
Using an Architecture Description Language to Model a Large-Scale Information
System – An Industrial Experience Report

Eoin Woods
Artechra

Hemel Hempstead, Hertfordshire, UK
eoin.woods@artechra.com

Rabih Bashroush
University of East London

London, UK
rabih@uel.ac.uk

Abstract — An organisation that had developed a large
Information System wanted to embark on a programme of
significant evolution for the system. As a precursor to this, it
was decided to create a comprehensive architectural
description. This undertaking faced a number of challenges,
including a low general awareness of software modelling and
software architecture practices. The approach taken for this
project included the definition of a simple, specific,
architecture description language. This paper describes the
experiences of the project and the ADL created as part of it.

Keywords-Architecture Description Language; ADL;
Software Architecture Discovery; Software Architecture for
Legacy Systems; Industrial Experience Report.

I. INTRODUCTION
There has been a great deal of academic and some

industrial research into the definition of Architecture
Description Languages (ADLs) to assist with the task of
defining the architecture of software intensive systems and a
significant amount of research is still underway today [1, 2].
However, for reasons that have been noted elsewhere [3, 4],
there has been little significant industrial use of ADLs,
particularly in the Information Systems domain.

Recently, one of the authors of this paper had the
opportunity to lead the creation of a large architectural
description (AD) for a complicated Information System.
This paper describes the experience of that project, which
was used as an opportunity to explore the use of a simple,
domain specific, ADL in an industrial context.

This paper provides an overview of related work on
ADLs in both industry and academia in Section 2. Section 3
provides background information about the work and the
context of the project. The approach used is described in
section 4. The ADL design, along with the system
architectural style is presented in section 5. The experience
and lessons learned from the project are discussed in sections
6 and 7 respectively. Finally, section 8 completes the paper
with the summary and conclusions.

II. RELATED WORK
Over the past two decades, an increasing number of

ADLs have been developed, largely within academia [5, 6].
Although some ADLs have been put to industrial use in
specific domains [7], the majority of ADLs remain confined
to laboratory-based case studies.

While ADLs originated in academia such as ACME[8],
Wright[9], Rapide[10], SADL[11], xADL[12], pi-ADL[2],

ArchiMate[13] and ByADL[1], to name a few, all exhibit
novel approaches to architecture description, but most are
vertically optimized, restricting their application in industrial
settings. In general, academic ADLs focus more on
analytical evaluation and rigour while in this project the
focus was more on practicality and obtaining a system-wide
view of the application. (ArchiMate is the exception, being
an enterprise-architecture ADL, whereas the focus of this
project was system architecture description.)

Most industrial applications of ADLs have been in the
area of embedded systems, from consumer electronics (e.g.
Koala[7]) to automotive systems (e.g. AADL[14]),
supporting automated system analysis and automated code
generation, which were not primary concerns in this project.

III. OVERVIEW OF THE PROJECT
This project was undertaken in a financial services firm

that had developed a large custom application suite to run its
business. The software has been developed over a period of
about 15 years and has grown from modest beginnings to a
large system comprising about 20 major subsystems and
over 10 million lines of Java, C++, C# and Perl, sharing a
large multi-terabyte relational database. Today it has grown
to a size that means no individual understands it all, even at a
reasonably high level of abstraction.

At the start of the project, there was no overall unified
system description, but the organization wanted to perform
some wide ranging evolution and modernization of the
system, so it was decided to undertake the creation of a
unified description of the system’s architecture. Two
experienced architects were assigned this task.

One immediate complication was that it wasn’t clear
what the AD would be used for once created, so in order to
make progress, some assumptions were made and these
were:

• The point of the exercise was to (a) understand what
was there today (catalogue); (b) allow change to be
planned (allow impact analysis); and (c) provide a
reference for people to build knowledge
(communicate); and

• The audience for the documentation was architects
& designers, so precision and completeness were
important attributes.

Using these assumptions, the architects tasked with the
project defined an approach that allowed them to capture a
suitable AD for the system.

IV. THE APPROACH USED
When the project was discussed with the software

development teams it quickly became clear that while there
was general enthusiasm for the idea, there was very little
appetite for actually performing the work. This led to the use
of a simple, low-ceremony, tailored and prescriptive
approach to minimise the effort required from the teams and
to avoid creating inconsistent artefacts.

Using a tailored (profiled) version of UML was seriously
considered, however the organisation did not have sufficient
UML tooling available and even a tailored UML tool tends
to need some background knowledge of UML that was
lacking in most of the teams. Existing ADLs (see section 2
above) were also briefly considered, but none of these
appeared to offer any great benefit over UML and, like
UML, all would have needed significant tailoring, training
and tool support. Therefore, we decided to develop a simple
graphical and textual language to model the system.

The discussions with the teams revealed a varied
understanding of modelling and abstraction, which led to the
realisation that the best approach was going to be creating
models that captured the physical structure of the software
(processes and inter-process communication channels) rather
than more abstract concepts such as software components
and responsibilities. Otherwise, the project was going to
collapse under the weight of debatable abstractions that
could not be validated against the existing implementation.

Given the environment, it was decided to use a wiki to
capture the data underpinning a graphical representation (the
system element descriptions, connection definitions and so
on). The wiki captured this information in an accessible way,
but allowed very restricted formats to be prescribed that
would be amenable to basic machine parsing later if needed.

The wiki approach of creating hyperlinked pages also
allowed the AD to be decomposed into a set of manageable
pieces, linked together to provide cross referencing and
navigation through the documentation.

V. THE STYLE AND ITS DESCRIPTION LANGUAGE

A. The Architectural Style
An analysis of the system implementation revealed that it

followed a discernable architectural style (although there was
no explicit awareness of the concept an architectural style
within the organisation).

A few basic definitions were used to provide people with
a common starting point for understanding key abstractions:

• Subsystem - a subset of the system that has a well-
defined, cohesive, set of responsibilities, a well-
defined boundary and set of interfaces to its services.

• Component - a tangible software artefact which is
delivered to the production environment and which
is "executed" in some way at runtime. (In line with
other software architecture literature, components
are referred to as “elements” elsewhere in the paper).

• Connector - the mechanism by which two or more
components collaborate. Examples are a message
destination, a file system file, or a database table.

The specific types of system element used within the
system are summarised in Table I.

TABLE I. TYPES OF ARCHITECTURAL ELEMENTS

User Interfaces
- GUI A traditional GUI client written in Java

Swing, C# WebForms or C++ Motif.
- WebUI A user interface implemented as a set of web

pages (e.g. CGI scripts or a Java webapp)
- Command Line A user interface implemented as a command

line program, such as a Python script.
Servers
- Message Driven Server A server whose operation is driven by the

recipt of messages from the message bus
- Server A server whose operation is driven by a

mechanism other than messages (such as
RPCs or temporal schedules)

- Batch Program A program that is run from a scheduler and
runs in a single execution, without input
from system element or humans.

- Data Loader A program that extracst data from a source
and moves it to a destination, typically
transforming it during the transmission.

Data Stores
- System database The system database or a set of tables from it
- File A file on the file system
External Entities
- Subsystem Another subsystem that communicates with

this one in some way
- External System A system outside our system that a

subsystem communicates with in some way
- External Data Source A Data Source outside our system that a

subsystem receives data from (such as a
source of security prices)

The fairly restricted set of inter-element connectors in

general use throughout the system is described in Table II.

TABLE II. TYPES OF ARCHITECTURAL CONNECTORS

RPC A synchronous inter-process procedure call
(usually XML over HTTP)

Direct Invocation An in-proess direct procedure invocation
Database Data Flow Writing data to a database table or tables to

allow it to be used by another element
File Data Flow Writing data to a filesystem file to allow it to

be used by another element
System Messaging Dispatch and receipt of messages over the

system bus via a messaging destination

In order to allow for the inevitable special cases that are

found in a system of this scale, an “other” type was allowed
for elements and connectors, which could be annotated using
a UML style stereotype to make its type clear.

Most architectural styles limit the element and connector
combinations that they allow. In this style, there weren’t
really any such constraints defined formally, although there
were combinations that were encouraged and discouraged
(e.g. UI Clients should connect to Message Driven Servers,
but not access the database). However, most combinations
of element and connector types could be found somewhere in
the system! A number of the desirable patterns were captured
as examples in the notation documentation.

A couple of examples of the patterns identified are shown
in Figure 1. The notation used to express the examples is
hopefully fairly obvious but is explained in the next section.

B. The Architecture Description Language
Once the required element and connector types were

understood, a notation was required to represent them. Given
people’s preference for diagrams over text, a graphical
notation was created rather than a textual one. When defining
the graphical detail of the notation, the advice in [15] was
particularly useful, in particular the exhortation to avoid
construct overload, deficit, redundancy or excess, the
suggestion to systematically consider the various visual
variables of each shape (shape, size, colour, orientation,
brightness and texture) and the need for deliberate selection
of shapes so that their appearance suggested their meaning,
in order to achieve semantic transparency.

The graphical notation was designed by selecting a base
shape for each major type of element (server, user interface,
data store, external entity) and a variation on the shape using
the dimensions of shape, line and texture was identified for
each subtype. Examples of the notation for some of the
element types are shown in Figure 2.

As can be seen from the diagram, a triangle was used as
the base shape for user interfaces and a rectangle for server
resident components. The triangle was chosen as it hinted at
the head and shoulders shape of a user and the triangles were
then modified slightly for each type of user interface (the
thick client having sharp corners, the web user interface
having rounded corners as it blurs the distinction between
“client” and “server” and the command line utility having a
graphical representation of a command line interface added
to it). Similarly, a rectangle is the base shape for server
elements (based on long accepted conventions) with a
stereotype being used to indicate the type of server and a

“lozenge” variant being used to indicate a data loader
(hinting at pieces of data being transmitted through it).

An arrow of some form was used to represent all
connector types, with the arrowhead usually indicating the
direction of data flow. All connectors were defined to be one
way connections, with the exception of connectors to files,
which could indicate read and write activity with arrow
heads at both ends of the connector if appropriate. The
convention for RPC connectors was defined to be a one-way
arrow from the caller to the target, textually annotated to
indicate what it transmitted (message data type, table or
record names or service invocation name). Examples of the
notation for the main connector types are shown in Figure 3.

The RPC or direct procedure call is shown using a solid
arrow and messaging is shown using a line with embedded
dots, suggesting messages flowing over it, while data access
is shown using a regular chain line, suggesting records being
read or written over the connector.

A general mechanism used on elements and connectors
was the stereotype, copied from UML, where the type of an
architectural element is made clear by annotating it with a
type name using the convention “«typename»” on the
symbol concerned.

In order to ensure that the process produced more than
just pictures, a set of required attributes for each type of
element and connector was defined and wiki table templates
created to allow them to be captured in a standard form.

In order to simplify and standardise the subsystem
descriptions, a set of wiki page templates and a
comprehensive Microsoft Visio stencil were created, along
with clear instructions, quick reference material and – most
crucially – a fully worked example of the documentation for
one subsystem.

Figure 1. Examples of the ADL Notation in Use

<<GUI>>

Order Manager

<<Message Based Server>>

Order Management
Server

ORDERUIREQ(OrderUiCmd)

<<BatchPgm>>

BBG Price Loader

<<database>>

pricedb

price,rate,pricehist,ratehist,
fileload

<<filesystem>>

BBG Daily Price Files

(a) Thick client UI and message driven server

(b) File Loader, reads files, writes to database

Figure 2. ADL Element Types

Figure 3. ADL Connector Types

VI. THE EXPERIENCE GAINED

A. Creating the Architecture Description
The development teams were tasked with the creation of

architecture description documents for their subsystems. The
success of this approach varied, with some teams producing
their documentation largely unaided, while others needed
significant assistance from the architects running the project.

There were varied reasons for the difficulties that some
development teams faced. In some cases it was simply a
lack of interest, while in other cases there seemed to be a
genuine difficulty in understanding how to represent their
subsystem. In general, this seemed to stem from an inability
to abstract from the implementation, resulting in a confusing
mix of concrete and abstract concepts in their models.

Another interesting problem was tooling. Everyone in
the organisation could use the wiki, but many did not have
Microsoft Visio and of those that did, some couldn’t use it.
This was a useful lesson and confirmed that avoiding
specialised modelling tools had been a good decision.

Over the period of a couple of months, a useful body of
subsystem descriptions emerged, which allowed the
architects to create a summary level description that showed
how the subsystems related to each other. This was a
manual process, aided by some drawing tool macros and
some use of scripting to process wiki text.

 The process of capturing the AD took about six months,
with the architects working on it approximately 60% of their
time and the development teams working on it as their
project schedules allowed.

B. The Results of the Project
The outputs of the project were:
• A consistent AD that provided an accurate view of

subsystems, components and their dependencies.
• An informal definition of the architectural style used

across most of the system.
• A degree of oversight and understanding of the

structure, scale and connectedness of the system.
As mentioned earlier, there weren’t clear goals for the

AD but it was found to be insightful and there seemed to be a
general consensus that it was a useful description. However
organisational priorities meant that the architects then moved
on to other work, so the project effectively ended.

C. Evaluating the Usefulness of the ADL
By the time that the descriptions for key subsystems were

complete, the notation and approach were judged to be fairly
successful (an outcome which was not widely predicted at
the start of the project). Early experience led to some rapid
refinement of the notation to remove ambiguities and to
introduce some missing concepts, but after three or four
teams had used the approach the ADL remained stable.

During the project it became clear that teams who could
identify clear abstractions found the ADL helpful and they
had little difficulty in representing their models using it. In
contrast, teams who struggled to identify good abstractions
never really grasped how to use the ADL and needed
constant assistance from the architects running the project.

<<GUI>>

Order Manager

<<WebUI>>

Settlements Viewer

<<CmdUI>>

Parameter
Utils

<<Message Driven Server>>

Trade Processing
Server

<<Server>>

Confirmation Event
Generator

<<Loader>>

Daily Price Loader

Thick Client
GUI

Web UI

Command Line
UI

Message
Driven Server

Non Message
Driven Server

Data Loader

<<flow transport>>

RPC / Direct Call Data Access or
Update

Application
Standard Messaging Other Messaging

We viewed this experience as a basic validation of the
approach. People who could create models and knew what
they wanted to represent were able to use the ADL
effectively, with minimal training, which is an important
validation point for an ADL. However, the approach did not
help people who found modelling difficult. We had hoped
that the straightforward and prescriptive approach would
help people to create models even if they did not find
modelling easy, so it was disappointing that it failed to
achieve this.

VII. LESSONS LEARNED FROM THE PROJECT
The lessons learned during the course of the project were:
• A specialised ADL can have benefits over a general

modelling language like UML and even a simple
ADL can be used to create useful results.

• The more directly that an ADL matches the concepts
of the system being modelled, the easier people seem
to find it to use. While this may seem obvious, it
contradicts the conventional approach of using a
general modelling language like UML or SysML.

• Designing the detail of the graphical notation
carefully pays off. Using shapes that hint at their
meaning and a range of graphical dimensions to
differentiate shapes helps people to remember them.

• Consistency in the notation is very important and
having a base shape for a general concept with
refinements to it for different sub-concepts appears
to help people when interpreting the diagrams.

• It is important to provide high quality support
materials such as templates, an example-based
description of the approach, and a number of
realistic examples. People are better at “filling in the
gaps” rather than creating something new.

• Utilising familiar tools helps with acceptance. In
this case a Wiki was immediately accepted whereas
a ubiquitous commercial drawing tool caused
problems, even with a carefully tailored template.

These lessons may not be surprising, but the importance
of quite simple factors was surprising to us and is useful to
bear in mind for the future. It is also worth noting that these
lessons may well have general applicability, but only in the
broad sense. People like to be guided and prefer familiar
tools and techniques, but the tools or techniques that work
will be specific to an environment and people in different
environments will have different levels of enthusiasm for
learning new approaches. However, in general, familiarity
and accessibility help greatly with acceptance.

VIII. SUMMARY AND CONCLUSIONS
An organisation in the financial services industry wanted

to create an AD for a large system. A simple, custom ADL
was defined in order to make the process of capturing the
AD as simple and prescriptive as possible, which proved to
be a helpful tool for capturing this specific architecture.

However the ADL did not help those who found
modelling difficult. People who found abstraction difficult

found it just as difficult to use a specific notation as a
general-purpose notation, which was surprising.

The key factors that appear to have made the approach
successful where its specific tailoring to the situation, its
simplicity (which traded sophistication for accessibility), a
carefully designed, consistent graphical notation, the
availability of a large amount of tutorial and reference
material, and the use of already familiar tools.

REFERENCES

[1] D. Di Ruscio, I. Malavolta, H. Muccini, P. Pelliccione, and A.

Pierantonio, "ByADL: an MDE framework for building
extensible architecture description languages," in Proceedings of
the 4th European Conference on Software Architecture,
Copenhagen, Denmark, 2010, pp. 527-531.

[2] F. Oquendo, "Pi-ADL: an Architecture Description Language
based on the higher-order typed pi-calculus for specifying
dynamic and mobile software architectures," ed. SIGSOFT
Softw. Eng. Notes, 2004, pp. 1--14.

[3] E. Woods and R. Hilliard, "Architecture Description Languages
in Practice Session Report," in Software Architecture, 2005.
WICSA 2005. 5th Working IEEE/IFIP Conference on, Pittsburgh,
Pennsylvania, USA, 2005, pp. 297-304.

[4] R. Bashroush, I. Spence, P. Kilpatrick, and T. Brown, "Towards
More Flexible Architecture Description Languages for Industrial
Applications," presented at the EWSA 2006, Nantes, France,
2006.

[5] N. Medvidovic and R. N. Taylor, "A classification and
comparison framework for software architecture description
languages," IEEE Transactions on Software Engineering, vol.
26, pp. 70-93, 2000.

[6] P. C. Clements, "A Survey of Architecture Description
Languages," in Proceedings of the 8th International Workshop
on Software Specification and Design, 1996, p. 16.

[7] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee,
"The Koala component model for consumer electronics
software," IEEE Computer, vol. 33, pp. 78-85, 2000.

[8] D. Garlan, R. T. Monroe, and D. Wile, "Acme: architectural
description of component-based systems," in Foundations of
component-based systems, T. L. Gary and S. Murali, Eds., ed:
Cambridge University Press, 2000, pp. 47-67.

[9] R. Allen and D. Garlan, "The Wright Architectural Specification
Language," Carnegie Mellon University, Software Engineering
Institute, Pittsburgh, PA1996.

[10] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan,
and W. Mann, "Specification and analysis of system architecture
using Rapide," IEEE Transactions on Software Engineering, vol.
21, pp. 336-354, 1995.

[11] M. Moriconi and R. A. Riemenschneider, "Introduction to SADL
1.0: A Language for Specifying Software Architecture
Hierarchies," SRI International,1997.

[12] R. Khare, M. Guntersdorfer, P. Oreizy, N. Medvidovic, and R.
N. Taylor, "xADL: enabling architecture-centric tool integration
with XML," in Proceedings of the 34th Annual Hawaii
International Conference on System Sciences, 2001, p. 9 pp.

[13] M. M. Lankhorst, H. A. Proper, and H. Jonkers, "The
Architecture of the ArchiMate Language," in Proceedings of the
10th International Workshop on Enterprise, Business-Process
and Information Systems Modeling (BPMDS 2009) held at
CAiSE, Amsterdam, Netherlands, 2009, pp. 367-380.

[14] "Standard AS5506/1: SAE Architecture Analysis and Design
Language (AADL)," ed: SAE International, 2006.

[15] D. Moody, "The "Physics" of Notations: Toward a Scientific
Basis for Constructing Visual Notations in Software
Engineering," IEEE Transactions on Software Engineering, vol.
35, pp. 756-779, 2009.

