteria presented in [41]. The
boundary function traces all the boundaries in the
preliminary cell segmentation image. By using an 8-
connected neighborhood definition, exterior cell contours
are constructed and verified according to the physical
endothelial cell characteristics. The extracted cells will have
an area within the predefined range (10um? and
10.8 mm?), and should not be at the edges of the image.
These edge cells are normally only partial cells and hence
excluding them from the statistical calculations increases the
accuracy of the results. The parameter margin is set to 10
pixels, and any detected cell partially covering this area will
be ignored.

The second morphological algorithm, also implemented
in MATLARB, is similar to the first one but takes the centers
of each cell as additional information. Again, the extracted
cells should have an area within the predefined range
(10 pm? and 10.8 mm?) and the parameter margin is set to
10 pixels.

3.4.2 The Data Sets

The image acquisition instrument was a ConfoScan 4
confocal microscope (Nidek Technologies, Padova, Italy).
Generally, the corneal layers, epithelium (thickness of 50
pm), stroma (thickness of 400 pm), and endothelium
(thickness 30 pm), are clearly visible using this microscope.
These data sets consist of 3 sequences of respectively 85,
127, and 144 images from epithelium layer to endothelium
taken from 3 patients by the confocal microscope. All these
images were acquired with a Z ring installed, so they are in
the correct order despite movement of the patient during
scanning. The inspected field is of size 460x345 pm at 40X
magnification. The acquired grayscale images are in JPEG
compressed format and of size 768x576 pixel [42, 43]. The
three systems have also been tested on three abnormal
images subject to Fuchs’ dystrophy, advanced Fuchs’
disease and PPCD. These grayscale images are also in JPEG
compressed format, and of size 760x560 pixel.

Image Acquisition

Preprocessing

Creating Cell
Centres Image Force

! v

Creating image force
for S-PSO

Seeds for initial snakes

Particle Evolution

v

Velocity Update

v

Particle Update

05d-S AQ uonnjoas aAn)

h 4
Obtaining unigue cells and discarding partial cells at
image edges

v

Extracting individual cell contour profile and
statistical measures

v

Mapping and displaying the processing images

Fig. 6. A block diagram of the endothelium analysis system based on S
PSO.

4. Results and Analysis

The developed approach has been tested on three data
sets containing endothelium images, these data sets are
categorised as normal and should have endothelial cell
densities in the established range, for adults, between 2400
and 3200 cells/mm? [44, 45]. The first data set has five
endothelium images, the other data sets have three
endothelium images each. Fig. 7 shows, on the right, the
superimposition of preliminary segmentation results on the
original image. A magnified view of a RO, is shown on the
left, illustrating the start of the process of extracting cell
contours, with the green dot depicting the initial snake
within one sample cell.
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Fig. 7. Superimposition of preliminary segmentation result on on the
original image with maginifed view of a ROT on the Teft.

4.1 Results from the 5-PSO Approach

The S-PSO starts from the initial seed until it converges
to the complete cell shape, Fig. 8 shows the evolution of an
initial contour. The approach has been tested on the
available 11 healthy and three diseased endothelium images.
Clinically useful information has been extracted from these
images, which could help the ophthalmologist in the clinical
diagnosis. Table 1 shows the number of the identified cells
(IC), the number of detected unique cells (UC), the cell
density (CD) in cell/mm” calculated using equation 7, the
cell density obtained manually (MCD), the percentage error
(E), which is calculated using equation 9, and the difference
of the calculated cell density (DNR) from the cell density
range of a normal adult. This is shown as zero if CD is
within the range 2400 cells/mm? to 3200 cells/mm” and
2400-CD otherwise.

uc
== ()
A=xxy (8)
_ MCD—-CD «100 (9)
McCD

Here A is the image area and x and y are the image
dimensions. The processed endothelium images have a CD
within the normal expected range except one image from
the first subject. The processed images are from normal
three subjects which their CD is expected to be within the
normal range. The average difference (error) between
manual and automatic S-PSO densities is 5.3%, ranging
from a minimum of about 1% to a maximum of about 12%.
All the processed endothelium images have a CD within the
expected normal range except for one image from the first
subject. The manual and automatic results for this
exceptional case agree within about 3%, which is similar to
other cases.

The minimum, maximum and average cell areas have also
been calculated after detecting the cells using the S-PSO.
The results of these values are shown in Table 2.

Fig. 8. The evolution of an initial contour during the 5-PSO process until
it converges to the cell shape from top lefi to bottom right.

Table 1: Values of IC, UC, CD, MCD, E and DNR, as
defined in the text, for endothelium images based on
the S-PSO approach.

Image IC ucC CD MCD E DNR

Subl 1| 351 338 2122 2191 3.14 278
Subl 2 | 393 384 2411 2490 3.17 0
Subl 3 | 421 411 2581 2689 4.01 0
Subl 4 | 418 408 2562 2589 1.04 0
Subl 5 | 434 420 2637 2788 541 0
Sub2 1 | 432 416 2612 2888  9.55 0
Sub2 2 | 437 425 2669 2788 4.26 0
Sub2 3 | 396 389 2443 2589 5.63 0
Sub3 1 | 452 443 2782 2589 7.45 0
Sub3 2 | 456 445 2794 2490 12.20 0
Sub3 3 | 418 404 2537 2490 1.88 0

There might be some cells which due to poor
illumination in the image are counted more than once. To
overcome this problem and correct most of the false cell
detections, we cross-reference the detected cell contours
with the estimated cell centers. Fig. 9.a shows portions of
cells shown with arrow which are incorrectly counted as
cells. Fig. 9.b shows the cell center estimations obtained
after cell cross-references with cell center data shown with
vellow dots. Incorrectly detected cells without cell centers
are not counted. This eliminates multiple-counting of the
cells and improves the accuracy of the statistical measures.
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Fig. 9. (a) All cell contours detected. Portions of cells shown with arrow
are incorrectly counted as whole cells. (b) Cells cross-references with cell
center data shown with yellow dots. Incorrectly detected cells without cell
centers (arrowed) are not counted.

Table 2: Cell area based on the S-PSO approach.

Image Cell area (um?)

min max Average
Subl 1 112.59 2555.07 524.87
Subl 2 117.47 1182.72 432.38
Subl 3 121.99 2180.32 413.77
Subl 4 84.63 2011.31 414.23
Subl 5 108.24 1824.70 422.41
Sub2 1 91.04 1536.18 412.78
Sub2 2 129.50 1790.02 390.33
Sub2 3 120.36 2540.15 463.41
Sub3 | 119.94 1817.61 380.16
Sub3 2 107.63 1408.57 360.21
Sub3 3 96.41 241951 416.49

4.2 Results from the Morphological Approaches

The morphological approaches were also tested on all
the endothelium images, and their performances compared
with the S-PSO approach. The IC, UC, CD, MCD, E and
DNR wvalues obtained using the first morphological
approach (MO1) are reported in Table 3. The cell densities
of five images out of eleven were outside the normal range
compared with one with the manual measurements and one
with the S-PSO analysis. The average difference (E)
between the first morphological and the manual approaches
i1s 7.0%. Results from the second morphological approach
(MO?2) tested on all the endothelium images are reported in
Table 4. The cell densities of six images out of eleven are
outside of the normal range compared with one with manual
measurement and one with S-PSO analysis. The average
difference (error) between manual and automatic densities
calculated using MO! and MO2 are 7% and 13%
respectively compared with 5.3% using S-PSO.

The minimum, maximum and average cell areas were
calculated after detecting the cells using the MO1 and MO2
approaches, and compared with the ones obtained from the
S-PSO approach. Fig. 10 shows a comparison of the average
cell areas from the three approaches. The normal range of
the average endothelial cell area is 285 um? to 545 um?
[46]. The results obtained from the S-PSO approach are all
within the normal range, but the MO1 and MO2 approaches
gave four images and two images, respectively outside the
normal range. The minimum and maximum cell areas
calculated through the three approaches are presented in
figures 10 and 11 respectively, for all the processed
endothelium (EN) images.

The three approaches have been tested on three
abnormal endothelium images displaying symptoms of
Fuchs® disease (FD), advanced Fuchs’ disease (AFD) and
PPCD. The IC, UC, CD, and DNR values obtained for these
images using the three approaches are shown in Table 5 and
as expected the cell densities are far from the normal range,
and lower cell densities are obtained with the AFD
compared with the FD disease. As Fuchs’ disease is a
degenerative disease causing the corneal endothelial cells to
gradually die, leading to corneal oedema and loss of clarity
of the cornea, it also leads to changes in the endothelial cell
shapes and structures. For the PPCD high error value of
25% is obtained from the four large spots present in the field
of view, because in the case of the S-PSO these outer spots
boundaries are correctly identified but one spot is split into
two because it contains a lighter band and this is the major
cause of the error. The larger values of E yielded by the
morphological approaches are due to more varied sources of
error, compared with S-PSQO, in the detection of these spots.

Table 3: Values of IC, UC, CD, MCD, E and DNR, as
defined in the text, for endothelium images based on
the MO 1 approach.

Image IC uc CD MCD E DNR

Subl 1 | 375 283 1902 2191 13.19 498
Subl 2 | 419 336 2258 2490 9.31 142
Subl 3 | 455 373 2507 2689  6.76 0
Subl 4 | 488 394 2648 2589 227 0
Subl 5 | 491 394 2648 2788  5.02 0
Sub2 1 | 509 401 2695 2888  6.68 0
Sub2 2 | 486 404 2776 2788  0.43 0
Sub2 3 | 458 361 2499 2589 347 0
Sub3 1 | 429 343 2305 2589 10.96 95
Sub3 2 | 421 347 2332 2490  6.34 68
Sub3 3 | 394 325 2184 2490 1228 216
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Fig. 10. Average Cell Arcas obtained using snake S-PSO  and
morphological MO and MO2 approaches.
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Table 4: Values of IC, UC, CD, MCD, E and DNR, as
defined in the text, for endothelium images based on
the MO?2 approach.

Image IC ucC CD MCD E DNR

Subl 1| 375 275 1848 2191 15.65 552
Subl 2 | 419 332 2231 2490 1040 169
Subl 3 | 455 362 2433 2689 952 0

Subl 4 | 488 359 2413 2589 6.79
Subl 5| 491 379 2547 2788  8.64
Sub2 1| 509 366 2460 2888 14.18
Sub2 2 | 486 379 2604 2788  6.59
Sub2 3 | 458 339 2346 2589 938 54
Sub3 1| 429 315 2117 2589 18.23 283
Sub3 2 | 421 288 1936 2490 2224 464
Sub3 3| 394 293 1969 2490 20.93 431
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Table 5: Values of IC, UC, CD, MCD, E and DNR, as
defined in the text, for the abnormal endothelium
images with FD, AFD and PPCD diseases.

App/Dis  IC  UC CD MCD E DNR

S-PSO/FD | 257 247 1612 1494 7 788
S-PSO/AFD | 253 241 1573 1394 12 827
SPSO/PPCD | 5 5 240 192 25 2160
MO1/FD | 282 208 1457 1494 2 943
MO1/AFD | 264 193 1358 1394 2 1042
MO1/PPCD | 10 7 539 192 180 1861
MO2/FD | 282 202 1415 1494 5 985
MO2/AFD | 264 176 1238 1393 11 1162
MO2/PPCD | 10 4 409 192 113 1991

4.3 Statistical Analysis

The S-PSO approach performed consistently better than
the two morphological based approaches in terms of
agreeing with the corresponding manual results for the
eleven healthy endothelium images. For the two of the
abnormal images, Table 5 shows the first morphological
approach gives the smallest difference from the manual
results while the S-PSO and second morphological approach
have poorer agreement, but for the third abnormal image the
S-PSO result is clearly the best. To further highlight
differences between the healthy and abnormal endothelium
images further analysis was carried out on the processed
images by calculating skewness, kurtosis, and dispersion.
The normal images generated 1850 data points and the
abnormal images generated 1764 points, after dividing the
image into tiles of 30x30 pixels. The three statistical
features were calculated for all the tiles and each individual
tile represented as a point in the multi-dimensional space of
distribution moments. The average value of the kurtosis for
the data without disease was 2.8, which is close to the value
3 which corresponds to a normal distribution, while, the
average value of the kurtosis for the abnormal data was 3.9.
Fig. 13 and Fig. 14 display the values of kurtosis, skewness
and dispersion for each point of the healthy and AFD
diseased data respectively and these features give an
additional indication of the status of the processed images as
well as the normal distribution of the cells in these images.
The skewness for the healthy data set is distributed on the
positive side of the drawing skewness axis, while part of the
diseased data is on the negative side of this axis as in Fig. 13
and Fig. 14 respectively. The points in Fig. 14 have a larger
dispersion than those in Fig. 13, with a lot of negative
skewness values. The biggest kurtosis values for the healthy
and diseased data are 7.0 and 44.7, respectively and the
difference in these values reflects the big change in the
nature of the data from the normal to the abnormal caused
by the disease.

Kiurasis

Shwness

Fig. 13. A representation of skewness, kurtosis and dispersion for healthy
data points.
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Fig. 14. A representation of skewness, kurtosis and dispersion for discased
data points (AFD).

The proposed S-PSO approach has outperformed the
other two approaches in terms of detecting the healthy
endothelium cells, CD, cell average area, minimum cell
area, and maximum cell area. The CD for one image out of
all the processed endothelium images was below the normal
range with an error of 11.5% for this image, the same for
manual measurement. This percentage error is calculated as
follows:

error% — CD—normal value «100 (9)

normal value

The equivalent errors calculating using the MO1 and MO2
were higher at 21% and 23% respectively.

4.4 Endothelium Image Visualisation

Following discussions with a clinical expert, the cell
density status of endothelium images is highlighted by the
system using colour as illustrated in Fig. 15.

- Blue for cell densities lower than the normal range,
below 2400 cells/mm?

- Yellow for cell densities near the beginning of the
normal range, between 2400 and 2600 cells/mm?.

- Green for cell densities near the middle of the
normal range, between 2600 and 3000 cells/mm?.

- Orange for cell densities near the end of the normal
range, between 3000 and 3200 cells/mm?.

- Red for cell densities higher than the normal range,
above 3200 cells/mm?.

3

Fig. 15. Endothelium cell density visualisation: (a) normal cell density, (b)
low edge of the normal range, (¢) low cell density.

5. Conclusions

This research work concerns use of confocal
microscopy, which acquires a large number of corneal
images from a single patient and provides detailed images of
the different layers inside the cornea. This work described
here will be part of a larger system to process and analysis
images of all the main layers of the cornea. It excludes
redundant images from the processed corneal sequence,
enhances the quality of the remaining images, and reduces
the noise significantly before subsequent analysis. The main
objective of the research presented here is developing a
robust system to accurately analyse images of endothelial
cells and extract the clinically useful information to help an
ophthalmologist diagnose the cornea more rapidly. Having
individual cell profiles makes it possible to calculate various
features and obtain precise data about cells and improve
accuracy of statistical measures.

This research proposed an S-PSO approach and
evaluates its performance against manual measurements and
two morphological based approaches. The S-PSO approach
uses a novel hybrid algorithm based on a snake model and
particle swarm optimisation to extract cell contours.
Reliable results have been obtained through this approach.
Detailed results from the proposed approaches have been
presented and discussed earlier. The system is also able to
calculate the number of endothelial cells, average, minimum
and maximum cell area. For the eleven healthy endothelium
images from three subjects, the average differences in cell
densities between the S-PSO and Morphological 1 and 2
approaches compared with manual measurements were
5.3%, 7.0% and 13% respectively.

The system was also tested and on three abnormal
endothelium images displaying symptoms of Fuch's
disease, advanced Fuch’s disease and posterior
polymorphous corneal dystrophy. Differences between the
healthy and abnormal images were clearly visible in
statistical plots of skewness and kurtosis against standard
deviation for all the extracted tiles from the processed
images. In the case of PPSD, the number of spots detected is
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found to be completely different from the healthy range.
The system developed can be used as a helpful platform to
accurately recognise endothelium cells and extract the
clinically useful information for normal and disease
associated images. The processed outputs of the developed
system are highlighted in colour to draw the
ophthalmologist attention if any abnormal cell density is
detected.

The next stage in this research is to build a complete
system capable of analysing the three main layers
(epithelium, stroma and endothelium), extracting and
analysing the disease features associated with each of these
layers which would be clinically useful, supporting the work
of ophthalmologists and saving the clinician time, hence
improving patient care in a busy clinical setting.
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Ref Approach Special Features Limitations Microscope

14 | Provides a method to | The method works The method doesn'ttake | Inverse
derive endothelium without identifying the into account that cell phase
cell density. cell contours as most shape is not always contrast

other technigues do. regular. microscope.

15 | Presents a software It allows both cell density | It uses a fixed-size mask. | Specular
tool that uses an determination and Moreover, the final microscope
analogue cellular endothelial cell area images need more
neural network measurement. processing and analysis.

(CNN) algorithm for
real-time automated
image morphometry
of the human corneal
endothelium

16 | Proposes endothelial | The system is claimed to | It has sensitive Inverse
cell density analysis be robust. performance to out of phase
based on Fourier focus images. Only good | contrast
transformation of the quality images were microscope.
images. used. Endothelial cells

size was not determined.

17 | Develops a system The developed system It does not take in Optical
for extracting an shows good account the cell microscopy.
estimate for the performance for cell morphology.
endothelial cells density calculations.
density from the
spatial frequency
information in the
image.

18 | Develops an The developed algorithm | This system is completely | Optical
algorithm that is able to count cells and | dependent on the expert | microscopy
includes a first determine cell density. correction
segmentation
module based on a
neural network
structure, and a
second “expert
correction” module
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based on a multi-
step approach, which
includes missing
contour recovery.

19 | Proposes a method It uses a morphological The established cell Specular
for segmenting dome extractor. network is homogenously | microscope
corneal endothelial constituted as a uniform
tissue in grey-scale cellular tissue that has
images. sufficient edge contrast.

20 | Develops a tool for The proposed method The system produces Optical
measuring tries to mimic the human | significant overestimation | microscopy
endothelial cell vision perception by and high standard
density, performing detecting the borders of | deviation, and doesn’t
morphometry on the cells. work correctly in cases of
multiple zones of poor acquisition such as
three images of the bad conditions of lighting.
endothelial mosaic.

21 Proposes a method The proposed method It is frequently difficult for | Phase-
for endothelial cell can assign different the proposed method to contrast
segmentation, which | processing tailored to the | construct high accuracy microscope
can be applied to statistics of the input tree-structural filter.
images that have images.
different statistics in
different regions. The
method prepares two
types of nodes that
were optimised using
genetic programming
(GP).

22 | Proposes a new | The proposed systemis | There is often a need to Specular
method for detection | able to integrate a require operator microscope

and analysis of cell
fields in images of
corneal endothelium.

statistical description of
shape features of
corneal endothelial cell
field.

interaction to correct
errors, and the proposed
systems has not been
able to obtain a reliable
estimation of quantitative
indexes without tedious
and time-consuming
manual editing.




