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Abstract 

The main goal of this research programme was to explore the neurophysiological 

correlates of human motor control in real-world scenarios and define mechanism-specific 

markers that could eventually be employed as targets of novel neurorehabilitation 

practice. As a result of recent developments in mobile technologies it is now possible to 

observe subjects’ behaviour and monitor neurophysiological activity whilst they perform 

natural activities freely. Investigations in real-world scenarios would shed new light on 

mechanisms of human motor control previously not observed in laboratory settings and 

how they could be exploited to improve rehabilitative interventions for the neurologically 

impaired. This research programme was focussed on identifying cortical mechanisms 

involved in both upper- (i.e. reaching) and lower-limb (i.e. locomotion) motor control. 

Complementary results were obtained by the simultaneous recordings of kinematic, 

electromyographic and electrocorticographic signals. To study motor control of the 

upper-limb, a lab-based setup was developed, and the reaching movement of healthy 

young individuals was observed in both stable and unstable (i.e. external perturbation) 

situations. Robot-mediated force-field adaptation has the potential to be employed in 

rehabilitation practice to promote new skills learning and motor recovery. The muscular 

(i.e. intermuscular couplings) and neural (i.e. spontaneous oscillations and cortico-

muscular couplings) indicators of the undergoing adaptation process were all symbolic of 

adaptive strategies employed during early stages of adaptation. The medial frontal, 

premotor and supplementary motor regions appeared to be the principal cortical regions 

promoting adaptive control and force modulation. To study locomotion control, a mobile 

setup was developed and daily life human activities (i.e. walking while conversing, 

walking while texting with a smartphone) were investigated outside the lab. Walking in 

hazardous environments or when simultaneously performing a secondary task has been 

demonstrated to be challenging for the neurologically impaired. Healthy young adults 

showed a reduced motor performance when walking in multitasking conditions, during 

which whole-brain and task-specific neural correlates were observed. Interestingly, the 

activity of the left posterior parietal cortex was predictive of the level of gait stability 

across individuals, suggesting a crucial role of this area in gait control and determination 

of subject specific motor capabilities. In summary, this research programme provided 

evidence on different cortical mechanisms operative during two specific scenarios for 

“real-world” motor behaviour in and outside the laboratory-setting in healthy subjects. 

The results suggested that identification of neuro-muscular indicators of specific motor 

control mechanisms could be exploited in future “real-world” rehabilitative practice.  
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1 Introduction 

1.1 Overview 

The human brain is known to play a central role in motor control of the upper limb 

because invasive (Truccolo et al., 2008) as well as non-invasive (Fabbri et al., 2010; 

Toxopeus et al., 2011) neurophysiological investigations have demonstrated the direct 

encoding of final motor commands within the primary motor cortex and the programming 

of the movement within the posterior parietal regions. Non-invasive EEG studies reported 

the neural correlates of the reaching movement whereby the so called “dorso-visual 

stream” is recruited including occipital-parietal and frontal-premotor and motor areas 

contralateral to the moving limb (McDowell et al., 2002; Naranjo et al., 2007; Demandt 

et al., 2012; Dipietro et al., 2014; Storti et al., 2015). The central role of the human cortex 

and of deep brain structures in the control and adaptation of upper-limb movements have 

been also extensively demonstrated through studies of motor learning. Initial unskilled 

performance is mediated by a cortico-striatal network and more consolidated skilled 

performance is in contrast promoted by cortico-cerebellar interactions (Shadmehr and 

Holcomb, 1997; Krebs et al., 1998). The human brain is also believed to be important for 

coordinating and adapting gait behaviour even though the hierarchy behind gait control 

is far more complex. Both supra-spinal (cortex, basal ganglia, cerebellum, brainstem) and 

spinal (Central Pattern Generators, CPGs) structures are known to be involved in 

locomotion, but the specific role of each of these elements is still under debate 

(Takakusaki et al., 2013; Kim et al., 2016; Takakusaki et al., 2017). Evidence in favour 

of a central role of the human cortex in high level control and programming of gait were 

obtained by observing walking behaviour both invasively and non-invasively. By 

investigating neural changes to specific gait training paradigms with both healthy 

individuals and stroke survivors, increased activations in premotor, sensorimotor and 

supplementary motor areas were observed. This suggests that adaptive control of 

locomotion is taken over primarily by different cortical regions, which in turn modulate 

the activity of spinal structures for the generation of gait rhythm and muscle activation 

patterns (Miyai et al., 2002; Kim et al., 2016). Recent invasive studies with implanted 

epileptic patients demonstrated that the primary motor cortex activity is modulated in a 

gait specific manner and this is unrelated to lower limb muscles activity and/or 

trajectories, further strengthening the putative role of the cerebral cortex in gait control 

(McCrimmon et al., 2017). The neural correlates of gait control have been difficult to 

carefully explore because of the technical limitations of the available instrumentation 

(Dobkin et al., 2004; Bartels and Leenders, 2008; Jahn et al., 2008; Ikeda et al., 2016; 
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Bürki et al., 2017; Labriffe et al., 2017). Recent developments in mobile technologies 

currently allow wireless recordings of kinematic, muscular, hemodynamic and neural 

evidence of ambulatory activities real-world scenarios. 

The development of mobile technologies has gained substantial interest in the fields of 

sports sciences (Park et al., 2015; Cheron et al., 2016), urban architecture (Aspinall et al., 

2013; Tilley et al., 2017), and human neuroscience (Contreras-Vidal et al., 2017; 

Gramann et al., 2014). The study of human natural behaviour in real-world settings rather 

than controlled laboratory environment would shed some light on the neural correlates of 

daily-life activities (i.e. ecologically validity). Moreover, current trends in rehabilitation 

and recovery also aim to provide assistive technologies and assessment tools that could 

reliably work within the patients’ home environment. Indeed, performance of patients 

within laboratory settings does not resemble the real status of the disease or recovery as 

they strive to perform better whilst being observed in the lab (Del Din et al, 2016). 

Monitoring systems that could be used at home and register patients’ performance during 

daily life activities have been developed as, for example, a home-based system for the 

evaluation of upper limb reaching recovery after stroke (van Meulen et al., 2014; van 

Meulen et al., 2016). The design of such systems is currently possible thanks to the new 

generation of wearable sensors able to record angular and linear kinematics and dynamics 

of the body segments on which they are placed. Moreover, the developments of wireless 

systems for the recording of neural and muscular activity has made monitoring of neural 

plasticity during recovery possible. Systems of support for movement or other human 

functions, such as brain-computer/machine interfaces, have explored many possible ways 

for patients to control the assistive devices (Millan et al., 2010; Tucker et al., 2016). So 

far, the most reliable and less invasive controllers that can be used in the home 

environment with a long-term perspective are based on the recording of electro-cortical 

activity from which to decode intentional motor (Choi et al., 2016; Presacco 2011; 

Georgopulus and Carpenter, 2015; Ubeda et al., 2017) or functional commands 

(Birbaumer et al., 1999).  BCI-training in the home environment was recently shown to 

promote optimal neural plasticity with no compensatory maladaptive mechanisms, as 

well as to engage and motivate patients (Zich et al., 2017).  

Recovery after neural injuries such as stroke can be provided through many different 

types of paradigms specific to the upper or lower limb, as well as according to the level 

of showed impairment (Huang and Krakauer 2009; Beyaert et al., 2015). One of the latest 

frontiers in neurorehabilitation is the employment of neurofeedback signals in order to 
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train subjects on how to modulate the activity of a specific brain area or network (Linden 

and Turner, 2016). Real-time detected fMRI BOLD signals from one single brain region 

or network can be fed back to subjects through means of visual representations (i.e. 

thermometer bars) and eventually modulated by asking subjects to increase or decrease 

the height of the visualised bar. Neurofeedback training has been employed in preliminary 

investigations for emotional control (Zotev et al., 2014), pain control (Chapin et al., 2012) 

and motor control (Berman et al., 2012; Hui et al., 2014; Cevallos et al., 2015; Marins et 

al., 2015). Studies of motor control of the upper-limb with healthy individuals showed 

difficulties in self-regulating the M1 BOLD activity when targeted alone during motor 

imagery of hand movement (Yoo et al., 2008; Berman et al., 2012). On the other hand, 

positive effects were detected when modulating activity from ventral PMC (Marins et al., 

2014) or both ipsilateral and contralateral M1 together (Auer et al., 2015). Despite most 

of the neurofeedback studies reported so far have been carried out using functional 

magnetic resonance, this technique has limits in terms of accessibility and costs (Linden 

and Turner, 2016). Early insights into neurofeedback paradigms provided through 

measures of surface electroencephalography have been reported in motor control of 

fingers through reference measures of neuro-muscular couplings (i.e. cortico-muscular 

coherence) (von Carlowitz-Ghori et al., 2015), as well as in the improvement of balance 

control in healthy adults and dual-task walking in stroke survivors through reference 

measures of region specific electrocortical activity (Lee et al., 2015; Azarpaikan and 

Torbati, 2017). Thus the need arises for the investigation and definition of reliable 

indicators of specific neurophysiological control mechanisms through more accessible 

alternative techniques, such as EEG, that could be eventually employed in real-life 

rehabilitation settings. As a first step, this research programme aimed to investigate the 

neurophysiological correlates of human motor control of both the upper and the lower 

limb in real-world scenarios and to propose different markers of specific motor activities 

which could be further exploited by novel neurorehabilitation paradigms such as 

neurofeedback training. 

1.2 Goals and hypotheses 

1.2.1 Motor control of the upper limb: the neurorehabilitation scenario 

A lab-based experimental setup was designed to investigate upper-limb motor control and 

the neuro-muscular correlates of reaching movements in both stable (natural) and 

unstable (applied external perturbation) situations. Robot-mediated force-field adaptation 

is a motor learning paradigm potentially exploitable during rehabilitation after neural 
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injuries such as stroke. For example, it has been demonstrated that the manipulation of 

the external perturbation could induce training after-effects in stroke survivors resembling 

natural movement behaviours (Patton and Mussa-Ivaldi, 2004). Applying an external 

perturbation while reaching induces initial significant movement deviations which 

subjects learn to reduce exponentially with practice (Milner and Franklin, 2005; 

Trewartha et al., 2014).  It has been suggested that both peripheral (muscular) and central 

(cerebral) mechanism work in tandem in this adaptive behaviour, although there is a 

paucity of evidence. Indeed, the specific responses of muscles and the brain during the 

adaptation practice are still not fully understood (Turner et al., 2013). This research 

programme was designed to test hypotheses involving both peripheral and central 

mechanisms in more detail than previously considered. The goal of the first scenario was 

therefore to define neural and muscular indicators specific of an adaptation protocol that 

could be feasible for patients in future neurorehabilitation practice (such as 

neurofeedback training).  

When an external force-field is applied during reaching behaviour, initial muscular 

activations are thought to be of a feedback nature, that is, they are spontaneous reactions 

due to feedback drives triggering muscle activation to accomplish the final goal (i.e. 

reaching) (Milner and Franklin, 2005). With practice however, subjects develop 

predictive mechanisms which increase early muscle activity in anticipation of the 

externally applied force field – a so-called feedforward response to adapted reaching 

(Milner and Franklin, 2005; Huang and Ahmed 2014). It was hypothesised that muscle 

activation would be adapted during reaching in a force field in a specific pattern related 

to the direction of the force field (i.e. Posterior Deltoid, Triceps Brachii and Extensor 

Carpi Radialis would be most recruited to counteract the perturbation (Thoroughman and 

Shadmehr, 1999)). Furthermore, it was hypothesised that in the initial stage of adaptation, 

all the analysed muscles would show similar profiles of systematic increased activity. In 

contrast, in later stages of adaptation, those muscles not strictly required to compensate 

for the applied force-field were hypothesised to reduce their initial increased activations 

towards normal profiles, whereas selected muscles would develop a more robust 

activation pattern and suggest the development of a feedforward model of adaptation in 

the later stages. Several different methods of analysis were used to test these hypotheses 

such as measures of muscle co-activation (more likely in early adaptation) and cortico-

muscular coherence (stronger cortical control over individual muscle activation 

developing in later adaptation). Source reconstructed neuro-muscular correlates (cortico-

muscular coherence) in the period of reaching may demonstrate coupling in the medium 
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frequency spectrum (β band) between the contralateral primary motor cortex (Fang et al., 

2009) and those muscles recruited during the reaching movement and subsequent 

adaptation to the applied counter-clockwise force-field (i.e. upper-limb extensors). 

Reaching is underpinned by activation of parietal-occipital areas in parallel to frontal-

premotor and motor areas (Naranjo et al., 2007; Demandt et al., 2012; Dipietro et al., 

2014). Long-term force-field motor adaptation involves a shift from the cortical-striatal 

loop in early stages (i.e. frontal areas and striatum) to the cortical-cerebellar loop (i.e. 

parietal regions and cerebellum) in later stages of motor adaptation (Shadmehr and 

Holcomb, 1997; Krebs et al., 1998). Moreover, the primary motor cortex is believed to 

be involved in after-practice consolidation of the newly acquired motor memories (Della-

Maggiore et al., 2017). It was hypothesised that spontaneous neural fluctuations (Event-

Related Potentials) in response to the reaching movement would show a sequential 

activation of the occipital-parietal regions paralleled by the sequential activation of 

frontal-premotor regions. Reaching-related electrocortical spectral power (Event-Related 

Spectral Perturbations) was hypothesised to show correlates during reaching (Demandt et 

al., 2012). These correlates include a sustained low (α) and medium (β) frequency 

decrease of activity (event-related desynchronization) during the reaching period with 

respect to the prior period of stillness that is spread over a broad area including 

supplementary motor, premotor and sensorimotor areas. In addition, it was hypothesised 

that there would be an increase (event-related synchronization) of high frequency (γ) 

power in the beginning of reaching (around movement onset time) mostly focused in the 

contralateral sensorimotor cortex (Ball et al., 2008; Babiloni et al., 2016).  

Different specific hypotheses were made on the neural correlates of reaching in the 

perturbed condition, mostly based on the previously reported findings on force-field 

motor adaptation (Shadmehr and Holcomb, 1997; Krebs et al., 1998). First, event-related 

spontaneous neural deflections related only to movement initiation and execution (i.e. 

around the time of movement onset) were hypothesised to show increased activity during 

adaptation, whereas no changes were expected in the earlier components mostly related 

to visual feedback and target selection. In line with the previous findings, the postulated 

changes were expected in frontal electrodes and in posterior parietal-occipital electrodes 

during early and later stages of adaptation, respectively. Secondly, changes in neural 

spectral power were hypothesised to encompass premotor, supplementary motor (early 

phase) and parietal regions (later phases), whereby a stronger β desynchronization was 

expected as an indicator of stronger sensorimotor integration (Engel and Fries, 2010). 
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Lastly, changes in cortico-muscular coherence during adaptation were expected to occur 

within the β and γ frequencies of oscillations in, once again, premotor, supplementary 

motor (early phase) and parietal regions (later phases).  

The thorough investigation of the motor task through different techniques aimed to 

ultimately identify crucial cortical areas involved in the adaptation process whose 

activities could eventually be target of future modulation and self-regulation paradigms 

(for example through measures of event-related potentials, spectral power or cortico-

muscular coherence) with the final goal of promoting restoration of impaired functions 

and facilitating recovery after neural injuries. 

1.2.2 Motor control of the lower limb: the real-world scenario 

The second focus of this research programme was the study of gait control and, using 

novel mobile technologies, it was possible to move outside the lab into real-world 

contexts for more ecologically valid results. The goal was to observe how different real-

life situations (i.e. walking naturally, walking while conversing and walking while texting 

with a smartphone) impacted on gait behaviour and how neural and muscular activity 

changed among the three situations.  

Walking in hazardous environments has been demonstrated to reduce gait speed and 

increase trunk sway in both young and elderly individuals (Iosa et al., 2014; Menz et al., 

2002; Menz et al., 2003). Most interestingly, it was postulated that walking while 

performing tasks preventing subjects from visual scanning the surroundings have the 

strongest negative effects on gait control (Beurskens and Bock, 2013), such as walking 

while texting over a smartphone (Plummer et al., 2015; Agostini et al., 2015). When 

walking while carrying out a secondary cognitive task (i.e. Verbal Fluency Test) without 

specific task prioritization gait speed decreased and gait dysrhythmicity increased, 

regardless of age (Yogev-Silgemann et al., 2010). Several other studies confirmed that 

the simultaneous performance of a secondary task, such as numerical subtractions 

(Mirelman et al., 2014; Al-Yaya et al., 2016), Verbal Fluency Test (Doi et al., 2013), 

reciting aloud alphabet letters (Holtzer et al., 2011; Holtzer et al., 2015), negatively 

influences gait performance. It was therefore hypothesised that conversing with the 

experimenter and texting over the smartphone while walking would induce reduced gait 

speed, increased trunk sway and gait variability (expressed through different measures, 

Yang et al., 2012) with respect to a natural walking task. Moreover, since vision is 

focussed on texting over the smartphone, constant visual scanning of the surroundings 

would likely be limited. It was therefore postulated that the greatest increase in gait 
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variability would be observed when subjects walked while texting over the smartphone 

(Caramia et al., 2017). In contrast, the effects of walking on the performance of the 

secondary task are contrasting. For example, no significant differences were reported in 

counting backwards while walking and while standing in both healthy young adults and 

stroke survivors (Mirelman et al., 2014; Al-Yaya et al., 2016). In another instance 

however, the rate of errors in reciting alternate alphabet letters aloud increased when 

healthy young adults walked in comparison to when seated still (Holtzer et al., 2015). In 

the current research programme, the secondary tasks were designed to resemble real-life 

situations and thus were complex in terms of assessing the related performance given the 

lack of a structured scheme (i.e. when conversing with the experimenter subjects were 

allowed to talk as much as they wanted without any guidelines). Moreover, intra-personal 

(i.e. character, previous experiences) and environmental (i.e. weather, surrounding 

people) might have also influenced the performance of the real-life secondary tasks. 

Therefore, it was decided not to investigate effects of walking on the secondary task 

performance and to instead simply focus on the neurophysiological correlates related to 

gait control during different real-world situations. 

Neural hemodynamic activations during natural gait encompass the medial primary 

sensorimotor (Homunculus leg area), bilateral supplementary and anterior prefrontal 

regions (Miyay et al., 2001). Consistent findings were reported by 

electroencephalographic recordings whereby sustained reduced spectral power in low (α) 

and medium frequencies (β) were observed in bilateral sensorimotor and dorsal anterior 

cingulate regions in parallel to modulated increased power in high (γ) frequencies in 

bilateral posterior parietal, anterior cingulate and sensorimotor cortices (Gwin et al., 

2011). The sustained desynchronization of low-medium frequencies was postulated to 

represent an active state promoting voluntary movement (Engel and Fries, 2010), whereas 

the modulated synchronization of high frequencies was believed to be symbolic of 

sensorimotor integration mechanisms (Seeber et al., 2014; Seeber et al., 2015). It was 

therefore hypothesised that walking naturally outside the laboratory would recruit the 

same neural mechanisms observed in treadmill-based experiments, that is a sustained 

power desynchronization within the low-medium frequency spectrum and a modulated 

power synchronization within the high-frequency spectrum in the medial and bilateral 

sensorimotor premotor and posterior parietal cortices.  

The simultaneous performance of a secondary cognitive task has been shown to increase 

the oxygenation levels of the rostral prefrontal cortex (BA10) in correlation with the 
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difficulty of the secondary cognitive task (i.e. counting forward and subtracting 7 by a 3-

digit number) (Mirelman et al., 2014). Increased oxygenation levels in bilateral anterior 

prefrontal cortex, dorsolateral prefrontal cortex and inferior frontal gyrus were reported 

in a cohort of elderly individuals with mild cognitive impairments (MCI) when walking 

and simultaneously performing a Verbal Fluency Test (Doi et al., 2013). Increased levels 

of hemodynamic activity in bilateral anterior and dorsolateral prefrontal cortex was also 

reported when walking while reciting aloud alternate alphabet letters in both young and 

elderly adults (Holtzer et al., 2011; Holtzer et al., 2015). Despite the emerging interest 

and focus of dual-task effects on the prefrontal cortex, other studies have demonstrated 

that other areas may be involved in dual task performance, depending also on the type of 

second task performed. In a cohort of young healthy individuals walking on a treadmill 

while performing a Verbal Fluency Test, increased oxygenation levels were observed in 

areas expanding from inferior frontal gyrus to middle temporal gyrus, eventually 

suggested to be related to both talking and recruiting executive functions, as pure 

language production would have resulted in the involvement of the Broca’s area only 

(Metzeger et al., 2017). Moreover, walking in hazardous situations such as on a balance 

beam (Sipp et al., 2013), uphill (Bradford et al., 2016) and while accelerating/decelerating 

(Wagner et al., 2016), showed stronger β desynchronization in bilateral sensorimotor and 

posterior parietal areas, likely symbolic of stronger sensorimotor integration mechanisms 

recruited to promote the more challenging voluntary movement (Engel and Fries, 2010). 

Therefore, in the current research it was postulated that, with respect to the single-task 

condition, walking while conversing would show increased spectral power in anterior 

prefrontal, dorsolateral prefrontal and inferior frontal gyrus, most likely in the left 

hemisphere (i.e. Broca’s area) within the very low frequencies (θ) (i.e. recently shown to 

be involved in speech detection, understanding and creation, Giraud et al., 2017). On the 

contrary, walking while texting over the smartphone was considered to be quite 

uncommon and challenging even for healthy young adults, thus increased low-frequency 

prefrontal (anterior and dorsolateral) activations were expected in parallel to stronger β 

desynchronization in bilateral sensorimotor and posterior parietal areas.  

Different studies reported significant relationships between the level of cortical 

activations and performance in dual-task conditions: for example, gait variability and 

cognitive performance were negatively correlated with prefrontal oxygenation levels in 

healthy young adults (Mirelman et al., 2014). The authors suggested that subjects 

requiring less cognitive effort were more predisposed to perform better in the cognitive 

task. In another study, prefrontal hemodynamic activity negatively correlated with the 
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level of executive functions of elderly individuals with MCI, suggesting that subjects that 

were more impaired required more cognitive effort to accomplish a dual-task situation 

(Doi et al., 2013). Prefrontal oxygenation levels were also positively related to the value 

of stride length and to the rate of correct letters generated during dual-task performance 

by a cohort of healthy elderly adults (Holtzer et al., 2015). However, as previously 

mentioned, other areas than the prefrontal cortex could be involved in the promotion of 

dual-task performance while walking. Since the goal of the current research was to define 

neural correlates of gait control under different real-life situations, it was postulated that 

the activity recorded from the prefrontal cortex (average of electrodes located over 

anterior and dorsolateral prefrontal cortex) as well as from the bilateral posterior parietal 

cortices (promoter of sensorimotor integration) would be potentially involved in 

locomotion control. Given the successful employment of measures of trunk acceleration 

in the study and classification of gait stability in neurological populations (Sekine et al., 

2013; Sekine et al., 2014; Iosa et al., 2014), it was hypothesised that spectral power in the 

selected cortical regions would be significantly related to trunk acceleration during the 

three walking conditions.  

The identification of preliminary significant relationships between a specific cortical 

activity and measures of gait stability could eventually be exploited in further research as 

predictors of gait behaviour as well as easy-to-follow targets of neurofeedback and/or 

BCI training paradigms aimed to promote recovery through self-regulation of gait 

stability (Ang et al., 2015; Lee et al., 2015). Moreover, the identification of a significant 

relationship between cortical activations and gait performance would further strengthen 

the theories on the central role of the brain in gait control (Miyai et al., 2002; Takakusaki 

et al., 2013; Kim et al., 2016; Takakusaki et al., 2017).  

1.3 Thesis outline 

This work of research therefore focused on designing comprehensive setups, compiling a 

transferable analytical pipeline and defining different evaluation measures with which to 

examine in full details different aspects of motor control and recovery. Given the recent 

need for reliable mobile setups for ambulatory real-world investigations, the main 

technical challenge of the work was to define an optimal experimental pipeline that could 

be transferred in different real-world scenarios and that could successfully investigate 

either behavioural and neurophysiological aspects of upper and lower limb motor control. 

Therefore, two major studies were carried out and here presented, both employing the 
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same experimental structure but adapted to the scenario specificities. Specifically, the 

document is structured as follows: 

• Study I describes the “Hospital Neurorehabilitation Unit scenario” whereby a robot 

for the rehabilitation of the upper limb has been employed during a force field motor 

adaptation protocol for the reaching movement. Chapter 4 describes the full 

experimental setup able to monitor the adaptation task from both a behavioural (i.e. 

kinematics) and neurophysiological (i.e. EMG, EEG) perspective. This chapter 

focuses on the kinematic and muscular evidence of the adaptation process. To this 

chapter belong two published works reported in Appendix IV (Pizzamiglio et al., 

2017; Pizzamiglio et al., 2017), which further questioned the specificity of muscular 

activations during the adaptation process through more sophisticated measures of 

muscular co-contraction and intermuscular coherence. Chapter 5 argues on the effects 

of motor adaptation on the human brain through measures of cortical Event Related 

Potentials (ERPs) and Event Related Spectral Perturbations (ERSPs) extracted from 

the sensor level EEG data. Many motor learning and motor adaptation studies focused 

and the changes before and after practice (Shadmehr and Holcomb, 1997; Krebs et 

al., 1998), but little is known on the cortical correlates of these protocols while they 

are executed. Lastly, chapter 6 focuses on the neural correlates of the motor adaptation 

process by investigating the relationship between source-reconstructed cortical and 

muscular activations during both natural and disturbed reaching (Rossiter et al., 2013; 

Belardinelli et al., 2017); 

• Study II describes the “Real-World Urban scenario”, whereby different walking 

conditions resembling real life situations have been investigated using behavioural, 

muscular and neural measures. The same experimental framework of Study I was 

employed but adapted to a mobile, real-world context. Chapter 7 describes the 

developed fully mobile setup able to monitor different walking situations (i.e. walking 

naturally, walking while conversing and walking while texting with a smartphone) 

through behavioural (i.e. kinematics) and neurophysiological evidence (i.e. EMG, 

EEG). This chapter focuses on the changes in gait performance across conditions 

(from single to dual task), and how muscular and neural correlates are modulated in 

each specific situation. It is known that walking while engaging in a secondary task 

impairs gait behaviour and that the nature of the secondary task influences the level 

of impairment in both healthy young adults, old adults and patients (Yogev-Silgmann 

et al., 2010; Iosa et al., 2014; Sekine et al., 2013; Sekine et al., 2014; Agostini et al., 

2015; Beurskens et al., 2016). However, little is known on the specific neural changes 
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at the basis of these tasks. Lastly, chapter 8 reasons on measures of trunk movement 

magnitude (i.e. acceleration RMSR) and how these could be possibly related to neural 

activations during each specific walking condition. Acceleration RMSR have been 

extensively used as marker of gait disability and abnormalities in different types of 

patients (Latt et al., 2009; Van Criekinge et al., 2017; Sekine et al., 2013; Sekine et 

al., 2014), but no direct link with brain activity has been proposed so far.  

1.4 Research contributions and novelty 

As previously mentioned, in this work of research attention was drawn to the investigation 

of neurophysiological mechanisms of human motor control in real-world scenarios and 

to the identification of novel mechanism-specific markers that could be employed by 

future rehabilitative practice. In each study, analyses were carried out first to replicate 

previous findings and were then expanded to provide novel evidence of the 

neurophysiological mechanisms underlying the investigated motor activities. Overall, the 

findings reported in the current work of thesis further strengthen the theories on the 

central role of the brain in the control of both upper- and lower limb motor acts (see 

chapter 9, paragraph 9.1), following previous claims and hypothesis found in literature 

(Fabbri et al., 2010; Toxopeus et al. 2011, Takakkusaki, 2013; Takakusaki, 2017). Two 

cortical areas have been here identified as potential major contributors during the 

analysed scenarios: activity of medial frontal, premotor and supplementary motor regions 

are likely reliable markers of early stages of adaptation during reaching, as previously 

suggested (Shadmehr and Holcomb, 1997; Krebs et al., 1998),  whereas activations of the 

posterior parietal cortex could be a potential marker of motor variability and individual-

specific motor capabilities for both upper- and lower limb (Bürki et al,. 2017; Haar et al., 

2017). The major contributions of each study of the current work of research are hereafter 

summarized. 

1.4.1 Neurorehabilitation scenario 

A comprehensive experimental setup for the simultaneous monitoring of behavioural, 

muscular (EMG) and neural (EEG) data was developed to study different mechanisms 

and strategies responsible for motor control and adaptation during reaching in unstable 

situations. The concurrent recording of three different types of evidences allowed the 

identification of complementary indicators of the adaptation process. Specifically:  

• Kinematics and muscular evidences demonstrated that different perturbation 

directions induce direction-specific muscle co-contraction profiles (see Appendix IV; 

Pizzamiglio et al., 2017), and the analysis of muscular neural coupling in the 
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frequency domain highlighted the development of specific pattern of coherent muscle 

activity during the adaptation process (see Appendix IV; Pizzamiglio et al., 2017). 

Evidences of high-frequency IMC in parallel to task-specific patterns of muscle co-

contraction could be crucial physiological markers in the assessment of functional 

recovery as well as potential target of biofeedback training where subjects could learn 

to self-modulate their intermuscular couplings. Moreover, these findings have a 

strong impact on the design of future rehabilitative strategies as they could influence 

how an external perturbation is shaped in order to induce required subject-specific 

muscle activations;  

• Neural recordings during natural reaching revealed the engagement of the reaching-

specific frontal-parietal network called “dorsal-visual stream” (Grafton et al., 1996), 

whereas during adaptation changes in cortical activity (both at sensor and at source 

level) occurred in the medial frontal, premotor and supplementary motor regions, 

areas likely involved in early stages of adaptation for planning necessary motor 

strategies to counteract the external perturbation and modulating exerted force. 

Measures of event-related potentials, event-related spectral perturbations and cortico-

muscular coherence all revealed a major contribution from the above-mentioned 

areas, consistently confirming their role in adaptive control of the upper-limb in 

unstable situations. These findings validate the employment of both sensor- and 

source-level measures of cortical activity as potential markers of motor performance 

and recovery as well as potential targets for future rehabilitative paradigms promoting 

plasticity (i.e. BCI training) and self-modulation of neural activity (i.e. neurofeedback 

training). 

1.4.2 Real-world scenario 

In the second study, a novel Mobile Brain/Body Imaging (MoBI) setup was developed in 

order to comprehensively study human motor control in real-life situations outside the lab 

environment. This represents the most innovative contribution of this work of thesis as it 

allowed the study of natural human behaviours in a non-over controlled environment and 

would be a useful experimental approach to comprehensively monitor performance in 

everyday life activities and in clinical settings with the neurologically impaired (see 

chapter 10 for a potential application of the mobile setup). The inspected daily-life 

activities are also a novel experimental approach, whereby subjects were not constrained 

by performing over-simplified and monotonous tasks, but actually engaged in real-life 

multitasking activities. Investigations led to very interesting findings, specifically: 
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• The setup reliably captured changes in behaviour due to the specific task requirements 

as walking performance showed good variability across conditions. At the same time, 

neural correlates of walking under different conditions showed whole-brain 

frequency-specific changes in areas most involved in processes of executive functions 

and multitasking (dorsolateral and anterior prefrontal cortex) as well as in 

sensorimotor integration (posterior-parietal cortex). In line with previous cautious 

claims (Bürki et al., 2017; Metzeger et al, 2017), the current findings confirmed the 

need for a whole-brain approach when studying complex multitasking situations as 

broad networks are likely involved and worth investigating. The reported results 

successfully demonstrated the applicability of the implemented MoBI setup and shed 

some new lights on the neurophysiological correlates underlying real-life human 

activities; 

• By investigating potential linear relationships between brain activations and gait 

behaviour, the left-PPC activity was found to always correlate with measures of gait 

variability and abnormality (i.e. trunk acceleration), which suggested a potential 

major contribution of the left-PPC in the control of walking in the real-world 

regardless of any secondary tasks simultaneously performed. These findings are in 

line with recent claims on the relationship between the posterior parietal cortex and 

motor variability and outcomes of both upper- and lower limb movements (Bürki et 

al,. 2017; Haar et al., 2017). These results bring a strong contribution to the current 

methodologies of gait evaluation and pave the path for future rehabilitative 

interventions that could for example target the identified cortical areas to promote 

restoration of gait and/or self-modulation of the neural mechanisms required to 

promote stability and control of motor variability.  
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2 Literature review 

2.1 Human motor control 

2.1.1 The neural motor system 

The principal player within the neural motor control system is the primary motor cortex 

(M1) together with adjacent motor areas, such as the premotor cortex (PMC) and the 

supplementary motor area (SMA), and deeper structures of basal ganglia and cerebellum. 

M1 is located bilaterally in both hemispheres anterior to the central sulcus (i.e. it is also 

called the precentral gyrus) and extends from the lateral side of the hemisphere to its 

medial surface. The primary motor cortex has a topographical representation of each body 

part according to the motor homunculus as represented in Figure 2-1, with the medial part 

contains the leg and foot representations and more lateral parts representing face, tongue 

and mouth (even if overlaps are typical). The neuronal fibres located within M1 are those 

entitled to mediate fine voluntary movements. Different neuron types coming from M1, 

and in small contribution also from PMC and SMA, converge together into a descending 

pathway called the pyramidal tract, which carries down motor commands and other 

related information for the control of voluntary movements from the related hemisphere 

through the spinal cord and is divided into three sub-pathways (see Figure 2-1) (Wise and 

Shadmehr, 2002). The Corticobulbar Tract (CBT) contains a small portion of fibres that 

partially cross and partially remain on the same side and all innervate motor cranial nerves 

nuclei for the bilateral control of neck muscles. Similarly, the Corticomesencephalic Tract 

(CMT) contains a very small number of fibres coming from the frontal cortex that 

innervate the nuclei of the cranial nerves that mediate eye movements. Most interestingly, 

the Corticospinal Tract (CST) contains the highest number of descending fibres of the 

pyramidal pathway, it travels down through the brainstem until the decussation of 

pyramids, where 80% of the fibres cross to the other side forming the lateral corticospinal 

tract and the rest further descend along the same side forming the anterior corticospinal 

tract, and eventually end at the spinal cord level where the fibres make synapses with 

interneurons connected to spinal motor neurons (Baehr and Frotscher, 1998). The 

anatomical characteristics of the CST shed light on the fact that muscles on the right side 

of the body are controlled by the brain left hemisphere and vice versa. Moreover, the CST 

is directly involved in the control of proprioceptive and sensory inputs generated by 

movements and the gating of such afferent drives to central centres: indeed, ascending 

sensory neurons innervating the peripheral muscles transmit information to the central 

motor system for a continuous simultaneous control (Lemon, 2008). Lesions of the 

cerebral cortex such as trauma, stroke or tumour cause weaknesses or even paresis of the 
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contralateral body side, mostly of face and upper limb muscles as those have the widest 

cortical representation according to the homunculus. Lesions of the pyramidal tract at 

cervical level below the decussation of pyramids cause ipsilateral hemiplegia as the fibres 

have already crossed at higher level, whereas lesions above the crossing level can cause 

quadri-paresis or quadriplegia. Lesions of the CST at different level of the spinal cord 

cause a complete paralysis and the loss of all sensations. 

Deep brain structures are not directly involved in the generation of motor commands 

activating muscle contractions but do work in tandem with the motor cortex for 

optimizing planning, execution and online monitoring of the movement (Middleton and 

Strick, 2000). The basal ganglia are a group of bilateral subcortical nuclei (i.e. Thalamus, 

Globus Pallidus, Putamen, Caudate Nucleus and Amygdala) located within deep within 

the brain which contribute to the control of voluntary movements and work in parallel 

and in direct contact with the motor cortex and the pyramidal tract. They are specifically 

recruited in the modulation of excitatory and inhibitory mechanisms of the motor cortex 

and their major role is promoting the initiation and facilitation of voluntary movements 

as well as the suppression of unwanted influences that might prevent the smooth 

execution of the action (Baehr and Frotscher, 1998). Lesions of the basal ganglia (the best 

known is in Parkinson’s disease, PD) cause complex movement disorders typically 

featured by deficiency or an excess of movement (hypo- or hyperkinesia and tremor) as 

well as by abnormalities in muscles tone (Peterson and Horak, 2016). The cerebellum is 

located in the posterior fossa, it is intensely connected to the motor cortex and other brain 

areas and plays a major role in motor learning and memory (Shadmehr and Holcomb 

1997; Krebs et al., 1998). Specifically, it maintains balance and ensures that movement 

are precisely coordinated and executed through sensory feedback from the periphery, 

(Baehr and Frotscher, 1998). Cerebellar lesions do not cause paralysis but impair the 

ability to learn new motor skills and to adapt to changes in the external environment 

(Butcher et al., 2017). 
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Figure 2-1: The motor cortical areas and descending neural pathways of the human motor control system. 

The neural motor system: primary motor and premotor cortices (on the right) and the descending pyramidal 

tract with all its components (on the left). 
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2.1.2 The peripheral motor system 

Skeletal muscles are the effector organs of the motor system and are composed by two 

types of cells: extrafusal fibres, producing force and promoting movement, and intrafusal 

fibres, generating afferent sensory feedback to be sent to the central nuclei (Wise and 

Shadmehr, 2002). Extrafusal muscles fibres are excitable cells that promote contraction 

and force generation through specific chemical reactions happening within each muscle 

cell. Actin and myosin are filamentous proteins organized into highly ordered structures 

called sarcomeres (i.e. the contractile unit): each sarcomere forms between two Z 

structural proteins and is composed by thin filaments of helically coiled actin, projecting 

perpendicularly from the Z proteins towards the centre of the cell, alternated by thick 

bundles of myosin filaments located in the centre of the contractile unit (anchored to 

central vertical M proteins). Myosin filaments are composed by a long tail and a globular 

head whereas actin filaments dispose of specific binding sites (hidden at rest to the myosin 

head) which regulate the link between the two types of filament (Hopkins, 2006). When 

a peripheral nerve stimulates a muscle endplate (only area of possible neural stimulation) 

a motor action potential is generated which triggers a sequence of chemical reactions 

promoting the opening of calcium channels on the fibres membrane. When Ca2+ is 

reversed within the cytoplasm of a sarcomere it binds with the actin binding site, causing 

a change in the sub-unit’s conformation and consequently exposing the whole binding 

site to the myosin globular head. As myosin binds with actin they slide relative to each 

other causing the shortening of the sarcomere, but plural actin-myosin bindings are 

needed to produce a contraction (Taggart and Podolsky, 1961; Hultman and Sjöholm, 

1983; Greenhaf, 2003). The produced contraction generates a specific force and potential 

movement depending on the interaction between muscle, tendon and skeleton. The 

overall output force depends on the transmission properties (stiffness and elasticity) of 

the other muscle elements, specifically the endomysium (the connective tissue that holds 

together different muscle fibres), the perimysium (the connective tissue that holds groups 

of fibres together within a muscle fascicle) and the epimysium (the connective tissue that 

holds together muscle fascicles in a muscle bundle) (Hopkins, 2006; Wise and Shadmehr, 

2002). Abnormalities or degeneration of the mechanisms connecting sarcomeres to the 

connective tissue have been linked to either hereditary or acquired diseases as muscular 

dystrophies (Baehr and Frotscher, 1998). The skeletal muscle anatomy is clearly 

represented in Figure 2-2. In order to regulate the generation of the contraction force 

subsequent fibres contractions can sum up if triggered relatively close to each other (i.e. 

summation) and/or more motor units can be recruited by the central nervous system (i.e. 
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recruitment) (Hopkins, 2006). A motor unit is the assembly of a lower motor neuron, 

originating from the spinal cord, and the muscle fibres it innervates. Muscles apt to fine 

movements (e.g. face, eye) have motor units in which only 3-10 fibres are innervated by 

one single motor unit, whereas muscles mediating more vigorous movements (e.g. 

gastrocnemius) dispose of larger motor units whereby one single motor neurons can 

innervate up to hundreds of muscle fibres. α- and γ-motor neurons innervate respectively 

extrafusal and intrafusal muscular fibres, and at the same time several sensory neurons 

innervating the muscles provide the central neural system with information on muscle 

stretch and generated force (Wise and Shadmehr, 2002).  

In summary, the central motor system sends motor commands through the descending 

pyramidal tract in the spinal cord to the motor neuronal pool apt to trigger electrical 

impulses to the target muscle fibres. At the same time, sensory neurons transmit 

information on the current contraction through ascending pathways in the spinal cord 

(parallel to the CST) allowing the central system to monitor the ongoing movement. 

Altogether, the central and the peripheral motor systems regulate intentional and 

automatic mechanisms that promote goal-directed movement and behaviours 

(Takakusaki, 2013). 
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Figure 2-2: Skeletal muscle anatomy. 

From macro- to microscopic view of skeletal muscles anatomy as adapted from 

(https://www.britannica.com/science/skeletal-muscle). 

  

https://www.britannica.com/science/skeletal-muscle
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2.1.3 The role of attention 

Fine motor control can be undermined when multiple tasks are carried out 

simultaneously. It seems like humans can carry out multiple tasks at the same time until 

they are overwhelmed by the excessive amount of engagement required by both tasks 

simultaneously. The human ability to perform multiple tasks relies on attentional 

mechanisms that allow us to attend to certain stimuli and neglect others (Wahn and König, 

2017). Low-difficulty tasks allow the simultaneous allocation of spared attentional 

resources to the secondary task, whereas high-difficulty tasks exhaust all of them. It is 

still debated if attentional resources are specific to a given sensory modality or if they are 

shared across sensory modalities differently according to the performed tasks. 

Investigations based on dual-task experimental designs demonstrated that, when the two 

simultaneously performed tasks share attentional resources, performance is reduced with 

respect to carrying them out separately; on the other hand, when attentional resources are 

not shared, performance is equal. Previous findings investigating the matter of dual-task 

interference showed, for example, that the visual and the tactile modalities share 

attentional resources (Soto-Faraco et al., 2002), whereas the visual and the auditory 

systems likely employ different attentional sources (Larsen et al., 2003; Alais  et al., 

2006). Indeed, attending to a visual and an auditory task together or separately leads to 

the same level of performance, both in case of a simple object-based and of a complex 

object- and spatial-based task (Arrighi et al., 2011). Neurophysiological evidence 

demonstrated that visual and auditory modalities partially involve overlapping frontal-

parietal networks whose time of information processing however differed allowing good 

performance of either stimuli (Finoia et al., 2015; Haroush et al., 2011). Different sensory 

modalities could therefore recruit separate attentional resources as well as overlapping 

neural populations but in a different way. 

2.2 Motor control of the upper limb during reaching 

Reaching is a movement of the upper limb that aims to a specific object/target in the 

surrounding space and is based on the motion of both the shoulder and elbow joints thanks 

to pre-calibrated torques generated by accurate muscle contractions. Reaching is an 

ability developed gradually in months after birth: at first it is based on a sequence of small 

intermitted movements, each one covering only a small portion of the total distance, but 

already at 36 weeks it is mostly composed by only few movements covering the full 

distance (i.e. reduced movement fragmentation) (von Hofsten, 1979). Forward reaching 

usually involves the Anterior Deltoid muscle first, to protract the shoulder, and the 

Triceps and Biceps Brachii to brake the action of the gravity force on the forearm and to 
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guide the extension of the elbow according to the target position (Georgopoulus 1986). 

The concomitant contraction of several muscles is needed to perform the movement and 

different level of activations are required for different types of reaching.  Elements such 

as planned trajectory, velocity and magnitude of movement as well as the fixed or mobile 

position of the reaching target influence the movement itself and consequently also the 

required muscles contractions. Specifically, it can be described by: 

• Path & Trajectory: the former is the sequence of positions the hand follows within the 

surrounding space, the latter is the time sequence of these positions within space. If 

the movement is not constraint, it is usually curvilinearly shaped (Hollerbach and 

Flash, 1982); 

• Velocity: it is usually dome-shaped and single-peaked during a reach and can become 

asymmetric with practice (i.e. ascending trace steeper than the descending one). If the 

same time of movement is required, peak velocity increases with movement 

amplitude and the velocity profile changes according to the optimized parameter such 

as energy, stiffness, etc.; 

• Accuracy: depends on target, velocity and lack of vision. Slow movements are usually 

more accurate and errors detected midway of the movement and eventually corrected 

by additional movements. Experiments requiring to move in the dark or with 

prevented vision demonstrated the importance of visual guidance to locate the target 

in space, monitor the hand/arm during the movement and eventually adjust the hand 

to grasp/touch the target (Brown et al., 1948). 

The reaching movement is the result of a complex sensorimotor integration and planning 

processes, the latter happening within the reaction time in cued movements and taking 

longer time with increasing difficulty of movement choice (Georgopoulus, 1986). It has 

been extensively shown that both supra-spinal (motor and parietal cortices) and 

propriospinal (spinal cord at level of cervical vertebrae C3-C4) mechanisms work on the 

generation of and monitoring of the reaching movement. 

2.2.1 Neural correlates of reaching 

Neurophysiology of reaching – animal studies 

The motor cortex has been the main focus of researchers investigating the mechanisms 

through which the reaching movement is generated and controlled. Early studies 

recording single-neuron activity in behaving monkeys demonstrated the dependency of 

the activity of motor and parietal neuronal populations on specific reaching parameters, 

specifically the movement direction (Mountcastle et al., 1975; Georgopoulus et al., 1983). 
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Specifically, single-neuron intra-cortical recordings showed that each cell fires at its 

maximum when movements are executed in a preferred direction and the rate of firing 

changes gradually with other directions. To better understand how an evolving reaching 

movement is encoded in the motor cortices a novel technique called population code was 

developed, able to predict the movement direction in both the 2D and 3D space, as well 

as during free movements such as drawing (Georgopoulus et al., 1982; Schwartz et al., 

1988; Schwartz and Moran, 1999). According to this analytical method the overall 

movement direction and amplitude can be predicted by, respectively, the angle and the 

length of the vector sum of each single cell firing contribution, the so-called population 

vector. A very similar principle was observed in the visual cortex whereby visual-cells 

are tuned towards the direction of a moving visual stimuli (Steinmetz, 1998). As in the 

visual cortex, preferred movement directions are orderly mapped within the motor cortex 

into micro-columns disposed tangentially along the cortex (Georgopoulus et al., 2007). 

To investigate how changes in the external environment could influence the central neural 

control of reaching, monkeys were taught to adapt to an external force field perturbation 

while intra-cortical recordings were obtained (Gandolfo et al., 2000). From the overall 

neuronal population recorded, nearly ¼ showed changes in the cell tuning properties 

related to movement direction and maintained these properties also when the perturbation 

was removed. These adapting cells were called dynamic and they took on properties of 

the cells most involved in the control of the disturbed movement, a phenomenon called 

directional tuning (i.e. kinematic cells do not change their tuning properties as they are 

already tuned for the disturbed direction) (Overduin et al., 2009). Of note, these changes 

in tuning properties did not correlate with changes in muscle activity, therefore they were 

attributed to mechanisms of formation of internal models handling the applied 

perturbations. More recent investigations observed how different external perturbations 

(i.e. clockwise and counter-clockwise force fields) affected the tuning properties of the 

monitored motor neuronal population whereby, again, a percentage of the observed cells 

changed tuning properties according to the applied perturbation (Cherian et al., 2013). 

However, in this study no evidence of memory was observed once the force field was 

removed and no change in cell preferred direction was recorded as movement curvature 

shifted towards zero with practice (i.e. reduced movement error). This led to the 

conclusion that adaptation with practice was not due to changes in neuron tuning, since 

they maintained their changed properties throughout the whole experiment, but it could 

instead be the result of changes in external inputs to these cells. The same principle was 

deduced observing changes in tuning properties of cells firing during reaching 
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movements that differed only in terms of starting position and posture (Sergio and 

Kalaska, 2003; Ajemian et al., 2001). There are in fact many dense interactions between 

different cortical and deep brain structures which all influence the control of the reaching 

movement and its adaptation to changes in the external environment (Georgopoulus and 

Carpenter 2015). Directional tuning has been described for neuronal populations located 

in different part of the brain such as motor and premotor cortices, parietal cortices, 

cerebellum, basal ganglia and thalamus, a phenomenon called directional motor 

resonance (Mahan and Georgopoulus, 2013). According to this theory, both excitatory 

and inhibitory mechanisms are involved in shaping the required directional tuning based 

on local as well as external neurons whereby the overall output is then transmitted in a 

topographically ordered fashion to interconnected areas. Moreover, the directional tuning 

is thought to be shaped according to the required movement accuracy whereby the more 

accuracy that is needed, the narrower is the directional tuning profile, and an increase in 

the inhibitory drive (at both cortical and/or spinal level) would promote more accurate 

even if slower/weaker movements (speed-accuracy trade-off). In summary, early stages 

findings demonstrated that the motor cortex and other brain areas are directly involved in 

the description of reaching and that the observation of changes in firing rate of neuronal 

population can predict the planned movement direction. As no direct relationships 

between changes in neuronal firing rate and changes in muscle activity was detected, it 

was thought that muscle activations were modulated at the spinal level by local 

motorneurons (Gandolfo et al., 2000). Rhythmic neural oscillatory activity was 

subsequently observed in monkeys’ brains when performing different types of reaching, 

(a non-rhythmic activity) which however were not tuned to movement velocity, complex 

kinematic parameters or even EMG activity, but were found to potentially decode plural 

oscillatory drives whose overall sum could fit muscle activity (Churchland et al., 2012). 

This hypothesis has been recently confirmed by further intra-cortical recordings of 

behaving monkeys which found a direct relationship between reaching movement 

direction, neuronal population vector and muscles recruited to promote the planned task 

(Heming et al., 2016). Specifically, when classifying neuronal populations according to 

their directional tuning, their activity well predicted not only the reaching movement 

direction but also the spatio-temporal dynamics of the muscles groups associated to each 

specific direction. Lastly, neuronal populations in premotor and primary motor cortices 

were also demonstrated to decode trial-by-trial reaching error information, specifically in 

a period after movement and with a causal link (Inoue et al., 2016). These findings suggest 
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the involvement of the motor cortices in both high- (movement planning and error 

detection) and low-level (muscle activity) motor programming processes. 

Neurophysiology of reaching – human studies 

Due to ethical limitations, intra-cortical recordings in humans have always been limited 

to studies with consenting neurologically impaired populations such as paraplegic 

patients (Truccolo et al., 2008), whose neurons in the motor cortex were however very 

sensitive to reaching movement direction. Subsequent non-invasive functional Magnetic 

Resonance Imaging (fMRI) investigations confirmed that, also in humans, movement 

direction is indeed the parameter employed during sensorimotor integration to translate 

high level visual motor processing into low level motor commands (i.e. sensorimotor info 

translated into muscle activation patterns through directional tuning) (Toxopeus et al., 

2011). The primary motor cortex was appointed as the potential candidate from which to 

decode intentional motion commands to be eventually used in assistive technologies, such 

as brain-computer interfaces (BCI). However, many studies have shown that severe 

neural injuries are likely to affect and degenerate the primary motor cortex (Wrigley et 

al., 2008), thus there was the need to identify alternative cortical areas from which to 

decode movement intentions. In a recent study (Fabbri et al., 2010), 14 healthy subjects 

were asked to adapt to reach towards a specific direction while fMRI of their behaving 

brain was recorded. Changes in movement direction and motor task at the end of reaching 

(i.e. grasp or press) were instructed to the participants in order to observe which brain 

areas were most sensitive to directional tuning (high level of movement programming) 

and type of motor act (low level of movement programming). This was the first study that 

employed a non-invasive neuroimaging technique instead of intra-cortical recordings to 

study directional tuning in the healthy human brain. Neuronal populations tuned to 

diverse movement directions in different brain areas such as the primary motor cortex, 

the dorsal premotor cortex, the parietal reach region, the anterior and medial inter-parietal 

sulcus and the cerebellum. Specifically, 1) the strongest sensitivity to the type of final 

motor act was observed in the primary motor cortex and was weakest in the parietal 

region, whereas 2) the strongest directional sensitivity was detected in the reach parietal 

region and was weakest in the motor cortex. These results suggested that the parietal 

region is most involved in the programming of reaching at the highest level of 

abstractness: it is likely to process information before the real motor command is specified 

in terms of muscle activations, torques and joint angles. On the contrary, final motor 

commands are likely to be decoded in the primary motor cortex, the place with the lowest 

level of abstractness.  
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It is therefore likely that the primary motor cortex is involved in both high (abstract 

processing) and low (motor commands) level of movement programming. In summary, 

upper-limb reaching is a complex movement promoted by abstract and low-level 

sensorimotor integration and planning processes involving many cortical areas and deep 

brain structures in an orderly synchronized fashion (Georgopoulus and Carpenter, 2015). 

Moreover, thanks to the relationship between intra-cortical and non-invasive 

neuroimaging techniques (Fabbri et al., 2010), it is now possible to reliably observe, study 

and draw conclusions about brain activations during natural and disturbed reaching in 

healthy and neurologically impaired populations. 

Non-invasive neuroimaging studies 

Non-invasive recording techniques are indeed more easily employed than intra-cortical 

recordings for the study of neural activations in both healthy subjects and patients, 

especially from an ethical point of view. Early non-invasive investigations of the neural 

correlates of the natural reaching movement observed changes in regional cerebral blood 

flow (rCBF) through Positron Emission Tomography (PET), a nuclear imaging technique 

able to detect gamma rays emitted by a tracer injected into the body via a biologically 

active molecule and convert the captured energy into electrical signal then used to create 

images (Phelps et al., 1980). PET confirmed previous findings obtained via intra-cortical 

recordings in monkeys a multiple brain sites showed increased blood flow during the 

reaching movement: it was suggested that reaching activates a fronto-parietal network 

called the dorsal visual stream (Grafton et al., 1996, Battaglia-Mayer et al., 2003) 

contralateral to the moving arm. Specifically, neuronal activity in the parietal areas are 

thought to be most related to the visual location of the target within the external space 

(Andersen et al., 1997) as well as the hand movement during the action (Nakamura et al., 

2001), whereas premotor and motor cortex neuronal populations seem to be involved in 

the encoding of requested movement direction and amplitude (Fu et al., 1995). Despite 

the positive results obtained with PET, this technique does not represent the actual activity 

of neuronal populations (expressed through electrical impulses), but simply the changes 

in blood amount received by a specific brain region. Instead, electroencephalography 

(EEG) is another non-invasive recording methodology that, through surface metal 

electrodes positioned in predefined specific locations on the human scalp, is able to detect 

electrical activity generated by neuronal potentials (Berger, 1931). EEG has been and is 

currently extensively used for several different applications from psychology and 

psychiatry, physiology and rehabilitation and is able to register neural electrical activity 

with a good temporal resolution (usually of milliseconds). The electrical signals 
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registered by the scalp electrodes are the sum of several single-neuron activations 

attenuated of a certain gain because of the transmission through scalp tissues (bone and 

skin). Electrical impulses travelling through the scalp are also likely to spread over a 

wider area because of the high conductivity of scalp tissue, a problem called volume 

conduction, which implies a poor spatial resolution. However, this problem can nowadays 

be overcome by advanced analytical methods able to localize the sources of the recorded 

surface signals. Moreover, recordings are very easy to setup and instrumentation is 

cheaper than functional neuroimaging scanners, which makes EEG one of the favourite 

non-invasive neural recording techniques. Through EEG recordings, the neural correlates 

of voluntary externally-cued reaching were non-invasively investigated and the 

involvement of several brain areas collaborating together for the planning and execution 

of the movement was further confirmed (Naranjo et al., 2007; Dipietro et al., 2014). 

Measures of time-locked spontaneous changes in the activity of neuronal populations as 

induced by specific external sensory events, called Event-Related Potentials (ERPs) were 

firstly employed (Pfurtscheller and da Silva 1999). Different brain areas activations were 

demonstrated to temporally act both sequentially and in parallel: in fact, when reaching 

with the right arm, a complex pattern of activation including premotor, prefrontal, 

paracentral and parietal areas occurred in healthy subjects between 140-170 ms after the 

cue, to which the left occipital cortex joined at around 210 ms together with the bilateral 

superior parietal lobules until 300 ms, after which ERPs decreased until movement onset 

(Naranjo et al., 2007). As previously mentioned, the reaching movement is usually 

composed by more than one sub-movements as online control mechanisms monitor and 

update the action correcting potential ongoing errors to achieve a smoother behaviour 

(von Hofsten 1979). This has had strong implications in rehabilitation strategies, for 

example for stroke survivors: hemiplegic patients that trained with a robot-mediated 

point-to-point reaching task improved their movement performance on a not-trained task 

(i.e. circle drawing) by performing smoother movements made of fewer, longer and faster 

sub-movements (Dipietro et al., 2009). The study of the neural correlates of sub-

movements during externally-cued voluntary reaching further confirmed the involvement 

of a fronto-parietal network during planning and movement execution time periods, but 

also demonstrated that the occurrence of each sub-movement was accompanied by equal 

stereotyped ERP components and topographical scalp activations (Dipietro et al., 2014). 

Specifically, there was an increased negativity over parietal-occipital areas as well as an 

increased positivity over frontal and central areas within 200 ms after target presentation; 

polarity inverted at the onset of muscular activity and lasted till nearly 500 ms, in line 
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with previous findings (Naranjo et al., 2007). This pattern was observed at the advent of 

each sub-movement, suggesting that the neural control of sub-movements is stereotyped. 

Studies investigating changes of EEG power activity also shed some light on the neural 

correlates of externally-cued voluntary reaching movements, typically characterized by 

an increase of intensity of oscillatory waves at both low (< 8 Hz) and high (> 35 Hz) 

frequencies and by a decrease of amplitudes of oscillations at middle frequencies 

(between 10 Hz and 30 Hz) with respect to a resting period (Waldert et al., 2008; Demandt 

et al., 2012; Storti et al., 2015). Reaching movement intentional direction could be 

inferred on a trial-by-trial basis through the detection of low frequency oscillations () 

increased power (i.e. Event-Related Synchronization, ERS) (Waldert et al., 2008; Ubeda 

et al., 2017). High-frequency oscillatory activity () usually show an increase (ERS) 

around movement onset and offset localized over contralateral primary motor cortex (Ball 

et al., 2008) and frontal areas (Babiloni et al., 2016), and are thought to be involved in 

fast processing of information mostly during movement execution. On the contrary, 

middle frequencies oscillations power (α and β) typically decreases (i.e. Event-Related 

Desynchronization, ERD), during voluntary (reaching) movement and is symbolic of 

ongoing sensorimotor integration processes (Pfurtscheller and da Silva, 1999; Engel and 

Fries, 2010). Moreover, the period after movement offset is usually characterized by a β 

ERS called Post-Movement β Synchronization (PMBS) or β rebound, thought to reflect 

neural processes related to trial-by-trial error detection and update of neural mechanisms 

of motor control (Tan et al., 2014; Torrecillos et al., 2015; Fry et al., 2016; Tan et al., 

2016). 

In summary, the neural correlates of voluntary reaching have been extensively studied 

and described with different techniques, both invasive and non-invasive; it usually 

recruits a group of brain areas (the fronto-parietal network) in order to achieve movement 

planning and execution; several stereotypical features of reaching have been identified 

through intra-cortical recordings (e.g. the population vector) and electroencephalography 

(e.g. frequency-specific ERD/ERS), which could be potential candidates as controlling 

signals for assistive technologies. 

2.2.2 Reaching impairments and assistive technologies 

Reaching impairments can arise from many disorders of different nature and cause. For 

example, it is known that temporarily prevented vision of the reaching arm undermines 

reaching performance in healthy subjects, and severe disorders caused by lesions in the 

posterior parietal cortex such as optic ataxia (Balint, 1909) and visual disorientation 
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(Holmes, 1918) confirm the importance of visual guidance during reaching. Poor 

reaching performance can also be observed in parkinsonian patients when no online 

feedback is provided to them during unfamiliar tasks (Krebs et al., 2001), suggesting 

difficulties in operating in different sensory modalities where integration of 

proprioceptive information of the moving limb without visual aid is required. Upper-limb 

motor impairments can also originate from neurodegenerative disorders such as 

neuropathies, myopathies and Amyotrophic Lateral Sclerosis (ASL), whereby recovery 

is not an option and long-term functional assistive systems are required (Tsu et al., 2015). 

Acute stroke is a sudden neurological deficit, due to lack of blood flow (ischemic stroke) 

or the spread of blood within neural tissues (haemorrhagic stroke), which lasts for more 

than 24 hours and usually causes the hemiparesis of the limb(s) contralateral to the infarct 

brain hemisphere (Beyaert et al., 2015). Post-stroke recovery is usually slow and 

incomplete within the first year after the traumatic episode (Langhorne et al., 2011). 

Reduced upper-limb movement ability in stroke survivors can be due to paresis, loss of 

fractioned movement (i.e. abnormal synergies of the upper-limb), abnormal muscle tone 

(usually hypertonicity), and loss of somato-sensation (i.e. ability to monitor and correct 

movement online) (Nordin et al., 2014). In general, neurologically impaired patients can 

be classified into two categories: those with absolute no ability of muscular control 

remaining and those showing partial control of their muscle activations.  

Patients with moderate to severe motor deficits are usually not able to consistently and 

actively engage in rehabilitation therapies. Examples are patients that have suffered from 

severe Spinal Cord Injuries (SCI), which are injuries of the spinal cord (that can happen 

at any level of the spine) caused by compulsion, incision or contusion. As a result, all or 

most of the functions performed by the spinal cord are interrupted at the distal level of 

the injury. According to the American Spinal Injury Association (ASIA) scale for spinal 

cord injury (Nas et al., 2015), SCI patients can be classified into five categories (ASIA-

A/B/C/D/E) based on their level of sensory and motor functions as assessed by 

international standards (International Standards for Neurological Classification of Spinal 

Cord Injury, ISNCSC) (Kirshblum et al., 2011).  For patients with no/poor motor and 

sensory functions, brain-machine/computer interfaces (BMIs/BCIs) are strongly 

suggested as definitive means through which to substitute a lost control ability and 

augment human interactions with the external environment (assistive BMIs/BCIs) 

(Millan et al., 2010). All BCI/BMI systems are based on the same principle of decoding 

brain intentional signals through which an external device is then activated. Current 

technologies are able to record single-neuron activity (i.e. spikes) through implanted 
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micro-electrodes arrays (MEAs) or electrocorticography (ECoG) (Tsu et al., 2015) which 

allow reliable detection of intentional movement commands. This was for example the 

case of a tetraplegic 52-year old woman who learnt how to interact with a BCI robotic 

system that translated her intentional movement commands, recorded through a single-

neuron intra-cortical implant placed on her motor cortex and expressed through neuronal 

population vector (Georgopoulus et al., 1982), into movements (Collinger 2012). This 

system showed the potential of recent developments in assistive technologies, but also 

highlighted some design weaknesses that still need to be overcome: these advanced 

systems are indeed so far only lab-based, and there is the need for implantable wireless 

and more robust/durable systems (Tsu et al., 2015). Other types of BMI/BCI systems have 

therefore been developed based on non-invasive recordings of movement intentions such 

as scalp electroencephalography electrodes: these applications have been used 

extensively in clinical rehabilitation purposes, are non-invasive thus easier to implement 

and allow the control of different devices even if less accurately then single-neuron 

recordings (Courtine et al., 2013; Millan et al., 2010). Several non-invasive BCIs/BMIs 

have been developed to tackle different human deficits from the impossibility to speak 

(Birbaumer et al., 1999), to promote mobility (Millan et al., 2009) and rehabilitate (Ang 

et al., 2015). When no motor ability is left, motor BCIs/BMIs can be controlled through 

brain signals generated through Motor Imagery (MI), a dynamic neural state during which 

the representation of the intentional movement is created within the brain without any 

external motor output (Millan et al., 2010). Motor BMIs based on MI have been recently 

used in extended clinical trials coupled with targeted physiotherapy and were shown to 

be promising in terms of long-term motor recovery (Simmons et al., 2008). Moreover, 

hybrid BCI systems are nowadays of great interest since, combining one brain channel 

with other bio-signals (e.g. electromyography, EMG) or special devices (e.g. switches), 

the control can be operated through different modalities and patients can switch between 

them according to the level of fatigue, preference or performance (Millan et al., 2010; 

Leeb et al., 2010b). In general, non-invasive brain interfaces are indeed preferred at the 

moment and optimization studies are currently investigating how to improve quality and 

reliability of these systems. For example, it is currently debated whether dry or gel-based 

EEG electrodes would be more appropriate for a home-based BCI application (Käthner 

et al., 2017). Contextualized BMIs/BCIs in the home environment is the current challenge 

and researchers are trying to create light and user-friendly systems that could be easily 

operated by patients or care-giver at home in the long-term. 
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When residual motor ability is available, BCI/BMI systems are usually used as potential 

long-term rehabilitative tools (rehabilitative BMIs/BCIs) whereby therapeutic 

interventions are programmed according to the patient-specific motor deficits status with 

the final goal to promote neural plasticity and facilitate motor re-learning (Soekadar et 

al., 2015). The basic principle at the basis of BMI/BCI-mediated rehabilitation comes 

from the Hebbian theory according to which neural plasticity is mostly promoted by the 

simultaneous activation of presynaptic (descending commands) and postsynaptic 

(ascending feedback) (Hebb, 1949). To strengthen the injured ipsilesional cortex and 

boost neural plasticity, rehabilitative BMIs/BCIs should therefore include a sensory-

proprioceptive feedback channel to subjects (Oweiss and Baldreldin, 2015). One of the 

first non-invasive BMI based on these principles exploited EEG signals within the 

sensorimotor rhythms (SMR, 8-15 Hz) to enable severely affected stroke survivors to 

control an orthotic to open and close their paralyzed hand (Birbaumer and Cohen, 2007). 

BMI training of the ispilesional limb paired with specifically targeted physiotherapy 

promoted notable motor improvements in stroke survivors that had no finger movement 

abilities (Ramos-Murguialday et al., 2013). The evolution of brain interfaces technologies 

saw the combination of an EEG-based MI BCI coupled with a rehabilitation robotics 

(MIT-Manus) for the recovery of the upper-limb mobility (both shoulder and elbow 

joints) tested on a group of hemiplegic chronic stroke survivors (Ang et al., 2015). The 

study showed that both the BCI + robot-based and the robot-based trained group 

improved the motor score of the paretic limb in a similar way despite the different number 

of arm exercise (BCI + robot training = 136 repetitions/session; robot training = 1040 

repetitions/session). These findings confirm the crucial validity of sensorimotor feedback 

for the recovery of functional abilities after neural injuries. It is therefore important to 

plan a comprehensive rehabilitation path including more types of therapy when 

recovering stroke survivors as repetitive rehabilitative sessions based on different therapy 

types enhances the chance of recovery. Standard physiotherapy, repetitive active robot-

mediated movement with sensory feedback, training in a virtual reality environment, 

functional electrical stimulation of muscles (FES) and constraint-induced therapy (CIMT) 

are all potential therapeutic interventions that could boost recovery in both the acute and 

the chronic stroke phases (Millan et al., 2010). 

2.2.3 Neurorehabilitation after stroke 

Rehabilitative interventions 

Stroke is one of the leading causes of long-term cognitive and motor disabilities 

worldwide and recovery times are patient-specific. Some patients recover spontaneously 
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during the acute phase but the majority remain permanently disabled with different forms 

of hemiparesis and gait abnormalities, and only few are able to recover during the chronic 

stage with long-term specific therapies (Huang and Krakauer, 2009). In order to 

accomplish motor tasks, if not properly trained, stroke survivors develop typical motor 

abnormalities such as pathological muscle synergies (Brunnstrom, 1970), trunk 

compensatory activations (Cirstea and Levin, 2000), and longer and more segmented 

movements (Dipietro et al., 2009). The goal of neurorehabilitation is to promote the 

development of healthy recovery strategies while removing pathological compensatory 

mechanisms. Targeted physiotherapy is the most common rehabilitative service offered 

to stroke survivors, it aims to improve paretic limb mobility, range of motion and muscle 

tone, but it is a passive therapy that does not boost the active regeneration of lost neural 

function and is therapist-dependent. Following the Hebbian theory, functional recovery 

is mostly boosted when the injured neural pathways are stimulated from both the centre 

(feedforward motor intentional commands) and the periphery (feedback sensory drives), 

thus the active engagement of the patients is strongly recommended despite the lack of 

any residual ability to move. A recent clinical investigation exploited the Hebbian 

principle and combined vagus nerve stimulation (VNS) with upper limb standard 

rehabilitation to promote the generation of novel neural pathways and reported 

preliminary improvements in movement abilities after training (Dawson et al., 2016). An 

example of active movement training is the Constraint-Induced Movement Therapy 

(CIMT), whereby the healthy limb is usually constrained and patients are forced to use 

the paretic limb. This type of intervention has been reported effective for rehabilitation 

of chronic stroke (Sirtori et al., 2009), but it requires remaining residual mobility (which 

many stroke survivors do not have) and is also thought to induce the creation of 

compensatory strategies instead of actual functional recovery. On the contrary, robot-

mediated rehabilitation of the upper-limb (e.g. via exoskeleton or end-effector robots) 

offers the possibility of either assisted or active movements according to patients’ 

capabilities and is currently one of the most recommended therapeutic interventions 

(Huang and Krakauer, 2009; Nordin et al., 2014). Rehabilitation robotics are currently 

programmed with adaptive rules that allow the active movement engagement (non-

assistive modality) but can also detect if patients are not able to independently move, thus 

eventually assisting and allowing the patient to complete the action passively (assistive 

modality) (Krebs et al., 2003). Robotic systems overcome the problem of therapist-

dependent physiotherapy as they never experience human fatigue and limits, thus 

permitting longer training sessions and more repeated movements within each session 
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(Lo et al., 2010). Moreover, they are able to record kinematic data of the performed 

movements through sensors embedded in the robotic arm (e.g. position, velocity and 

exerted force), thus allowing for more specific quantitative descriptions of the recovery 

status. End-effector robots usually mediate simple planar reaching movements (i.e. 2D 

only) and record kinematic data at the end-effector with no possibility to monitor joint-

specific dynamics (e.g. of elbow and shoulder joints) (Turner et al., 2013); exoskeleton 

systems can potentially mediate more free movements within the three-dimensional space 

and record joint-specific parameters, which however need to be then transformed from 

the robotic frame to anatomical coordinates (Nordin et al., 2014). The possibility to record 

reaching-related kinematic parameters is a great advantage for the assessment of the 

effects of rehabilitation and the recovery status as less-subjective and more quantitative 

conclusions can be drawn in comparison to standard assessment scale measures such as 

the Fugl-Meyer score (Fugl-Meyer et al., 1974; Turner et al., 2013). Many clinical studies 

confirmed the usefulness of assessing recovery and movement quality through a 

combination of kinematic measures and clinical scores (Mazzoleni et al., 2014; Dipietro 

et al., 2007; Zollo et al., 2011; Turner et al., 2013), and other recording techniques could 

potentially be simultaneously employed to register the physiological activity of muscles 

(EMG) and brain (EEG), for a comprehensive multi-level analysis of recovery (Sale 

2015). End-effector robotics has been proved very useful in the rehabilitation of stroke 

survivors as it promotes the re-acquisition of transferable motor skills: chronic stroke 

patients trained for 18 weeks with a simple point-out reaching protocol showed an overall 

improvement of upper-limb control, smoothness of movement and muscular synergies 

also when performing a not-trained task (i.e. drawing a circle) (Dipietro et al., 2007). It 

is indeed quite common that, with time, patients improve performance on the trained task 

but are not able to accomplish not-trained natural movements such as grasping a bottle of 

water or opening a door in the home environment. Moreover, each patient has his/her-

specific impairments and recovery potentials, thus it is not possible to define a standard 

therapeutic path that could successfully rehabilitate every stroke survivors (Semrau et al., 

2015). To summarise, there is the need for identifying personalized therapeutic 

interventions that could boost a generalized recovery, and rehabilitation robotics seems a 

valid candidate to promote it. Moreover, more specific and comprehensive assessment 

measures, both behavioural and physiological, would support the identification of the 

right therapeutic interventions and are therefore needed in order to describe different 

aspects of the recovery process from a multi-level perspective. 
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Motor skill learning 

As aforementioned, rehabilitation after a neural injury is crucial for a good recovery: as 

stroke survivors have lost their ability to move a specific limb as well as the knowledge 

of how to do that, thus the rehabilitation process need to promote the re-learning of the 

lost motor skills. New motor skill learning is a process that promotes changes at neural 

level needed for improving movement performance in terms of velocity and accuracy (i.e. 

speed-accuracy trade-off), and can be obtained by learning new motor execution 

strategies (i.e. movement known, improved speed and accuracy as in visuomotor 

tracking) or by improving selection skills (i.e. movement not known, improved prediction 

skills and reaction times as in serial reaction time tasks) (Diedrichsen and Kornysheva, 

2015). Motor learning is a long-term process involving adaptation to a new task, user-

dependent plasticity, retention across training sessions, consolidation over time, and 

awareness (Huberdeau et al., 2015; Krakauer and Mazzoni, 2011); it includes many 

different types of tasks such as serial reaction time, sequential force control, fast 

sequential finger tapping and visuomotor rotations. Motor adaptation alone is the basis of 

motor learning and is defined as the re-calibration of an already known movement as a 

reaction to specific changes in the interacting environment (Huang and Krakauer, 2009). 

It is usually characterized by an increase in movement error when the environmental 

change is first presented, followed by a trial-by-trial performance improvement based on 

the optimization of the sensory-prediction error and eventually characterized by 

temporarily persisting adapted behaviours (i.e. after effects) once the external alteration 

is removed. To understand the basis of motor learning several studies investigated how 

subjects adapt their motor output and computed potential internal (neural) models able to 

describe and predict behaviour. It is thought that motor learning involves multiple 

adapting processes working in parallel which have been so far described by linear time-

invariant multiple-state models (Smith et al., 2006), Bayesian probabilistic models (Wei 

and Körding, 2010) or non-parametric regression algorithms (Lonini et al., 2009). Each 

model describes the rules by which each process updates its internal model on a trial basis 

at a process-specific rate and the sum of all processes outputs generates the required 

compensating motor command. To simplify, adaptation was shown to depend on two 

major memory processes, 1) a slow component that adapts slowly, is associated to implicit 

memory (i.e. learning without awareness), is modulated by prediction errors and can be 

expressed at low reaction times, and 2) a fast component that adapts rapidly, is associated 

to explicit memory (i.e. learning with awareness), is sensitive to performance error and 

requires a long time before it is expressed (Smith et al., 2006; Huberdeau et al., 2015). 



34 

 

Recent findings showed that older adults’ decline in motor leaning abilities is likely due 

to impaired retention (i.e. ability to maintain a fraction of the previously learnt task) of 

the slow process and that additional impairments of retention of the fast process is subject-

dependent and would further influence the decline of motor leaning capabilities 

(Trewartha et al., 2014). Robot-mediated adaptation to an external force-field (e.g. 

velocity- or position-dependent, curl or resistive forces) has been extensively studied in 

order to identify the different aspects of motor learning and to test it as a potential 

therapeutic intervention for stroke rehabilitation: it was indeed shown that stroke patients 

can adapt as healthy subjects even if over more trials (Scheidt and Stoeckmann, 2007), 

and that it is possible to manipulate the training environment so that the adaptation after-

effects resemble a more natural behaviour (Patton and Mussa-Ivaldi, 2004). Investigating 

how motor learning can be facilitated and stabilized over time, it was recently 

demonstrated that providing punishment feedback enhanced memory retention in error-

based protocols (probably triggering increased cerebellar sensitivity to sensory prediction 

error), whereas providing reward feedback enhanced memory retention regardless of the 

followed protocol (likely mediated by stronger memory traces in the primary motor 

cortex) (Galea 2015). These findings would have a strong impact for the definition of 

neurorehabilitation protocols as accelerated online performance improvements and 

stronger memory retention could be simply obtained by providing punishment and reward 

feedback (Quattrocchi et al., 2017). On the contrary, learning a secondary task straight 

after adaptation to a primary perturbation has been shown to prevent motor memory 

consolidation and undermine motor learning, a phenomenon called retrograde 

interference (Brashers-Krug et al., 1996). However, if the secondary task depends on a 

different kinematic parameter (e.g. adaptation to velocity-dependent force field and then 

to a position-dependent force field) both retrograde and anterograde interference (i.e. the 

disrupted performance of a secondary task due to adaptation to a previous perturbation) 

are not complete, suggesting that motor memory retention is likely not affected when 

consecutive tasks do not conflict in the working memory (Bays et al., 2005). Moreover, 

it has been recently shown that learning to adapt to two subsequent velocity-dependent 

force fields (in order: clockwise and counter-clockwise) is possible when specific limb 

orientations are chosen (Yeo et al., 2015). Internal (neural) models of adaptation have 

been linked to specific muscular activations during adaptation to novel environmental 

dynamics (Milner and Franklin, 2005). It was indeed observed that the initial stage of 

adaptation is usually characterized by feedback responses based on reflexes and voluntary 

corrections, whereas later stages of adaptation are featured by feedforward mechanisms 
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such as muscle co-contraction patterns able to produce the required counteracting force. 

This evidence supports the hypothesis that internal adaptation models adapt and generate 

responses in a feedback or feedforward fashion according to the adaptation stages. 

Functional neuroimaging studies have shown that, at early stages of adaptation, a cortical-

striatal loop is involved in which the frontal cortex temporarily store the sensorimotor 

information for imminent use, whereas at later stages of adaptation a cortico-cerebellar 

loop is recruited in which the parietal cortex as well as the cerebellum act as long-term 

memory storages (Shadmehr and Holcomb, 1997; Krebs et al., 1998; Doyon et al., 2009). 

The passage from novice to skilled performer is therefore mediated by passing from the 

cortico-striatal to the cortico-cerebellar control of the performed motor action. The 

importance of either mechanisms has been confirmed by motor adaptation studies with 

cerebellar patients (Thach, 2007), who showed impaired performance and inability to 

adapt, and with patients with basal-ganglia dysfunctions (Smith and Shadmehr, 2005), 

who showed adaptation on a trial basis with however a poor compensation in the early 

part of the reaching movement. Moreover, consolidation is a crucial element of motor 

learning and it strongly depends on the type of learning paradigm: for example, motor 

sequence learning is sleep dependent and consolidation can be observed by increased 

functional connectivity of the striatum when the same task is repeated after sleep, whereas 

motor adaptation is simply time dependent and mostly relies on the cerebellum (Debas et 

al., 2010). Specifically, sensorimotor adaptation was shown to stabilize in a time window 

of 6 hours and to activate a network including motor, premotor, posterior parietal cortex, 

cerebellum and putamen whose activation positively correlated with long-term memory 

retention (Della-Maggiore et al., 2017), in line with previous findings. How permanent 

neural changes (i.e. neural plasticity) are obtained during motor skill learning is still under 

debate: large-scale brain networks were found more flexible during early stages of motor 

learning and the subject-specific degree of flexibility was then positively correlated with 

the observed learning rate and performance (Bassett et al., 2011). Motor adaptation 

paradigms, combined with real-time biofeedback, non-invasive brain stimulation or 

pharmacological treatments should target and modulate neural networks flexibility 

exploiting neural redundancy (i.e. ability to maintain a given behaviour despite the injury) 

and variability (i.e. ability to generate novel pathways) for a successful and functional 

recovery (Buch et al., 2016). 

2.3 Motor control of the lower limb during locomotion 

Bipedal locomotion is the ambulatory characteristic typical of the human species and one 

of the most spontaneous activity humans do every day. It is orchestrated by a hierarchical 
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structure composed of different levels of neural, muscular and sensory control which 

together stabilize the body and generate the forward propelling force. Figure 2-3 describes 

the biomechanical sequence of the events of a complete stride (i.e. right-left-right foot 

sequence, or vice versa). At the time of heel strike/contact with the ground (initial loading 

response (LR) phase), the leg is completely extended thanks to knee and hip extensor 

muscles, while reaction forces with the ground decelerate the trunk forward movement. 

In the late LR phase, trunk deceleration is further supported by foot plantar-flexor muscles 

as the foot is completely flat on the ground, when the single-leg support phase begins (i.e. 

stance phase). Stance is mediated by knee extension and calf muscles contraction, while 

the ankle joint executes a dorsiflexion movement promoting the passage from mid- to 

late-stance (i.e. flat foot to heel rise). In the subsequent pre-swing (PS) phase, the plantar-

flexor muscles contract first to promote body support and forward progression beyond 

the standing foot, and then to generate enough force to push-off the leg and begin the 

swing phase. Swing phase is obtained by ankle dorsiflexion, knee and hip extension, and 

the forward movement of the swinging leg is ultimately obtained by the contraction of 

the hip flexors. Gait is a rhythmic activity, the same sequence of events is repeated on the 

contralateral side of the body (Burnfield, 2010). Each stride event has been attributed to 

the synchronous activation of a group of muscles collaborating together to accomplish a 

specific task, namely synergies or modules (Neptune et al., 2009). Body weight is 

supported by hip extensors, knee extensors and hip abductors (Module 1) in early stance 

and by plantar-flexors in late stance (Module 2). Forward propulsion is promoted by 

hamstrings (Module 4) in early stance and Module 2 in late stance, whereas trunk 

deceleration is mediated by both Module 1 and Module 2. Ankle dorsi-flexors and rectus 

femoris (Module 3) contract together with hip flexors and adductors (Module 5) to 

accelerate the leg in early swing. Module 4 decelerates body weight before heel contact 

with the ground. By changing the duration and amplitude of any of the modules (i.e. 

synergies) it is possible to produce different biomechanics and consequently different 

walking patterns (Allen and Neptune, 2012).  
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Figure 2-3: Gait biomechanics. 

Temporal evolution of gait biomechanics over a complete gait stride (as adapted from Beyaert et al., 2015).  
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2.3.1 Neural correlates of locomotion 

Neurophysiology of locomotion – animal studies 

A complex hierarchical neural structure controls each element of forward walking, 

monitoring and correcting potential errors through volitional and automatic processes 

(Bayert et al., 2015). The spinal cord contains specific inter-neuronal populations, the 

Central Pattern Generators (CPGs), composed by two half-centres (i.e. extensors’ and 

flexors’ centres), which reciprocally inhibit each other and generate the rhythmic neural 

activity needed to activate extensors and flexors in an alternate fashion. This activity is 

then transmitted through a second layer of interneurons (the pattern generators) to the 

target motor-neurons innervating the ipsilateral leg and induces the muscle contractions 

needed to promote gait (Takakusaki, 2013). To understand if the CPGs half-centres had 

comparable roles, fictive locomotion was induced in de-cerebrated cats by stimulating 

higher supra-spinal structures and registering the activity of peripheral nerves innervating 

flexors and extensors through invasive hook electrodes (i.e. electroneurography, ENG) at 

the transition between two consecutive phases of locomotion (Boothe et al., 2013). 

Interestingly, it was observed that stronger inhibition was exerted in the transition from 

extensors to flexors activation than vice versa. The CPGs are commanded by higher spinal 

structures: the brainstem is involved in the control of gait, namely the cerebellar 

locomotor region (CLR) and the midbrain locomotor region (MLR). The MLR directly 

activates the rhythm-generating system composed of reticulo-spinal neurons located 

within the medullary reticular formation (MRF), which indirectly excite or inhibit 

motoneurons via the spinal interneurons (Takakusaki, 2013). When stimulating the MRF 

of de-cerebrated cats while recording intra- and extra-cellular activity at the lumbar spine, 

mechanisms of inter-neural inhibition and of supra-spinal and peripheral interactions 

were revealed and linked to the control of postural muscle tone (Takakusaki et al., 2003). 

Subsequent studies demonstrated that the electrical stimulation of the MLR structure in 

de-cerebrated cats initiated locomotion and dictated the level of the force generated when 

stepping (Drew et al., 2004). Information on the generated rhythm and the muscular 

pattern are also simultaneously sent to supra-spinal centres for a continuous control of the 

movement through afferent pathways within the spinal cord. Muscles spindles, joint 

mechanoreceptors, proprioceptors and skin sensors generate all sensory afferent drives 

that travel to the spinal cord and eventually to supra-spinal centres and promote the 

control of movement phase alternation, the regulation of muscles activations and force, 

the monitoring of obstacles and the prevention of muscles fibres overstretch (Rossignol 

et al., 2006). Rhythmic motor systems usually convey motor patterns consisting of two 
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phases associated to the movement of distinct body segments and the transition from one 

phase to the next could be triggered by sensory feedback (e.g. the passage from stance to 

swing phase during walking is thought to be promoted by mechanoreceptors at hip joints 

signalling the loading of the leg) (Takakusaki, 2013). This is believed to be a control 

mechanism to ensure that the rhythm is properly coupled to the biomechanical state of 

the moving segment (Pearson, 2004). However, the generation of rhythmic activity 

cannot simply rely on afferent feedback as any damage to sensory pathways would 

deteriorate or even interrupt movement generation. Moreover, sensory feedback contains 

information on movement error further employed by supra-spinal mechanisms for 

adaptation and online modification of the motor pattern. The posterior parietal cortex 

(PPC), for example, was found to be involved in sensorimotor integration mechanisms 

(Buneo and Andersen, 2006) and subsequently appointed as the potential visuomotor 

integrator during gait. Indeed, intra-cortical recordings of visually-guided walking cats 

showed rhythmically discharging neurons in the PPC (Beloozerova and Sirota, 2003). It 

was then postulated that PPC neurons were involved in the regulation of inter-limb 

coordination during locomotion requiring visual guidance (Lajoie et al., 2010). Implanted 

electrodes recorded PPC neuronal activity in walking cats and showed a higher level of 

firing in the majority of neurons when both fore- and hind-limbs stepped over an obstacle; 

moreover, when the obstacles were shifted forwards delaying the overstep, a portion of 

those neurons maintained higher firing rate. These results suggested that PPC is involved 

in processes of sensorimotor integration (i.e. visuomotor integration) able to estimate the 

spatio-temporal dynamics of obstacles, as well as in mechanisms of working memory 

able to maintain the previously acquired info and motor program. To test if PPC neurons 

completely relied on visual info to promote visuomotor integration, cats were trained to 

walk on a treadmill with obstacles while their vision was temporarily interrupted 

(Marigold and Drew, 2011). Despite the increased level of difficulty due to prevented 

vision, cats managed to step over obstacles, as if able to memorize the projected obstacle 

position and their relative position for the whole duration of the prevented vision. Intra-

cortical recordings showed that more than half of the recorded PPC neurons did not 

change their discharging rate when vision was obscured, suggesting that these cells were 

likely maintaining memory of the motor plan. However, when vision was restored, cats 

updated the ongoing step and, at the same time, some cells changed their firing pattern as 

if updating the built-in storage capacity of the parietal cortex. Central cortical control 

remains therefore necessary in order to update motor patterns and to generate volitional 

motor commands, such as initiation of gait and pre-gait postural adjustments. The primary 
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motor cortex (M1) is known to generate descending motor commands, the supplementary 

motor area (SMA) is believed to enable anticipatory postural control and the premotor 

cortex (PMC) is thought to be responsible for promoting sensory-guided gait initiation 

commands. Confirmation of these hypotheses was recently obtained as the injection of 

muscimol (a GABAA agonist that blocks spontaneous neurons firing) in the trunk/leg 

region of the SMA of Japanese monkeys disturbed their postural control during walking 

on a treadmill, whereas muscimol injection in the dorsal PMC prevented gait initiation 

when sensory guided but not when gait spontaneously started (Nakajima et al., 2003; 

Mori et al., 2003). In summary, a complex hierarchical structures controls locomotion in 

animal, whereby automatic motor programmers within the spinal cord are able to generate 

rhythmic bursts of activity in motorneurons activating extensors and flexors in an 

alternate fashion, and central neural mechanisms, together with sensory feedback from 

the periphery, play a role in movement generation, adaptation and correction. 

Neurophysiology of locomotion – human studies 

Human studies also aimed to understand how human locomotion is managed and if a 

similar hierarchical structure to that of animals could be found. For instance, the presence 

of spinal cord inter-neuronal populations automatically generating gait patterns was 

observed in humans by electrically stimulating the lumbar spine of paraplegic patients 

suffering of long-standing spinal cord injury. Interestingly, muscular activations similar 

to those generated when walking were observed and rhythmic alternating stance-swing 

phases were successfully induced (Dimitrijevic et al., 1998). Moreover, evidence that the 

brainstem is also involved in the control of human locomotion were deduced from studies 

with a patient with lesions of the MLR structure who could not stand or walk (Masdeu et 

al., 1994), with patients with brainstem lesions showing gait difficulties (Hathout and 

Bhidayasiri, 2005), and with parkinsonian patients that, when implanted with DBS 

stimulating the MLR, improved their gait abilities (Plaha and Gill, 2005; Stefani et al., 

2007). The role and collaboration of different supra-spinal structures were then observed 

through different investigations. In an fMRI study, whereby healthy subjects imagined 

walking, both cortical and midbrain structures involved in planning the execution of the 

gait movement (as they were performing motor imagery and not actually moving) were 

found (Jahn et al., 2008). First, an increase of activity occurred in the frontal and the 

parahyppocampal gyri, known to send signals to the basal ganglia and through them to 

the rhythm generators; second, the cerebellum, the CLR and the vermis, known to 

integrate several sensory feedbacks (proprioceptive, visual and vestibular), were found 

more active; third, an increased activation occurred in the MLR, which is known to send 
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motor commands to the MRF and through it to the spinal cord CPGs. Subsequently, 

evidence of cortical activity related to locomotor control were mostly deduced observing 

patient behaviours and impairments (Bartels and Leenders, 2008). Studies of balance 

control improvements after stroke showed that SMA activity registered through 

functional near-infrared spectroscopy (fNIRS) was significantly increased after intensive 

gait rehabilitation, confirming its major role in postural adjustments and balance control 

already postulated in animal studies (Fujimoto et al., 2014). As the brainstem receives 

descending pathways from both SMA/PMC and M1, it is possible that either postural 

preparation information is received before actual motor commands either information of 

precise lower limb segments movement is first forwarded to M1 and subsequently 

transmitted downwards through the corticospinal tract (Takakusaki, 2013). Many 

investigations have focused on gait impairments in neurological patients such as Freezing 

of Gait (FoG), a complex gait condition in which patients cannot initiate a step, likely 

caused by the degeneration of essential gait control components such as frontal and (right-

) parietal networks (Bartels et al., 2006). Frontal cortex involvement could explain the 

presence of FoG also in frontal lobe disorders and could also impair the ability to maintain 

focused attention on gait while in need to simultaneously process external stimuli (i.e 

multi-tasking ability) (Gilaldi and Jeffrey, 2006). The PPC is instead believed to be 

involved in the integration of sensory info with motor plans, which is severely impaired 

in PD patients with FoG (Lee et al., 2005). Moreover, degeneration of the basal ganglia 

(BG) likely contributes to enhanced gait impairments: BG send facilitating drives to the 

PMC to promote gait initiation based on sensorimotor info received through efferent 

projections from sensorimotor and associative cortices (Huang et al., 2007). Any damage 

in this loop will most likely contribute to increase gait impairments and worsen FoG. In 

summary, a hierarchical structure similar to those of animals is therefore likely to underlie 

rhythmic (e.g. rhythm generation and muscle tone) and volitional (e.g. gait initiation and 

online correction) human gait control, whereby a stronger supra-spinal control is assumed 

to be in place (Takakusaki, 2013; Takakusaki, 2017). 

Non-invasive neuroimaging studies 

The most challenging aspect of studying the neural correlates of human gait lays within 

the technical limitations of the current neuroimaging techniques. Brain activations 

registered during ankle dorsi-flexion movements were first employed to assess motor 

learning during gait rehabilitation (Dobkin et al., 2004). With this protocol, chronic stroke 

survivors exhibited walking kinematics improvements associated with practice-induced 

brain plasticity such as increased activity in M1, S1 and CMA during recovery. Motor 
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imagery has also been employed to evaluate brain activations during imagined gait 

through fMRI (Jahn et al., 2008, Labriffe et al., 2017), and recent MRI-compatible 

systems allow simulation of “walking sensations” while subjects are lying in an MRI 

scanner (Labriffe et al., 2017; Ikeda et al., 2016). However, all these protocols are far 

from representing real walking behaviours. To overcome these issues, studies have started 

to use alternative mobile techniques, such as fNIRS, able to record the brain 

hemodynamic responses in mobile paradigms. By observing changes in oxygenation 

levels through a whole-head fNIRS system, increased activity was observed in the medial 

primary sensorimotor cortex as well as in bilateral supplementary motor area during 

treadmill walking (Miyai et al., 2001). A recent study investigated through a whole-head 

fNIRS system the effects of different gait training paradigms, hypothesising that different 

cortical activations would be observed (Kim et al., 2016). Stepping walking, treadmill 

walking and robot-assisted walking paradigms at different speeds were employed, and 

regardless of the undertaken protocol an increased activity in a locomotor network 

including sensorimotor (SMC), premotor (PMC) and supplementary motor areas (SMA) 

was observed. Several investigations are also exploiting real-world contexts by 

employing mobile fNIRS systems to study brain activities during real-life situations 

(Fujimoto et al., 2014; Al-Yahya et al., 2016; Holtzer et al., 2011), although many of them 

focused only on a limited brain area (i.e. PFC) which limits a more comprehensive 

understanding of the underlying whole-brain cortical mechanisms (Metzeger et al., 2017). 

EEG has very recently been optimized for mobile approaches and currently is widely used 

in studies investigating the neural correlates of gait and other natural behaviours (Cevallos 

et al., 2015; Ladouce et al., 2017). EEG evidence confirmed that gait control in healthy 

adults recruits a widely distributed cortical network involving primary somatosensory, 

somatosensory associative, primary motor and cingulate cortices (Knaepen et al., 2015), 

in line with previous indirect fMRI findings (Dobkin et al., 2004). The gait-cycle phase 

related cortical oscillations were first investigated as healthy subjects walked freely on a 

treadmill (Gwin et al., 2011). Specifically, α and β frequency power increased during the 

late stance phase within the bilateral sensorimotor and dorsal anterior cingulate regions, 

and high  frequency power modulations were also evident in the PPC, anterior cingulate 

and sensorimotor cortices. Given the complex hierarchical structure at the basis of 

locomotor control, it was subsequently questioned what was the role of the primary motor 

cortex. The relationship between the activities of the leg motor cortical area and that of 

the lower leg Tibialis Anterior muscle was assessed during treadmill walking through 

cortico-muscular coherence measures. Significant coherence was observed during the 
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swing phase in low  frequency range (24-40 Hz), likely modulated by sensory feedback 

and demonstrating the direct involvement of the primary motor cortex in the regulation 

of muscle activity during walking (Petersen et al., 2012). The premotor cortex was found 

to be directly involved in maintaining gait stability, with higher β frequency power within 

the left PMC during stabilized (i.e. constrained medio-lateral movements) versus natural 

walking (Bruijn et al., 2015). The EEG recording technique was also employed to 

evaluate the effects of robot-assisted gait training (RAGT) on cortical activations. M1 and 

PMC α and β activities were constantly suppressed during active RAGT (i.e. PMC was 

more active) than during standing or passive RAGT, whereas low  was modulated so 

that and ERD occurred in pre-swing phase and ERS occurred during stance phase. This 

is likely symbolic of undergoing sensorimotor processes monitoring motion of the lower 

limbs (Wagner et al., 2012). Further investigations confirmed the presence of a sustained 

α and β power suppression during the whole gait-cycle duration, resembling an active 

state of the sensorimotor areas during walking with respect to standing (Engel and Fries, 

2010). Furthermore, gait-cycle phase modulated low  oscillations were observed, likely 

symbolic of sensorimotor processing and integration mechanisms (Seeber et al., 2014, 

Seeber et al., 2015; Bulea et al., 2015).  RAGT training within a virtual reality (VE) 

environment showed increased parietal activations and VE-dependent gait-phase 

modulated low  oscillations, promoting VE as a valid tool for active gait rehabilitation 

(Wagner et al., 2014).  band cortical activity has also been recently suggested to convey 

information on the attentional level during gait as it was possible to decode the attentional 

mechanisms of both healthy subjects and SCI patients, thereby demonstrating different 

levels of selective attentional mechanisms (e.g. patients focused more on gait than on the 

environment and external stimuli) (Costa et al., 2016). This is an useful finding for the 

design of brain-computer interfaces able to decode the cognitive state of the patients and 

adapt the interface accordingly. Non-invasive EEG recordings are indeed used in BCI 

applications for the lower limb (Tucker et al., 2015), and recent analytical methods has 

demonstrated the possibility to infer both gait intentions (Choi et al., 2016) and joint 

kinematics (Presacco et al., 2011). Current and future investigations are exploiting novel 

fully-mobile setups able to register synchronized cortical EEG activity and behavioural 

performance which could be used outside the laboratory environment. This would shed 

some light on natural human behaviour, monitor patient performance in the home 

environment during recovery, and help design better assistive technologies. 
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2.3.2 Assistive technologies and rehabilitation for gait impairments 

During bipedal locomotion, the motor control system needs to support body weight, give 

forward and lateral stability as well as promoting forward progression. These processes 

can be damaged or even stopped in the advent for a neurological injury or disease. Lesions 

of any of the level of the neural control hierarchy impairs initiation and/or maintenance 

and/or modulation of posture and gait. In the advent of a stroke, cortical and descending 

neural pathways are damaged or disrupted, but spinal and musculoskeletal systems 

remains intact, as well as brainstem and cerebellum in the majority of cases (Beyaert et 

al., 2015). Gait abnormalities after stroke can be due to the pathology itself (i.e. disruption 

of descending neural pathways) or to subsequently developed compensatory strategies 

(i.e. abnormal neural adaptive processes). Stroke survivors typically exhibit reduced 

walking speed and asymmetrical walking behaviours, whereby the un-affected side is 

usually most involved in carrying the body weight and propelling the body forward. This 

abnormal behaviour gives way to spatio-temporal asymmetries (e.g. shorter stance and 

longer swing times of the affected limb, shorter step length of the un-affected limb) and 

is strongly correlated with risk of falls and balance impairments (Lewek et al., 2014). 

Muscular impaired control is another consequence of neural infarct: muscles often show 

spasticity (due to the hyper-excitability of spinal reflexes), atrophy (due to limb initial 

immobilisation), and abnormal co-activation patterns (i.e. synergies, modules). The latter 

may be an adaptive strategy adopted to generate joint stiffness and compensate for gait 

instability. A reduced number of activated muscular modules was observed in stroke 

survivors with respect to healthy subjects during gait, likely resulted from merging 

healthy synergetic patterns together (Clark et al., 2010). The number of recorded modules 

correlated with gait velocity and asymmetries and was believed to be the result of adaptive 

response of the central motor system for the automatic and simplified control of the 

affected limb (Routson et al., 2013). Arm swing and trunk movements are also 

characterised by asymmetries in gait-post stroke, with an increase of trunk rotation 

compensating reduced pelvis rotation (Hacmon et al., 2012) and increased trunk 

acceleration especially in the medio-lateral plane (Van Criekinge et al., 2017) with respect 

to healthy adults. Curiously, trunk abnormal movement magnitude has been recently 

demonstrated to be a reliable marker of movement stability and abnormality in healthy 

adults, stroke and even PD patients (Sekine et al., 2013; Sekine et al., 2014). Patients with 

cerebellar damage due to stroke are surprisingly able to react to movement changes during 

gait as well as to learn predictive locomotor adaptive strategies. On the contrary, patients 

with non-stroke cerebellar impairments are not able to learn predictive changes in any 



45 

 

adaptation context, especially when walking (e.g. split-belt treadmill protocols) (Morton 

et al., 2006). A completely different scenario concerns spinal cord injury (SCI) patients. 

SCI is a partial or complete lesion of the neural pathways embedded in the spinal cord 

which causes reduced or lost control of those body parts whose peripheral nerve starts 

below the injury location. Locomotor abilities are frequently affected in SCI patients, and 

only those with partial lesions are potentially able to restore gait control via specific 

rehabilitation therapies (Nam et al., 2017). Indeed, lower limb cortical representations are 

intact in SCI patients, which could be very useful for the design of assistive BCI systems 

(Koenraadt et al., 2014). 

As previously mentioned, rehabilitation after a neural injury needs to 1) promote new 

motor skill acquisition and training in order to stimulate restorative neural plasticity and 

avoid interference of un-healthy compensatory mechanisms (recovery vs. compensation); 

2) plan therapies that can induce the acquisition of transferable and not only task-specific 

motor skills; 3) focus on both repetition and intensity of training (Huang and Krakauer, 

2009). Motor recovery in both stroke survivors and SCI patients can nowadays be 

conveyed through many different types of therapies, for example over-ground walking 

therapy (OWT, in which subjects try to walk with the simple aid of parallel bars on the 

side and the physiotherapist), muscle strength training (such as eccentric or concentric 

strength training), and transferable skill training (sit-to-stand, tilted-table-standing and 

fitness exercises). A recently developed therapy is body-weight supported treadmill 

training (BWS). BWS has gained a lot of attention for its advantage to allow patients to 

start gait training very early in the recovery process (as patients not able to stand are 

supported by a harness), to repeat stepping sequences with high intensity and for its 

potential to stimulate normal and symmetric gait patterns. However, it is an exhausting 

protocol for physiotherapists who are needed to control and assist with lower limbs 

movements (Beyaert et al., 2015). Subsequently, robotic systems were developed to 

permit BWS treadmill training without the need for excessive manpower and robot-

assisted gait trainings (RAGT) were introduced. These have the advantage of allowing 

natural and symmetric walking patterns while however increasing the intensity and 

duration of a training sessions and can also record patient performance through embedded 

sensors. Robotic systems can be programmed so that they partially or completely guide 

the lower limb movements through adaptive controllers, thus allowing subjects to try to 

initiate the movement (efferent motor commands) and eventually assisting them to finish 

it (afferent feedback drives), inducing neural plasticity (Stevenson et al., 2015; Nam et 

al., 2017). RAGT approach to gait rehabilitation has much potential for improving time 
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and quality of motor recovery. It induced changes in spinal reflexes circuitries and the re-

emergence of physiologically modulated H-reflex in the soleus muscles during walking 

in SCI patients (Knikou, 2013). RAGT induced additional improvements in comparison 

to standard physiotherapy in stroke patients (Chung, 2017, Hong Kong-based study), and 

combined with conventional gait training could lead to more effective results (Morone et 

al., 2011, Italy-based clinical trial; Schwartz et al., 2015 for a review). RAGT is also 

believed to be a good aerobic exercise for patients, thus having potential metabolic and 

cardiopulmonary benefits (Nam et al., 2017). An example of robotic exoskeleton for 

RAGT is the Lokomat system (Hocoma, Zurich, CH): it is essentially a treadmill 

equipped with an harness supporting the patients in an up-right position and with robotic 

arms that can be attached to the patient’s legs able to move them in a natural and 

symmetrical pattern (Jezernik et al., 2003). Active RAGT was shown to activate 

sensorimotor regions more than during passive RAGT, and that the changes in cortical 

activity were related to gait-cycle phases (Wagner et al., 2012). A very recent study 

investigated the functional connectivity correlates of RAGT through EEG recordings 

highlighting the presence of a frontal-central-parietal network during and post-training 

whose strength correlated with step kinematic errors. The fronto-centroparietal network 

was therefore proposed as a potential neural marker of motor learning and adaptation for 

patients undergoing RAGT (Youssofzadeh et al., 2016). It also was recently shown that 

high-level of guide force (i.e. 100%, passive movement) minimizes the involvement of 

the sensorimotor cortex. As this brain region is known to be essential in visuo-motor 

integration and learning during walking, lower levels of guidance should be preferred in 

order to stimulate active participation and cortical activations (Knaepen et al., 2015). 

Indeed, passive movement of the impaired limb does not stimulate the patients to be 

engaged and self-directed into the movement. Accordingly, robotic systems for RAGT 

define a specific trajectory and sequence of movements and impose it to the patient, 

preventing variability of step length ant timing. On the contrary, split-belt treadmills 

allow subjects to behave naturally and to explore different motor control strategies 

according to the provided protocol (Helm and Reisman, 2015). Split-belt treadmills have 

two independently controlled belts which permit different motor patterns on the two legs 

(e.g. one could walk two times faster than the other) and the exploration of gait adaptation 

paradigms specific to the patients’ needs. With stroke survivors for example, treadmill 

walking speed was increased in order to augment step length asymmetry and this induced 

after effects of reduced step length asymmetry in over-ground walking, which were 

surprisingly maintained in the long term with repeated practice (Reisman et al., 2013). A 
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very recently developed system, the MIT-Skywalker (InMotion Technologies, Boston, 

US), exploits the principle of the split-belt treadmills and goes beyond the standard 

therapies (Bosecker and Krebs, 2009; Artemiadis and Krebs, 2010). Indeed, it can be 

programmed to train rhythmic movements (speed and symmetry training), discrete 

movements (heel strike practice) or balance, potentially stimulating different neural 

circuits according to the task (Susko et al., 2016). It can accommodate patients with 

different pathologies by modulating speed and task and it allows the patients to engage 

with the task while ensuring self-directed movements. The MIT-Skywalker was tested 

with stroke and cerebral palsy patients and shown to be able to accommodate each patient 

and successfully induce locomotor and balance improvements (Susko et al., 2016).  

In summary, there exist many types of therapeutic approaches that can be used for 

neurorehabilitation of gait, and novel assistive technologies are currently under 

development. Future therapies should promote the acquisition of transferable skills that 

would permit patients to improve their motor abilities also on tasks not previously trained, 

as well as investigating both behavioural and neural changes due to practice and recovery.  

2.3.3 Single- and dual-task walking 

Walking while inserted in contexts that require high concentration levels can result 

difficult for both neurologically impaired patients and healthy individuals. For example, 

walking on an irregular surface is difficult and can compromise gait performance as it 

requires a higher level of attention to decide where to place the feet on the ground, to 

maintain up-right gait stability and avoid risk of a fall (Iosa et al., 2014). Healthy young 

adults walking on irregular surfaces choose a lower gait speed, likely to optimize gait 

patterns and stability (Menz et al., 2003). Also, older adults walking on irregular surfaces 

choose to walk more slowly to maintain stability and reduce risk of falling. The lower 

gait speed in this case is believed to be a compensatory strategy for the decline of 

sensorimotor and cognitive functions that would prevent them to properly react to a 

potential risk of fall (Menz et al., 2003). In high-difficulty situations, more pronounced 

trunk movements occur, possibly due to the effort of maintaining balance control and 

stability. Therefore, measures of trunk accelerations have been extensively used as 

descriptors of the quality of gait and performance in both healthy young adults, older 

adults and neurologically impaired patients (Menz et al., 2002; Menz et al., 2003; Latt et 

al., 2009; Sekine et al., 2013; Sekine et al., 2014). It has also always been observed that, 

if left free to choose, healthy subjects and patients would always decide to walk at their 

preferred walking velocity as it maximises performance and stability (Iosa et al., 2014; 
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Sekine et al., 2013). Gait performance is particularly impaired in both healthy adults and 

neurological patients when they are asked to walk while simultaneously engaging in a 

secondary task (i.e. multitasking) of different nature. Walking while carrying out a 

secondary cognitive task (i.e. Verbal Fluency Test) without specific prioritization 

instructions decreased gait speed and increased dysrhythmicity in both young and elderly 

adults (Yogev-Silgemann et al., 2010). The authors demonstrated that the effects of task 

prioritization on gait variability are age dependent, as gait is more altered in young than 

in elderly adults, suggesting reduced ability to prioritize and flexibly allocate attention to 

different tasks in ageing. Walking while reciting aloud alternate letters of the alphabet 

induced higher hemodynamic activity in the bilateral pre-frontal cortex (mostly in 

anterior PFC, bilateral ventro-lateral PFC and left dorso-lateral PFC measured through 

fNIRS) of both healthy young and old adults case. It was suggested that the PFC would 

be more activated as it is involved in attention-demanding tasks (Holtzer et al., 2011). 

The sustained bilateral increase of PFC (recorded from all anterior, dorso-lateral and 

ventro-lateral PFC areas) oxygenation level of healthy elderly adults when walking while 

performing secondary tasks (e.g. reciting alphabet letters aloud) has been also correlated 

to bigger stride length and better cognitive performance (Holtzer et al., 2015). Walking 

on a treadmill while counting backward in sevens aloud reduced the cadence of steps in 

both healthy young adults and stroke survivors while their left and right PFC (i.e. FP1-

F3-F7 and FP2-F4-F8 electrodes according to 10-20 international system, covering SMA, 

dorso-lateral PFC and inferior frontal gyrus) hemodynamic activity significantly and 

uniformly increased with respect to the levels registered during natural walking (i.e. 

single-task), especially in the patients (Al-Yahya et al., 2016). Therefore, high-cognitive 

demands undermine gait behaviour in both healthy adults and stroke survivors, with the 

latter having stronger limitations in walking in real-life situations because of the lack of 

effective adaptive mechanisms. On the contrary, middle-aged and old adults with multiple 

sclerosis (MS) showed comparable motor (i.e. gait) as well as dual-task (i.e. number of 

corrected utterances/sec) performance with respect to healthy controls when walking 

while reciting alternated alphabet letters aloud, accompanied however by higher 

oxygenation levels uniformly distributed across PFC optodes (covering anterior, dorso-

lateral and ventro-lateral PFC, Ayaz et al., 2012; Carlen, 2017). The authors suggested 

that the increased uniform cortical activation could be the means by which MS patients 

could achieve motor behaviours similar to healthy adults (Hernandez et al., 2016). When 

faced with a dual-task situation, patients as well as old adults have to decide whether to 

prioritize gait stability and balance over cognitive performance or vice versa (Li et al., 
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2001). When walking while simultaneously reciting alphabet letters aloud, healthy old 

adults and elderly with neurological gait abnormalities (NGA) both increased uniformly 

their PFC (from anterior, dorso-lateral and ventro-lateral PFC) hemodynamic activity. 

During the dual-task condition, healthy old adults showed a negative correlation between 

levels of HbO2 and gait velocity and a positive correlation with rate of correct letter 

production; on the contrary, elderly adults with NGA showed a positive correlation 

between HbO2 levels and gait velocity during and a negative correlation with rate of 

correct letter generation (Holtzer et al., 2016). This was thought to be a strategy of the 

elderly with NGA for reducing dual-task costs and preserve gait performance in contrast 

with the strategy employed by healthy participants whereby maintenance of good dual-

task performance was chosen instead. It has also been recently argued that the nature of 

the secondary task might influence gait performance differently, with motor and 

combined motor-cognitive secondary tasks impairing gait performance more than simple 

cognitive tasks (Lin and Lin, 2016; Maidan et al., 2016). Secondary tasks requiring a 

constant visual processing are more likely to disturb the gait (Beurskens and Bock, 2013). 

For example, walking while texting over a smartphone (high-difficulty motor-cognitive 

secondary task with visual focus on the phone) has been shown to reduce gait velocity 

and worsen gait stability and could undermine subjects’ safety if performed in risky 

environments (Shabrun et al., 2014; Plummer et al., 2015; Agostini et al., 2015). The 

neural EEG correlates of walking under different conditions have been only recently 

presented thanks to development of reliable mobile setups and the definition of more 

sophisticated analytical methods able to remove source of noise present in data acquired 

during ambulatory tasks (Oliveira 2017). In comparison to fNIRS measurements, EEG 

recordings describe the actual electrical neural activity underlying the performed tasks, 

have a better temporal resolution, and can record activity from the whole head (mobile 

fNIRS systems currently allow only PFC recordings). The neural correlates of loss of 

balance were studied while subjects walked on a balance beam: sustained β power 

desynchronization was registered for the whole walk duration over the bilateral 

sensorimotor cortex (stronger than when naturally walking) and the first sign of loss of 

balance could be observed in the left sensorimotor cortex as an increase of  power right 

before stepping off the beam (Sipp et al., 2013). Walking uphill also recruits a stronger β 

power desynchronization together with an increase of  power in the anterior cingulate, 

sensorimotor and posterior parietal cortices (Bradford et al., 2016). Walking while 

adapting speed following an external auditory cue (i.e. accelerating or decelerating) 

induced a stronger β power desynchronization in central midline and parietal cortices, 
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likely symbolic of a continuous sensorimotor integration process while movement is 

ongoing, but also a β power synchronization in frontal and premotor cortices, possibly 

resembling motor initiation processes (Wagner et al., 2016). β activity was found reduced 

in motor and premotor midline electrodes when walking while performing an attentional 

demanding task (i.e. pressing a button when hearing a low-pitch sound), whereas an 

increase of β activity in frontal midline electrodes was observed when walking while 

performing a motor interference task (i.e. holding two sticks and preventing them from 

touching each other) (Beurskens et al., 2016). Therefore, it seems like stronger β power 

desynchronization is needed in sensorimotor and parietal cortices during high-difficulty 

gait conditions as a stronger sensorimotor integration process is needed to better and faster 

integrate sensory feedback and motor commands (Engel and Fries, 2010), whereas the 

frontal lobe is differently recruited according to the task. Future studies should employ 

novel single- and dual-task walking protocols in order to study the neural correlates of 

locomotor control when challenged and to find reliable casual relationships between brain 

activations and gait performance that could be then transferred into clinical practice as 

well as used as assessment tools in neurorehabilitation therapies. Given the current 

developments in mobile technologies and recording techniques, real-world studies should 

also be performed in order to better understand human locomotion in its natural 

environment. 
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3 General framework and methodologies 

3.1 Overview 

This chapter describes the general aspects of the common methodologies employed in 

this work of thesis. Study I and Study II are based on two different study designs and 

therefore employ different protocols, materials and technologies. Each section contains 

detailed descriptions of the methods employed to accomplish the specific hypothesis: the 

robotic equipment, the reaching task and the motor adaptation protocol are detailed in 

chapter 4 of section Study I, whereas the mobile setup, the single-task and dual-task 

walking protocol are described in chapter 7 of the second section Study II. To some 

degree, differences in the employed analytical measures and in the signal processing steps 

can also occur as customized to the specific hypothesis and task: for example, the 

segmentation of continuous EEG data into epochs was done before visual inspection in 

the first study but at the end of all the pre-processing steps in the second study. These 

differences were dictated by the different types of experimental design employed: 

triggered-based with a trial-by-trial structure in the first study, continuous with no 

external cues in the second study. Nevertheless, the study design and data analytics were 

based on the same framework and analysis pipeline, which provided a powerful tool to 

investigate complex situations and datasets. Specifically, both studies were based on one 

principle and goal, investigating neuro-muscular correlates of human motor control in a 

real-scenario, thus share the same physiological recording techniques, signal processing 

pipeline and statistical approaches. All recordings were non-invasive: muscular activities 

were measured via surface electrodes for electromyography from the upper- (Study I) or 

lower-limb (Study II) muscles; neural oscillations were recorded from the scalp through 

64-channels caps in both studies; kinematics of the reaching task (Study I) and features 

of gait patterns (Study II) were both monitored and used as evidence of performance for 

the respective study. Both studies shared many features in the signal processing employed 

to analyse physiological data such as pre-processing steps, filter choices, rejection of 

artefactual data and measures employed. The statistical analyses used were the same for 

both studies: parametric analyses of variances for kinematics and electromyography 

evidence and non-parametric approaches for electroencephalography signals. The 

multiple-comparisons problem was also common in both studies and handled by specific 

methods as later described. Figure 3-1 shows the overall structure of this thesis, 

highlighting study-specific aspects as well as interactions and commonalities. 
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Figure 3-1: System architecture thesis diagram. 

This work of thesis is based on a unique goal: identifying neuro-muscular correlates of human motor control in real-world scenarios. The work was based on two main studies 

investigating a neuro-rehabilitation scenario and real-world (i.e. outside the laboratory environment) situations, respectively. The two studies employed context-specific materials and 

technologies, but were based on the same recording techniques, analytical pipeline and statistical methods. Successful investigations led to the publication of several peer-reviewed 

articles and the presentation of the results to international conferences.
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3.2 Ethics 

The studies were conducted in accordance with the Declaration of Helsinki for Human 

Experimentation (48th World Medical Association General Assembly, Somerset West, 

Republic of South Africa, October 1996) and were approved by the University of East 

London ethics committee (UREC_1415_29, see Appendix I). Each subject was first 

orally informed about the experiment upon recruitment and was given written detailed 

information on the day of the experiment. Before testing, subjects were required to 

complete a medical questionnaire to ensure that there were no contraindications to 

participate to the studies (e.g. history of neurological, psychiatric or muscular disorders, 

see Appendix II), and lastly gave their written informed consent (see Appendix III). 

Subjects could withdraw from the studies at any time without specifying the reason.  

3.3 Subjects recruitment 

Subjects were recruited from personal contacts as well as from existing member of staff 

and students of the University of East London. The recruited subjects always resembled 

samples of the healthy young population, with ages ranging from 20 to 42 years old, and 

were all right handed. Handedness was determined through a questionnaire (reported in 

Appendix II) by asking the subject to identify the writing hand and the kicking foot. 

Subjects were tested approximately always at the same time on different days in order to 

control for changes in cortical excitability due to testing day time (Ridding and Rothwell, 

2007). Subjects were asked to avoid alcohol for at least 24 hours before the experimental 

session, and were kindly asked to wash their hair before without conditioner as this 

optimizes EEG recordings. Experiments lasted between 2 and 3 hours in total (setup 

preparation + testing), and subjects were given regular resting periods to avoid fatigue 

and help maintaining attention to the task. 

3.4 Experimental protocols and setups 

Two different experimental protocols have been used in this thesis: 

• Study I is based on a robot-mediated motor adaptation protocol for the reaching 

movement and aimed to 1) investigate the neural and muscular correlates of different 

stages of adaptation, 2) validate the use of specific physiological measures as markers 

of changes in reaching performance and outcome optimization, as well as 3) pave the 

path for future studies of rehabilitation and recovery assessment with the 

neurologically impaired. Details of the experimental setup and protocol are described 

in section Study I, chapter 4, paragraph 4.2.2, 4.2.3 and 4.2.4; 
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• Study II is based on a Mobile Brain/Body Imaging (MoBI) design and a fully mobile 

setup. It aimed to 1) investigate the neural and muscular correlates of different 

walking conditions outside the laboratory in the urban environment, 2) validate the 

mobile setup and test its reliability as well as 3) identify preliminary relationships 

between neural activations and gait performance in order to plan potential future 

studies with clinical populations. Details of the experimental setup and protocol are 

described in section Study II, chapter 7, paragraph 7.2.2 and 7.2.3. 

3.5 Physiological evidences 

3.5.1 Electromyography 

Electromyography (EMG) is a neurophysiological technique able to record and describe 

the quality of muscular activity (i.e. myoelectric signals) as well as abnormal changes due 

to pathologies such as peripheral nerves diseases. Recordings can be done invasively with 

needle EMG electrodes in order to capture single-fibre activities, or non-invasively 

through surface EMG electrodes to register the sum of many single-fibre/motor-units 

activities (Basmajian et al., 1985). In this thesis, muscle activations were always assessed 

non-invasively through surface EMG electrodes: bipolar integral dry reusable EMG 

electrodes were used in Study I (single sensor area ~ 0.8 cm2, sensors fixed distance: 1.5 

cm, material: silver chlorite, model SX230, Biometrics Ltd, Newport, UK), whereas 

monopolar disposable ECG/EMG electrodes were employed in Study II (sensor area: 0.8 

cm2, sensor material: polymer Ag/AgCl coated, model ArboTM H124SG, KendallTM 

ECG Electrodes, Convidien Commercial Ltd, Gosport Hampshire, UK), with an inter-

sensors distance of 1.5 – 2 cm circa. In both studies, surface EMG electrodes were 

positioned on the belly of the muscles of interest according to the belly-belly montage 

and along the muscle fibres direction following the SENIAM guidelines (Hermens et al., 

2000). EMG activity was recorded at 1 kHz and amplified by a 14 bit analog-to-digital 

converter (DataLog WaX8 EMG system, Biometrics Ltd, Newport, UK) in Study I, and 

by an EEGoPro amplifier (ANT Neuro, Entschede, Netherlands) in Study II. The 

monitored muscles were: 

• Study I: Anterior and Posterior Deltoid (flexion and extension of the shoulder joint 

respectively), Biceps and Triceps Brachii (flexion and extension of the elbow joint 

respectively), Extensor and Flexor Carpi Radialis (extension and flexion of the wrist 

joint respectively) and Brachioradialis (assists the Biceps Brachii in the flexion of the 

elbow joint and work on pronation and supination of the forearm). These muscles 
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were all recorded only from the right arm, except for the Biceps Brachii which was 

monitored bilaterally from both arms; 

• Study II: Tibialis Anterior (dorsiflexion and inversion of the foot) and Soleus 

(plantarflexion of the foot). These muscles are both recorded bilaterally from both 

legs. 

Study specific muscle locations are represented in section Study I, chapter 4, Figure 4-3, 

and in section Study II, chapter 7, Figure 7-2. 

3.5.2 Electroencephalography 

Electroencephalography (EEG) is a neurophysiological technique able to measure the 

electrical activity of the human brain and to describe changes in voltage over time 

(Berger, 1929). Despite the existence of intra-cortical invasive recording techniques such 

as iEEG and ECoG, EEG is by definition only non-invasive and records electrical 

potentials on the scalp through surface electrodes. Using non-invasive electrodes 

positioned over the scalp the electrical potentials generated within the brain by the single 

neurons (i.e. both action and post-synaptic potentials) cannot be disentangled, instead the 

result of sum and cancellation of potentials from neighbour neurons is recorded (Luck, 

2014). In this thesis, neural oscillations were assessed non-invasively through a 64-

channel (i.e. electrodes) Waveguard cap (ANT Neuro, Entschede, Netherlands) disposed 

according to the 10-20 international system (Jasper, 1958). This is a method 

internationally recognized to describe the location of scalp electrodes with respect to the 

underlying areas of the cerebral cortex. According to this method, the scalp is divided 

into arcs starting from four reference points: the nasion (point between forehead and 

nose), the inion (lowest point of the skull from the back of the head), and the left/right 

pre-auricular points anterior to the ears. The intersection between the longitudinal and the 

lateral arcs is called vertex: from this point, all electrodes are located at 10% or 20% of 

the total longitudinal or lateral distances (Klem et al., 1999). Figure 3-2 shows the 

electrodes locations of the Waveguard caps used in both studies of this thesis. According 

to the participant’s head size, the EEG cap size that suited the head best was chosen (i.e. 

small, medium and large). The electrode Cz was always located at the vertex and, 

maintaining it fixed, the cap was adjusted so that all the electrodes were in the right 

position; a chin strap could eventually be used to tight the cap. Wet electrodes were used, 

which required a quick-gel solution to be injected between the scalp and the electrodes 

themselves thus to amplify the signal recorded and maximize their impedance (i.e. quality 

of electrode-skin connection). To optimize the quality of the recorded data, impedances 
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were kept always below 5 k. EEG signals were recorded continuously during each 

experiment in both studies with the ground electrode (i.e. earth electrode, connects the 

system to the earth) located always in AFz position and the reference electrode (ideally 

with a stable potential, used as reference for measurements by the other electrodes) in Fz 

(Study I) or FCz (Study II) positions. In Study I, EEG data were recorded at a sampling 

frequency of 1024 Hz and amplified by a TMSi Ref-Ext amplifier (ANT Neuro, 

Entschede, Netherlands); in Study II, neural oscillations were registered at 1 kHz by an 

EEGoPro amplifier (ANT Neuro, Entschede, Netherlands). In both studies, data were 

band-pass filtered during recordings between 0.1 and 500 Hz. No electrooculogram 

(EOG) was recorded as blink and saccades movements could be reliably identified and 

removed from the continuous data during offline pre-processing through ICA 

decomposition. 
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Figure 3-2: 64-channel Waveguard cap (ANT Neuro, Entschede, Netherlands). 

This electrode scheme is an extension of the original 32-channel 10-20 international system and allows the 

positioning of 64 electrodes in total. Ground electrode: AFz. Reference Electrode: Fz (Study I), FCz (Study 

II). (Figure adapted from www.ant-neuro.com official website). 

http://www.ant-neuro.com/
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3.6 Signal processing 

All the data analyses carried out in this thesis were performed with MatLab 2013b/2015b 

(The MathWorks Inc.). In order to properly analyse the data and obtain successful 

correlations between different evidences, two requirements needed to be met: 

• A careful synchronization of all the devices within each setup was required in order 

to be able to align separately recorded evidences on the same time scale. Methods of 

synchronization are described in details for the two setups in section Study I, chapter 

4, paragraph 4.2.5, and in section Study II, chapter 7, paragraph 7.2.3 and 7.2.4; 

• All signals needed to have the same sampling frequency in order to have a good 

correspondence of time points. When not possible due to hardware specification, 

interpolation or down-sampling of the recorded signals were performed offline. The 

reference sampling frequency used in both studies for all evidences is 1 kHz. 

3.6.1 Measures of kinematics 

Kinematics describes objects and bodies movements without taking care of the causes of 

the movement itself. Acceleration, velocity and position are all measures employed in 

this work of thesis to describe the evolution of movements of both upper and lower limbs. 

Kinematics data of reaching were recorded by sensors embedded into the robotic 

equipment in section Study I (see chapter 4, paragraph 4.2.6, section Reaching 

kinematics), whereas gait kinematics was recorded by mobile sensors placed at level of 

the pelvis and of the feet during walking in section Study II (see chapter 7, paragraph 

7.2.4, section Gait measures). 

The reaching movement 

First of all, reaching movements were described by a starting time point (Movement 

Onset, defined by a speed profile exceeding a threshold of 0.03 m/s) and by an end time 

point (Movement Offset, defined by a speed profile lower than the threshold of 0.03 m/s 

after Movement Onset). Changes in Movement Onset and Offset were monitored 

throughout the whole duration of the experiments in Study I as potentially symbolic of 

changes in reaction times and movement durations. Reaching could ideally evolve along 

a straight trajectory connecting the starting point and the end target, but even during 

practiced movements slight deviations from this ideal straight path occur. Applying an 

external perturbation, as in the robot-mediated motor adaptation protocol implemented in 

section Study I, induces even bigger deviations from the ideal straight line. To describe 
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movement deflections from the ideal straight line a measure of trajectory error called 

Summed Error was employed (Hunter et al., 2009): it consists of the sum of the 

perpendicular distance between the actual and the ideal trajectories at each time point 

between Movement Onset and Offset. The reduction of trajectory errors over the motor 

adaptation condition period is symbolic of an adaptation process undergoing, whereby 

subjects learn how to compensate for the external perturbation to improve their 

performance in the novel environment. Maximum velocity (m/s) and maximum force (N) 

were also evaluated and monitored during each reaching movement as likely to describe, 

respectively, changes in movement speed and exerted forces to counteract the applied 

perturbation and support the adaptation process.  

Gait monitoring 

Linear acceleration data recorded during walking at the level of the pelvis (i.e. lower 

back) were further used to extract spatio-temporal features of the gait pattern via a 

MatLab based toolbox (Yang et al., 2012). Many measures were obtained (see Study II, 

chapter 7, paragraph 7.2.4, section Gait measures), but of major interest were gait 

Velocity (m/s), Steps Cadence (step/min) and entity of trunk movements as expressed 

through the measures of Acceleration RMS (a.u.). Changes in these parameters would 

demonstrate changes in the velocity and stability of the trunk during walking, and would 

be symbolic of changes in gait performance during different demanding conditions. 

Moreover, times of heel strikes were recorded through mobile sensors placed on both 

heels, which allowed the calculation of the measure of Step Latency employed for further 

analyses and as a control of the previously extracted gait parameters. 

3.6.2 Pre-processing 

EMG 

A pseudo-common pipeline for EMG data pre-processing was developed for both studies. 

EMG data were first de-trended (i.e. mean subtracted) in order to emphasize the 

oscillations around the trend and remove potential data shifts due to potential hardware 

issues (e.g. sensors drift). A band-pass filter was then applied to remove low-frequencies 

intrinsic noise and high-frequency content of no interest. In section Study I, data were 

band-pass filtered between 45 – 100 Hz in order to remove all possible noise and 

movement artefacts, whereas in section Study II EMG signals were band-pass filtered 

between 20 - 100 Hz as per guidelines (De Luca et al., 2010). In both studies, EMG 

activity from each muscle of each subject was then normalized to the maximum value 

registered in that same muscle across the whole experimental condition (i.e. activation 
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ratio, %), thus to minimize variability across subjects due to potential differences in 

electrode-skin impedances. Full-wave signal rectification was used in both studies to 

reverse the negative portions of the oscillating EMG profile making it entirely positive. 

Once performed all these steps, EMG data were ready to be further analysed. 

EEG 

As EEG data are very sensitive to external (i.e. from the environment or movements) and 

internal (i.e. from the body such as heart beat and blinks) sources of noise, a careful and 

meticulous pre-processing pipeline was developed with EEGLab toolbox (Delorme and 

Makeig, 2004) to clean the data and remove artefactual components. This pipeline was 

employed in both studies: 

1. Data were first band-pass filtered between 0.5 and 100 Hz, to remove the very slow 

drifts and higher contents of no interest (FIR filter, order automatically set by 

EEGLab), and notch-filtered at 50 Hz, to remove the power line noise (FIR notch 

filter, order = 3302); 

1.1. Only in section Study I an additional notch filter was applied at the frequency of 

25 Hz to remove an electrical noise within the laboratory robotic-equipment. 

Again, only in Study I, data were here segmented into epochs (i.e. trials) and de-

trended; 

2. A careful visual inspection of the data was then carried out to remove trials (Study I) 

or periods of continuous data (Study II) characterized by prominent artefacts, as well 

as to identify channels affected by major sources of noise for the whole experiment 

duration; 

3. After visual inspection, noisy channels were temporarily removed from the data, 

which were then re-referenced to the common average reference. As aforementioned, 

the neural activity recorded is the difference between the actual activity at any 

electrodes and the activity from the reference electrode, which shouldn’t be related to 

any brain or muscle activity. This in practice is not possible, therefore, to minimize 

the effects of the reference electrodes on the results, EEG data are usually re-

referenced to the common average across all electrodes signals. This method is the 

most commonly used in literature as it minimizes the effect of large or small signals 

at the edge of the EEG cap; 

4. Data were then decomposed using the Independent Component Analysis (ICA) with 

the Infomax algorithm as implemented in EEGLab (Delorme et al., 2007). ICA is a 

statistical methodology able to transform a recorded complex (i.e. multidimensional) 
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random signal into a set of single components linearly independent (Independent 

Components, ICs) (Hyvärinen and Oja, 1997). The purpose of using ICA is to 

“reshuffle” the original EEG channels, where each channel carries a signal mixed 

from different brain sources, to new virtual channels (i.e. components, ICs), where 

each component is an estimate of the unmixed signal from a single source. ICA has 

been widely used to compare neural sources across different tasks, but in this thesis it 

is used only as a means for removing artefactual sources within the EEG signal. To 

identify and remove artefactual contributions the power spectral, the spatial and the 

temporal features of each IC were inspected and those representing stereotypical 

artefacts were eventually discarded. The remaining components were then projected 

back to recreate cleaned scalp channels; 

5. Previously removed channels were then interpolated through the spherical spline 

method as implemented in EEGLab. This procedure consists in first defining the 

electrodes that need to be interpolated and calculating their location with respect to 

their neighbours (i.e. same approach as the 10-20 system for defining electrodes 

locations on the scalp). Secondly, the electrical potentials are interpolated through a 

spherical spline interpolation method as previously described (Perrin et al., 1989). All 

the data were then re-referenced to common average for a second time as new 

interpolated channels were added, thus a new common average reference was needed; 

5.1. Only in section Study II data were segmented into epochs and de-trended; 

6. One final visual inspection was performed to check the quality of the pre-processed 

data and eventually remove still noisy trials/epochs. 

At the end of the pre-processing pipeline, for both studies, there were 64 channels 

available for further analyses as the artefactual ones were interpolated from cleaned data. 

As a matter of fact, only 62 electrodes were then actually used as mastoids electrodes (M1 

and M2, see Figure 3-2) were not further considered. 

3.6.3 Measures of basic muscle activity 

In this thesis, muscle activity was quantified through basic (i.e. simple) measures such as 

maximum EMG activity (see Study I, chapter 4, paragraph 4.2.6, section EMG pre-

processing and basic muscle activity) and Root-Mean-Square (see Study II, chapter 7, 

paragraph 7.2.4, section EMG processing and basic muscle activity). More complex 

measures investigating muscular activation in the time domain (i.e. Wasted Contraction) 

and synchrony in the frequency domain (i.e. Intermuscular Coherence) have also been 
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employed and reported elsewhere (see Appendix IV; Pizzamiglio et al., 2017; 

Pizzamiglio et al., 2017). 

3.6.4 Measures of neural Event-Related Potentials (ERPs) 

Event-Related Potentials represent spontaneous responses of the brain to external stimuli 

such as visual, auditory or mechanical cues, and have been extensively used in literature. 

Only in the first study were ERPs evaluated given the dependence of ERPs on an external 

stimulus and the type of study protocols designed in this thesis. Data were first low-pass 

filtered at 45 Hz to remove high-frequency content not typical of ERPs, and then a simple 

mathematical average of electrical potential across a set of trials was performed for each 

electrode, in each condition, for each subject. The analysis of ERPs then focused only on 

three windows of time of interest as these periods were shown to be mostly related to 

neural processes of sensory feedback, visuomotor planning and movement initiation 

(Naranjo et al., 2007; Dipietro et al., 2014). 

3.6.5 Measures of neural Power Spectral Density (PSD) 

The spectral content of an EEG trace describes the different typologies of neural 

oscillations (i.e. brain waves) that are contained in the signal. The EEG power represents 

the amplitude or intensity of a specific brain wave category of interest. Brain waves are 

classified according to their oscillatory frequency into different ranges: δ waves are the 

slowest (oscillatory frequency between 1 Hz up to 3 Hz), they have the biggest amplitude 

and are typical of deep meditation and sleep states;  waves are slow (oscillatory 

frequency between 4 Hz up to 7 Hz), have a big amplitude and are seen in many memory 

and spatial-navigation tasks; α waves are moderately slow (oscillatory frequency between 

8 Hz up to 12 Hz), have moderately big amplitude and are typical of conscious thoughts 

and alertness; β waves are moderately fast (oscillatory frequencies from 15 Hz up to 30 

Hz), have moderately small amplitude and are usually seen in cognitive and motor tasks; 

 waves are the fastest (oscillatory frequency between 30 Hz up to 80 Hz), they have the 

smallest amplitude and typically represent simultaneous processing of information from 

different brain areas, such as sensorimotor integration. The analysis of the power spectral 

content of the EEG can be useful in clinical practice where brain waves could be symbolic 

of a specific disease (e.g. epileptic seizures are characterized by synchronous alpha wave 

discharges) (Gestaut, 1970). 

The standard analysis of the EEG spectral power is embedded into the frequency domain 

only. The oldest technique employed to quantify the intensity of a particular brain wave 

in an EEG signal is the Fast Fourier Transform (FFT) (Fourier, 1822). Given an EEG time 
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series (i.e. signal), the FFT algorithm transforms it into a potential-by-frequency spectral 

graph (i.e. the power spectrum) according to the formula: 

𝑓(𝜉) =  ∫ 𝑓(𝑥) ∙ 𝑒−2𝜋𝑖𝑥𝜉𝑑𝑥
𝑡

−𝑡

 

Equation 3-1: FFT Algorithm formula. 

where  is the frequency and [-t t] is the time interval of interest. The longer the time 

window of interest, the higher the frequency resolution of the FFT. The calculation 

consists in 1) evaluating the EEG magnitude, defined as the integral of the peak-to-peak 

amplitude of the EEG signal within a certain period of time of interest, and then in 2) 

squaring the obtained EEG magnitude, thus obtaining the EEG power spectrum. To avoid 

spectral leakages (i.e. the creation of new frequency components not-existent in the 

original signal but due to the mathematical algorithm), the data within the time period of 

interest can be selected by applying an a-priori window function (or taper) that minimizes 

the creation of artificial contents (Harris, 1978). An alternative to the FFT method is the 

Welch’s periodogram (Welch, 1967), which consists of segmenting the original data into 

multiple overlapping segments, to which a taper is applied before the FFT algorithm. The 

individual periodograms are then averaged to reduce the individual power measurements. 

This more robust methodology has been employed only in the second study whereby the 

time domain was negligible (i.e. no external stimuli applied, conditions considered as 

continuous) and the overall power within an epoch was of major interest (see section 

Study II, chapter 7, paragraph 7.2.4, section Power Spectral Density (PSD)), in order to 

reduce the amount of variance within a subject-specific recording and across subjects due 

to the partially controlled walking paradigm.  

3.6.6 Measures of Event-Related Spectral Perturbations (ERSPs) 

Recent developments in analytical methods allow the investigation of changes in EEG 

spectral power over time. To evaluate the time-frequency evolution of the power spectrum 

a time-frequency sliding window is usually used, whose dimensions could be fixed or 

mutable. The latter is a more proper approach when investigating the EEG spectral power 

at different frequencies: usually the sliding window gets shorter along the time axis and 

longer along the frequency axis with increasing frequencies, which emphasizes the 

content of higher frequencies, whose amplitudes are typically low, by smoothing over a 

bigger frequency range. Many techniques can be implemented to obtain an accurate time-

frequency representation of the EEG spectral power such as single taper with changing 

length, multi-tapers, and wavelet decomposition. In this thesis, the Morlet wavelet 
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decomposition (Torrence and Compo 1998) was used, which, in line with what described 

above, evaluates the power over time and frequency domains by applying a specific 

Gaussian shaped taper according to the formula: 

𝜓0(𝜂) =  𝜋−
1
4 ∙ 𝑒𝑖𝜔0𝜂 ∙ 𝑒−

𝜂2

2  

Equation 3-2: Gaussian taper formula. 

The continuous wavelet transform is obtained through the convolution of the EEG signal 

with a scaled and translated version of the Gaussian taper following the formula: 

𝑊𝑛(𝑠) =  ∑ 𝑥𝑛′ ∙ 𝜓 ∗ [
(𝑛′ − 𝑛)𝛿𝑡

𝑠
]

𝑁−1

𝑛′=0

 

Equation 3-3: Scaled and translated Gaussian taper formula. 

where * indicates the complex conjugate. By varying the scale s and translating along the 

time index n, it is possible to obtain information on the amplitude of any brain waves 

within the signal and how this amplitude changes over time. In order to observe changes 

in power spectrum during the task with respect to a period of baseline (i.e. when the 

subject is at rest, not engaged in anything) the Event-Related Spectral Perturbation 

changes were obtained by subtracting the baseline power (Powbase) from the task-related 

power (Powtask) according to the formula: 

𝐸𝑅𝑆𝑃(𝑖) = 𝑃𝑜𝑤𝑡𝑎𝑠𝑘(𝑖) − 𝑃𝑜𝑤𝑏𝑎𝑠𝑒 

Equation 3-4: ERSP formula. 

where i is the current trial/epoch. This method was implemented throughout this thesis in 

both studies, whereby the baseline was defined as the average across trials of a period of 

900 ms before the cue to reach (Study I) or as a resting-state EEG period recorded before 

the experiments (Study II). To assess if the changes in EEG power during the task were 

statistically significant from the spontaneous baseline oscillations, a bootstrap 

randomization technique was used as implemented in EEGLab (Grandchamp and 

Delorme, 2014). Specifically, a distribution of surrogate data trials was obtained and 

permutation statistics was then applied to identify non-significant features in the task-

related power with respect to the baseline power. The level of significance for the 

bootstrap randomization technique was maintained at 99% (P < 0.01) for both studies, 

and data not-statistically significant were zeroed out and plotted in green (see Study I, 

chapter 5, Figure 5-3, and Study II, chapter 7, Figure 7-4). 
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3.6.7 Measures of Cortico-Muscular Coherence (CMC) 

Coherence is a normalized measure of the coupling between two signals at a given 

frequency (Rosenberg et al., 1989; Amjad et al., 1997). Specifically, Cortico-Muscular 

Coherence (CMC) reflects the functional direct- or indirect-synchrony between a given 

brain area and a contralateral muscle. EEG-EMG coherence can be assessed with the 

formula: 

𝐶𝑜ℎ(𝑓) =  
|𝑆𝑥𝑦(𝑓)|2

𝑆𝑥𝑥 ∙ 𝑆𝑦𝑦
 

Equation 3-5: Coherence formula. 

where 𝑆𝑥𝑥 and 𝑆𝑦𝑦 are the individual power spectra (i.e. of an EEG channel and an EMG 

muscle respectively), whereas 𝑆𝑥𝑦 is the cross-spectrum between the two signals. 

Coherence values are comprised between 0 (i.e. no coherence, no synchrony) and 1 (i.e. 

maximum coherence, maximum synchrony). In this thesis, CMC analysis was performed 

only in the first study to investigate changes in brain-to-muscle drives during the 

adaptation protocol; no CMC analyses were carried out in the second study given the 

priority of neural changes due to the performance of multiple tasks at the same time. 

Details of the CMC method employed are described in Study I, chapter 6, paragraph 7.2.2 

(section Cortico-muscular coherence (CMC) at sensor level), but it is worth mentioning 

that the simple FFT algorithm (see paragraph 3.6.5) with Slepian sequences tapers (i.e. 

dpss taper as automatically implemented in FieldTrip) was applied to both EEG and EMG 

data to evaluate CMC over a fixed period of time capturing the full reaching movement 

(i.e. no time information). 

3.6.8 Theory of source localization 

Scalp EEG signals do not reflect the exact intensity and location of the activated neuronal 

populations: this is due to the fact that the real electrical signal is attenuated when 

travelling through the layers between cortex and head surface (i.e. brain, skull and skin), 

and to the high conductance of the scalp because of which it can spread over wide scalp 

areas (i.e. volume conduction problem). A large part of the current EEG literature has 

reported findings at scalp (sensor) level, which however need to be carefully considered 

due to the aforementioned problems. One way to overcome these issues is to reconstruct 

and localize the real neuronal sources from the sensor data. This problem however is an 

ill-posed inverse problem as an infinite number of solutions could explain the observed 

EEG data (Ramirez, 2008). In order to successfully estimate the neural activity at source 
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level, a priori information is needed to limit the number of potential solutions, 

specifically: 

• The EEG data at sensor level; 

• The spatial locations of the sensors (i.e. channel positions on the scalp); 

• The geometrical and electro-magnetical properties of the head (i.e. the head model); 

• The location of the sources (i.e. the source model). 

Source localization consists of two main steps: 

• Forward Modelling: estimating the source model, head model and the potentials at 

known sources; 

• Inverse Modelling: estimating the unknown source activity from the corresponding 

scalp potential data. 

First of all, a volume conduction model needs to be created to characterize the geometry 

of the head and the conductivity of each tissue. This model is used to evaluate how the 

electrical currents can flow and spread through the tissues of the head. The more accurate 

is the description of the geometry and conductivity of the head, the better the quality of 

the forward model. To create an accurate volume conduction model, the individual 

anatomical MRI of the subject should be used in order to calculate the subject-specific 

head dimensions and conductivity. Secondly, the source model needs to be calculated: 

here the brain volume is discretized into a 3D grid and a neural dipole is associated to 

each grid point. Once the channel locations, the volume conduction model and the source 

model are available, the forward model can be described through a lead-field matrix of 

coefficients that map current sources to potential differences at the scalp.  

The inverse solution can then be obtained from the forward model output. There exist 

many different techniques able to approach the ill-posed inverse problem (Ramirez, 2008; 

Jatoi et al., 2014), among which Dynamic Imaging of Coherent Sources (DICS) is specific 

for data in the frequency domain such as power spectrum and coherence. It is a spatially 

adaptive filter able to evaluate the amount of activity at a given location in the brain 

according to the formula: 

𝑊𝑠
𝑇(𝑓) =  (𝐿𝑠

𝑇 ∙ 𝐶(𝑓)−1 ∙ 𝐿𝑠)−1 ∙ 𝐿𝑠
𝑇 ∙ 𝐶(𝑓)−1 

Equation 3-6: DICS spatial filter formula. 
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where C(f) is the cross-spectral-density matrix between two signals at a given frequency 

f, Ls is the lead-field matrix at a given source s, Ws(f) is the output spatial filtering matrix 

and the superscript T indicates the matrix transpose. This inverse adaptive filter aims to 

optimize the activity at a given source in a given frequency while minimizing the 

contribution from all the other sources (i.e. unit-gain constraint) (Gross et al., 2001). By 

applying the spatial filter Ws to the spectral data, the spectral measures of interest can be 

estimated at source level. Moreover, by overlying the newly estimated source potentials 

on an individual MRI it is possible to anatomically visualise the localized source 

activities. 

In this thesis, localization of cortical sources has been applied only to CMC data in Study 

I. As later detailed (see Study I, chapter 6, paragraph 6.2.2, section Source localization), 

no one of the recruited participants had an individual anatomical MRI, therefore a 

template MRI was used as well as a pre-calculated forward model (both provided by 

FieldTrip). As CMC data is within the frequency domain only, the DICS algorithm has 

been employed. 

3.7 Statistical analyses 

Both studies in this thesis are designed according to a within-subject format, whereby 

data from the same subject are recorded in multiple time points (i.e. conditions). Subjects 

are therefore going to be different observations in dependent-samples statistical 

approaches. 

3.7.1 Statistics for kinematics and EMG evidences 

In both studies, behavioural, kinematics and EMG data were supposed to be normally 

distributed and Kolmogorov-Smirnoff normality tests were employed to validate this 

hypothesis. Data were always normally distributed, thus parametric statistics was 

employed. Analysis of Variance (ANOVA) were first used, usually with a one-way 

fashion, as in both studies more than one experimental condition was included (within-

subject factor: Condition). ANOVA significance values was always set at 95% (p < 0.05). 

In case of a significant ANOVA, post hoc paired samples t-Tests were carried out to 

identify the differences within the dataset. T-Tests significance level was always set at 

95% (p < 0.05). When more than one comparison was performed, corrections for multiple 

comparisons was made in order to avoid false positive errors and control for the Familiy-

Wise Error Rate (FWER). Bonferroni method for multiple comparison was always 

employed whereby the significance level was reduced according to the number N of 

repeated t-Tests performed (padj = 0.05/N). 
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3.7.2 Non-parametric cluster-based permutation tests for EEG evidences 

EEG data are multidimensional: they usually have a spatio-temporal or spatio-temporal-

spectral structure as they are recorded from multiple locations (64 in this thesis), multiple 

time-points according to the sampling-frequency (1 kHz in this thesis), and multiple 

frequencies of interest in spectral analyses. The multidimensionality of the EEG data 

creates an enormous number of multiple comparisons in statistical analysis: changes 

across experimental conditions are indeed evaluated at a high number of (channel, time)-

pairs or (channel, time, frequency)-triplets (i.e. samples). Therefore, there is the need to 

control for the FWER at a critical significance level.  

To solve the multiple comparison problem, a specific non-parametric statistical analysis 

as implemented in FieldTrip (Maris and Oostenveld, 2007) has been used throughout the 

whole thesis when dealing with EEG data. First, a cluster-based test is run on the EEG 

data (ERPs, PSD or ERSPs): for every sample in two conditions a paired-sample t-Test 

is performed and only the samples whose t-values are larger than a predefined threshold 

(αcluster = 95%, pcluster < 0.05 in Study I; αcluster = 99%, pcluster < 0.01 in Study II) are 

selected. The selected samples are clustered according to their temporal, spectral and 

spatial adjacency and the cluster-level statistics is calculated by taking the maximum sum 

of the t-values of each sample within the cluster. The result of this procedure is the cluster 

test statistics with which the effects of the experimental conditions are then evaluated 

through the Monte-Carlo method. According to this method, trials are randomly 

exchanged between the two considered datasets (i.e. random partition) and the cluster-

level test statistics is evaluated for these surrogate sets. This step is repeated for a large 

number of times (that need to be specified) in order to obtain a histogram of the test 

statistics. Once the cluster-level test statistics is calculated for all the surrogate sets, the 

proportion of the surrogate test statistics whose values are larger than the one obtained 

from the real datasets is calculated. This proportion represent the Monte-Carlo 

significance probability and, if lower than the predefined significance level (α = 95%, p 

< 0.05 in both studies), the data in the two experimental conditions are statistically 

different. 

This method has been used throughout the whole thesis when dealing spatio-temporal 

(ERPs), spatio-spectral (PSD, CMC at source level), and spatio-temporal-spectral 

(ERSPs) EEG evidence. 
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3.7.3 Assumptions for Multiple Linear Regressions (MLRs) 

Multiple linear regression is usually employed when trying to predict the value of a target 

variable, called Dependent Variable (DV), from the values of two or more explanatory 

variables, called Independent Variables, IVs. Multiple linear regression models have been 

generated in both studies of this thesis to find a relationship between brain activations and 

task behavioural performance (see Study I, chapter 6, paragraph 6.2.3, section Regions of 

Interest (ROIs); see Study II, chapter 8, paragraph 8.2.2, section Models of gait behaviour 

vs. EEG PSD activations). The multiple regression models created in this thesis were all 

based on the stepwise technique, where only the IVs that are significantly correlated with 

the DV are entered into the model. Several assumptions must be checked before reporting 

multiple regression models results, specifically: 

• The presence of any outliers and the type of relationship between DV and IV must be 

verified through a scatterplot of the DV against the IVs. A linear relationship should 

be visible by the scatterplots; 

• The adherence of the regression model residuals to a normal distribution must be 

checked through the residuals Q-Q plot; 

• The lack/presence of little multicollinearity must be verified by: 1) Inspecting the 

Pearson’s Bivariate Correlation coefficient of the model predictors; 2) Calculating the 

Tolerance index (T < 0.2 little multicollinearity, T < 0.01 strong multicollinearity), 

which measures the influence of one IV on the others; 3) Evaluating the Variance 

Inflation Factor (VIF = 1/T > 10 strong multicollinearity); 4) Calculating the 

Condition Index (10 < CI < 30 medium multicollinearity, CI > 30 strong 

multicollinearity); 

• The lack/presence of autocorrelation must be checked through the Durbin-Watson’s 

d test (1.5 < d < 2.5 no autocorrelation); 

• The lack/presence of homoscedasticity must be verified through a scatterplot of the 

regression model standardised residuals versus the observed DV. 
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Study I: Neurorehabilitation Scenario 

4 Kinematics and muscle activity during robot-mediated motor adaptation of 

reaching with the upper limb 

4.1 Introduction 

Motor (skill) learning is commonly defined as a progressive improvement in the 

performance of a given task characterized by a constant retention and consolidation of 

the newly acquired skill over time (Shadmehr and Wise, 2005). Motor learning features 

in our daily life from when we are born, when we first learn how to walk and then how 

to ride a bicycle. However, it is also required in patients that have suffered of a severe 

brain injury (e.g. stroke) that has damaged the motor areas of the brain (and other regions 

connected to it) and impaired the performance of natural movements such as walking, 

reaching and/or grasping. In these situations, an intense re-learning process is therefore 

needed to recover the lost abilities and minimize the impact of the injury on daily-life. 

However, brain injuries can be quite variable and therefore recovery can be challenging 

and different from patient to patient (Semrau et al., 2015). Early (< 7 days) mobilisation 

after stroke has been shown to promote better recovery than later rehabilitation (> 1 

month) (Ottenbacher and Janell, 1993; Musicco et al., 2003, even though very early 

mobilisation (< 24h after stroke) might not be associated with significant beneficial 

effects (Xu et al., 2017) and might even increase mortality rate (Bernhard et al., 2015; 

Awad et al., 2016; Olkowski and Shah, 2017). Many different types of rehabilitation 

strategies and protocols are currently available, and there is a wide-spread trend towards 

personalized therapies and prognostic computational models aiming to optimize the 

rehabilitation outcome (Kwakkel, 2006; Reinkensmeyer et al., 2016). Physiotherapy is 

the most common intervention that patients are offered after a brain injury: the passive 

movement of the paretic limb(s) facilitates the regain of muscles tone and range of 

movement but is not the most favourable approach for functional recovery. According to 

the theory proposed by Hebb in the mid-20th century, when two cells are close to each 

other and one of the two is continuously and persistently firing the other one, some 

(metabolic) changes happen in one or both cells such that efficiency increases, and a 

stronger or even new pathway could be generated (Hebb, 1949). This postulate suggests 

that the purposeful activation of neural pathways would be able to intensify neural 

connections or even create new ones. Following this theory, a lot of research and 

rehabilitation protocols have been based on an active engagement of the patients, as even 

the intention of doing a movement could, in the long-term, result fruitful. Robotic 

neurorehabilitation is particularly attractive in this field as computational programmes 
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can be coded so that different level of assistance can be delivered according to the 

patient’s ability (Hunag and Krakauer 2009). Nowadays there are many commercial 

solutions for rehabilitation robotics (Riener, 2007), from exoskeletons to actuated 

joysticks, and all of them are equipped with motors, which can be regulated and set to 

(not-) assist or even resist the movements. Robotic devices are useful as they can deliver 

higher training dosage at higher intensities than a physiotherapist without getting “tired”; 

moreover, their embedded sensors allow for reliable measurability of the performed 

movements and for an accurate assessment of performance, both in healthy and impaired 

populations (Finley et al., 2009; Zollo et al., 2011; Turner et al., 2013). In parallel, other 

neurophysiological recording techniques can be employed to simultaneously observe 

movement, muscles and even neural performance (Sale et al., 2015). Rehabilitation 

robotics are therefore commonly used to assess patients’ movement abilities as well as to 

train and promote the recovery process (Huang and Krakauer 2009). 

Motor adaptation is a motor learning paradigm (i.e. procedural learning; Krebs 1998) 

easily implemented with rehabilitation robotics via the application of specific external 

perturbations that alter the natural movement and prevent a good performance. The 

change in the interacting environment causes an initial decrease of performance (i.e. 

increased error) followed by an almost-exponential trial-by-trial return to baseline 

performance (Huberdeau et al., 2015). Motor adaptation also induces the so called “after-

effects” (i.e. over-compensating movements towards the opposite directions of the 

previously applied perturbation) once the environment returns to its natural state, as 

subjects expect it to be still altered and do not foresee the actual change. Studies have 

designed experiments so that the external disturbance could generate after-effects that 

resembled the natural behaviour prior to an injury (Patton et al., 2006). Motor adaptation 

protocols could therefore induce reactive changes in subjects/patients impaired behaviour 

that, with consolidation over time and support from physiotherapy, can lead towards the 

re-learning of the lost functions and recovery. However, robot-mediated rehabilitation 

paradigms are still not very common: there is in fact the need for a clearer understanding 

of the neural correlates induced by such practices and the verification of induced actual 

performance improvements as well as neuronal changes (i.e. neuroplasticity) (Turner 

2013). Moreover, given the complexity of neural injuries and the demand for personalized 

recovery programs, a lot still needs to be done to identify reliable fingerprints of changes 

in performance and motor control (at both central/neural and peripheral/muscular level) 

that could then be used to guide the definition of patient-specific rehabilitation needs and 

future work (Huang and Krakauer, 2009).  
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In this study a complete experimental setup able to monitor a robot-mediated force field 

motor adaptation process was implemented and an exhaustive investigation of its 

behavioural and neurophysiological aspects was carried out. In this chapter, attention was 

given to the experimental implementation and to the kinematic and muscular 

characteristics of the induced adaptation process, whereas subsequent chapters will focus 

on the neural correlates of adaptation. The designed experiments exploited a commonly 

used motor adaptation paradigm in studies on both healthy and impaired (Krebs et al., 

1998; De Xivry et al., 2013; Trewartha et al., 2014). The healthy population sample 

recruited for the study was expected to adapt to the applied force-field as previously 

shown in the literature, showing temporary after-effects once the disturbance was 

removed, and eventually returning to a baseline performance (Shadmehr and Mussa-

Ivaldi, 1994; Brashers-Krug et al., 1996; Milner and Franklin, 2005). Protocol-related 

muscular correlates of adaptation were also investigated, following the assumption that 

muscle activations are task specific (Throughman and Shadmehr, 1999), and more 

advanced analyses that could benefit the design of future rehabilitation protocols for the 

neurologically impaired were pursued (see Appendix IV; Pizzamiglio et al., 2017). 

4.2 Materials and methods 

4.2.1 Ethical approval 

Twenty-three right-handed healthy young adults [age mean (± standard deviation; SD) = 

28 (± 7), 6 male/17 female, range = 21 – 41 y.o.] with no previous history of neurological, 

neuromuscular and/or orthopaedic disease(s) (see Appendix II), agreed to participate in 

this study by giving written informed consent (see Appendix III). The study was approved 

by the University of East London Ethics Committee (UREC_1415_29, see Appendix I) 

and all experiments were conducted in accordance with the Declaration of Helsinki. Data 

of five subjects were discarded because of problems during data acquisitions (2 female) 

and profound movement artefacts (3 female), leaving a total of eighteen subjects [age 

mean = 28 (± 8), 6 male/12 female, range = 21 – 41 y.o.]. Sample size was determined by 

referring to the previous work done in the lab (Hunter et al., 2009: N = 14, 7 male) and to 

the relevant literature for this work (e.g. Milner and Franklin, 2005, N = 8, 6 male; 

Naranjo et al., 2007: N = 9, 6 male; Dipietro et al., 2014: N = 7, gender not specified; 

Demandt et al., 2012: N = 8, 4 male; Ball et al., 2008: N = 8, 4 male; Formaggio et al., 

2013: N = 8, 3 male; Storti et al., 2015: N = 10, 7 male). 
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4.2.2 Robot equipment 

A MIT-Manus robotic manipulandum (IMT2, InMotion Techologies, Cambridge, MA, 

USA) was employed in this study. The robot has 2 degrees of freedom (x,y, see Figure 4-

1 (A)) and allows free movements of the upper limbs within the horizontal plane only 

(i.e. no vertical movements). The robotic arm has two joints whose angular positions 

(eventually transformed into Cartesian coordinates) are recorded at a sampling frequency 

of 200 Hz by 16-bit position encoders placed inside the robot motors. The workstation 

includes a vertical screen connected to the robot via the control PC on which the task 

environment is displayed. The end-effector is represented by a cursor of 0.5 cm of 

diameter whose position on the screen reflects the position of the joystick in the horizontal 

plane, serving as online feedback for subjects (see Figure 4-2 (A)). The manipulandum 

can operate in three different modalities: 

• NON-ASSISTIVE MODE (motors-off): when performing a task in this mode, 

subjects are required to voluntary move the upper-limb whose kinematics is 

monitored by the position and force encoders; 

• ASSISTIVE MODE (motors-on): this is the mode commonly used in neuro-

rehabilitation as the robot facilitate the movement or passively moves the upper-limb 

when subjects find it difficult; assistance can be provided at different levels; 

• RESISTIVE MODE (motors-on): in this mode the robot can apply different types of 

resisting forces (i.e. against the movement) that subjects need to counteract. 

In this study the robot was set in the resistive mode to allow subjects to work against a 

resisting force and adapt. A velocity dependent force field was employed as commonly 

used in literature (Milner and Franklin, 2005; Throughman and Shadmehr, 1999) 

according to the formula: 

[
𝐹𝑥

𝐹𝑦
] = 𝐵 ∙  [

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] ∙ [
𝑉𝑥

𝑉𝑦
] 

Equation 4-1: Robot-mediated velocity dependent force field. 

where Fx and Fy are the resisting force produced in the respective directions, Vx and Vy 

are the end-effector velocities in the x- and y-direction respectively, B is the intensity of 

the force field generated by the robot motors, and the angle  is equal to -90° or 90° 

respectively for clockwise or counter-clockwise practice (Brashers-Krug et al., 1996; 

Bays et al., 2005). It is possible to change values of force field according to the study 

protocol designed. This robot equipment has been extensively employed in studies of 

motor adaptation and motor learning (Krebs et al., 1998; Krebs et al., 2001; Finley et al., 
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2009) as well as in clinical research for stroke rehabilitation (Dipietro et al., 2007; Zollo 

et al., 2011; Hunter et al., 2009; Mazzoleni et al., 2014; Ang et al., 2015). 

4.2.3 The reaching task 

The subject sat in a comfortable chair directly in front of the robot and was asked to grasp 

the end-effector handle with the right hand. Careful measurements were taken in order to 

position the arm in a semi-pronated fashion at 70° of shoulder extension and 120° of 

elbow flexion. Subject’s forearm was placed in a custom-made thermoplastic trough fixed 

to the joystick, which supported the reaching arm against gravity. Once sat, the subject’s 

height was adjusted in order to have the shoulders at the same level of the end effector. 

Safety belt straps were fastened to the subject’s chest in order to restrict any trunk 

movements that could have helped the reaching task. The vertical screen situated at eye-

level gave online feedback regarding the position of the displaced robot handle. Subjects 

were instructed to perform a straight reaching movement (15 cm of linear trajectory 

length) from a central starting point to a peripheral target (1 cm diameter on the screen 

both) within a period of time of 1.0 – 1.2 seconds. Subjects were told to move only at the 

appearance of a visual cue defined by the peripheral target cursor turning from black to 

red (see Figure 4-2 (A)). On the vertical screen a feedback on the time of each performed 

movement was given to the subject, specifically: “GOOD”, if the movement was carried 

out within the requested time period (1.0 sec < time < 1.2 sec); “SLOW”, if the movement 

slower than requested (1.2 sec > time); “FAST”, if the movement was faster that requested 

(time < 1.0 sec). After each movement, subjects were told to relax the arm as the robot 

repositioned it to the central point: this passive arm return was undertaken to not to 

interfere with the motor adaptation process. Moreover, subjects were asked to avoid any 

big movements and try to blink their eyes in the period between two consecutive reaching 

movements in order to minimize the number of artefacts within the physiological 

recordings. 

4.2.4 The experimental protocol 

One trial was composed by a voluntary reaching movement towards the peripheral target 

and the passive return to the central position. The protocol designed for the current 

experiments is in line with standard paradigms found in literature (Della-Maggiore et al., 

2015 for a review). As shown in Figure 4-2 (B), the experimental protocol was based on 

3 conditions, each composed of 96 reaching trials for a total of 288 trials per experiment. 

The first condition (Familiarization, 96 trials total) was performed in a null force-field 

and was intended to enable naive subjects to become familiar with the reaching task. 
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During the second condition (Motor Adaptation, 96 trials total), the robot applied a 

velocity-dependent force-field in the counter-clockwise direction of 25 Ns/m absolute 

intensity, perpendicular to the trajectory of the joystick. The third condition (Wash Out, 

96 trials total) was performed in a null force-field once again. Movements along the 135° 

direction and disturbed reaches with a counter-clockwise force-field perturbation were 

scheduled in order to mostly activate upper limb extensors (Throughman and Shadmer, 

1999; Pizzamiglio et al., 2017). Longer periods of rest at the beginning of the experiment, 

between each condition and at the end of the experiment were provided, during which 6 

minutes of resting-state electroencephalography (EEG) was recorded. In these periods 

subjects sat with the arm supported by the thermoplastic trough, thus biomechanical 

properties are comparable with the task-related data. Specifically, resting-state EEG was 

recorded for 3 minutes with eyes-open (EO, looking at the centre of the screen) and 3 

minutes with eyes-closed (EC): EO and EC sequence was randomized across subjects, 

but maintained consistent within the same subject. Resting-state data have been the focus 

of a separate work and results are presented elsewhere (see Appendix IV; Faiman, 

Pizzamiglio and Turner 2017, in preparation). 

4.2.5 Recording techniques 

Figure 4-1 represents the experimental setup workflow diagram and actual laboratory 

environment and instrumentations employed. The robot PC was connected to the vertical 

screen in front of the subject and displayed the selected protocol. Kinematic measures of 

each reaching trial were recorded by the encoders embedded within the two joystick joints 

as previously mentioned (see paragraph 4.1.2). The end-effector position (m) and velocity 

(m/s) within the horizontal plane (i.e. along the x and y axes), as well as the forces exerted 

by the subject in the 3D space (i.e. along the x, y and z axes; N) were sampled at 200 Hz 

and stored on the computer PC for offline analyses. Electromyographic activity (EMG; 

μV) was recorded from the right arm Anterior Deltoid (AD), Posterior Deltoid (PD), 

Biceps Brachii (BB), Triceps Brachii (TB), Extensor Carpi Radialis (ECR), Flexor Carpi 

Radialis (FCR), and Brachioradialis (BR) muscles (see Figure 4-3). Additional recordings 

were obtained from the left arm Biceps Brachii to control for potential activation of the 

contralateral arm as aid to counteract the resisting force field during motor adaptation. 

Bipolar superficial electrodes with a fixed 1.5 cm inter-electrode distance were positioned 

on each muscle according to the belly-belly montage following the SENIAM guidelines 

(Hermens et al., 2000). Data were sampled at 1 kHz and digitized via a 14-bit analog-to-

digital converter (DataLog W4X8 EMG system, Biometrics Ltd, Newport, UK, see 

Figure 4-1 (C)). Brain activity (EEG; μV) was recorded through a 64-channel Waveguard 
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cap and ampliefied by a TMSi Ref-Ext amplifier (ANT Neuro, Enschede, Netherlands, 

see Figure 4-1 (C)), digitized at 1024 Hz and band-pass filtered from 0.1 to 500 Hz. 

During the recording, data were referenced to the Fz electrode and impedances were kept 

below 5 kΩ. To synchronize the three simultaneously recorded signals, the robot PC sent 

a TTL pulse at each visual cue (i.e. trigger at the beginning of a trial, time = 0 sec) via a 

double - split BNC cable to the EMG and the EEG recording systems (see Figure 4-1 (A) 

thin red lines).
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Figure 4-1: Experimental setup workflow and single components. 

A) Experimental setup diagram. The subject sat in front of the robot workstation and grasped with the right 

hand the joystick end-effector (2). The task environment is reproduced on a vertical screen (1) connected 

to the robot PC and online feedback on the position of the end-effector during each movement is here 

displayed. The robot has 2 degrees of freedom (x,y) and allows movements only within the horizontal plane. 

Kinematics of each movement is recorded by the encoders embedded in each joint of the robotic joystick 

and saved in .csv files on the PC. At the beginning of each trial (i.e. reach movement), a TTL pulse (3) is 

sent via a double-split BNC cable to the EMG (5) and the EEG (6) recording systems. These triggers allow 

to have all the recordings synchronized for offline accurate analyses. Muscle activity of 8 upper-limb 

muscles (4) is recorded via surface electrodes and sent via Bluetooth to a second PC for saving. 64-channel 

EEG (6, 7) is recorded and saved on a third PC. B) Experimental setup picture. C) EMG DataLog (left) and 

EEG 64-channel Waveguard cap with TMSi Refa-Ext amplifier (right) employed for this study. 
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Figure 4-2: Experimental task environment and protocol. 

A) Subject were asked to reach towards a peripheral target (135°/NW direction) projected on a vertical 

display in front of them as soon as the cue (i.e. target turning red) appeared. Online feedback (yellow cursor) 

was given to subjects throughout the whole trial (i.e. reach) duration. B) The experimental protocol was 

based on 3 conditions, each of 96 trials: Familiarization (no force-field), Motor Adaptation (force-field) 

and Wash Out (no force-field). A period of rest was given between conditions in order to avoid muscles 

fatigue. 6 minutes resting-state EEG (3 minutes eyes open, 3 minutes eyes closed randomized across 

subjects) was recorded at the very beginning, between each condition and at the very end of the experiment. 
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Figure 4-3: Upper limb muscles. 

The activity of 8 upper limb muscles was monitored during the experiments, specifically the right arm 

Anterior Deltoid (AD), Posterior Deltoid (PD), Biceps Brachii (BB), Triceps Brachii (TB), Extensor Carpi 

Radialis (ECR), Flexor Carpi Radialis (FCR) and Brachioradialis (BR), and the left arm Biceps Brachii 

(left BB) as control. The ground electrode was positioned on the left arm wrist Ulna bone peripheral 

extremity. 
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4.2.6 Data analyses 

Offline data analyses were run in MatLab 2013b (The MathWorks, Inc.). In this chapter 

a detail description of kinematic and EMG analyses methodologies is covered, but for 

more details on EEG data analyses techniques see chapter 5, paragraph 5.2.2. 

Reaching kinematics 

Kinematic data from the robot were interpolated to match the EMG sampling rate of 1 

kHz. The starting of a reaching movement was defined as Movement Onset and calculated 

as the time point at which speed exceeded the threshold of 0.03 m/s as previously used in 

literature (Hunter et al., 2009); the end of a reaching movement was defined as Movement 

Offset and calculated as the time point after Movement Onset at which movement velocity 

lowered below the threshold of 0.03 m/s. Trial-by-trial trajectory error was assessed 

through the measure of Summed Error (m), defined as the absolute cumulative 

perpendicular distance between the actual trajectory and the ideal straight line connecting 

the central starting point with the peripheral target. Summed Error values are always 

positive as, by definition, it does not take into account path directionality and is a measure 

of error for the whole duration of the reaching movement, from Movement Onset to 

Movement Offset (Osu et al., 2003; Hunter et al., 2009). The measure of Peak Velocity 

(m/s) described the trial-by-trial maxima of compound velocity (i.e. the overall velocity 

magnitude across both x and y axes), whereas the measure of Peak Force (N) represented 

the trial-by-trial maxima of compound force (i.e. the overall force magnitude across both 

x and y axes). 

EMG pre-processing and basic muscle activity 

Trial-by-trial raw EMG data were first de-trended, high-pass filtered at 45 Hz 

(Butterworth, order 3), notch filtered (50Hz) and rectified. The high-pass filter choice was 

based on the commonly accepted knowledge that EMG signals may be contaminated by 

intrinsic low-frequency noise sources (De Luca et al., 2010) and ensures that all the 

possible noise and movement artefacts are excluded from the signal. Each muscle activity 

was normalized to the maximum value registered in that muscle across the whole 

experimental recording (i.e. activation ratio, %) in order to minimize variability across 

subjects due to possible variation in electrode-skin impedances. After pre-processing of 

the data, maximum EMG activation (Peak EMG; µV) and latency (Peak EMG latency 

relative to movement onset; ms) were firstly calculated for each trial within a time period 

ranging from Movement Onset and Movement Offset. Secondary advanced analyses of 

muscles co-activation in both the time (measures of Wasted Contraction; Huang and 
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Ahmed, 2014) and in the frequency domain (measures of Intermuscular Coherence, 

Grosse and Brown, 2002) have been performed to investigate muscular correlates of 

robot-mediated motor adaptation. Results are reported elsewhere (see Appendix IV; 

Pizzamiglio et al., 2017; Pizzamiglio et al., 2017). 

4.2.7 Statistics 

Statistical analyses were performed with SPSS 23 (IBM). All measures of motor 

adaptation were assessed trial-by-trial for each subject and then averaged for 16 trials 

across each condition (i.e. 6 blocks per condition) and across subjects (N = 18).  Statistical 

analysis of motor adaptation measures then focused on differences between 8 blocks of 

major interest: block 6 (Familiarization trials 81-96), block 7 (Motor Adaptation trials 1-

16), block 8 (Motor Adaptation trials 17-32), block 9 (Motor Adaptation trials 33-48), 

block 10 (Motor Adaptation trials 49-64), block 11 (Motor Adaptation trials 65-80), block 

12 (Motor Adaptation trials 81-96) and block 18 (Wash Out trials 81-96). Statistical 

analyses were run through SPSS 23 (IBM) and MatLab 2013b. Averaged block data were 

first tested for normality with the Kolmogorov-Smirnoff test. The vast majority of data 

were normally distributed thus parametric tests were performed. For each measure, one 

way repeated measures analysis of variance with factor “block” (repeated measures 

ANOVA; 8 blocks) was performed in order to highlight the presence of any variance 

across blocks. For each kinematic measure, peak force or basic muscle activity measures, 

paired-sample T-tests with Bonferroni correction for multiple comparisons were used to 

define differences between block 6 (familiarization) and blocks 7-12 during adaptation 

and at the end of washout (block 18). Significance level was set at α = 0.05, thus paired-

samples T-tests were considered statistically significant if p < 0.0071 (according to 

Bonferroni correction: 0.05/7, with number of repeated tests = 7). 

4.3 Results 

Figure 4-4 shows an exemplary single-subject motor adaptation process. Blue lines 

represent the ideal straight line connecting the central starting point with the peripheral 

target positioned at 135°, whereas black lines represent single-trial actual trajectories 

performed by the subject. During the Familiarization condition, the subject familiarized 

with the reaching task and the setup: here no resisting force field was applied by the robot 

motors, and indeed the single-trial trajectories have only a small deviation from the ideal 

straight-blue line. During the Motor Adaptation condition, when the robot applied a 

counter-clockwise resisting force field, bigger deviations towards the left-hand side can 

be seen: in the very first trials the arm is markedly pulled away from the straight line; 
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however, a trial-by-trial reduction of movement error can be seen, with trajectories getting 

closer to the ideal straight-blue line. The reduction of movement error is representative 

of a successful adaptation process. In the Wash Out condition the robot again applied no 

resisting force to the movements: moderate deviations towards the opposite force-field 

direction can be seen in the very first trials (i.e. over-compensation), with a quick trial-

by-trial reduction of actual movement deviation from the ideal straight-blue line. 

Altogether, the above describes a successful motor adaptation followed by a de-

adaptation process. 

4.3.1 Kinematics measures of motor adaptation 

Each measure is represented by an averaged trial-by-trial trend (Figure 4-5) and block-

by-block mean (± standard deviation) across the three conditions (Table 4-1). Repeated 

measures ANOVA values were significant for all the kinematic and kinetic measures (all 

F > 8.11; all p < 0.001). According to paired-samples T-tests, all motor adaptation blocks 

were significantly higher than block 6 for summed error (all p < 0.001), peak velocity (all 

p < 0.007) and peak force (all p < 0.001). Movement Onset and Movement Offset only 

decreased in block 7 compared to block 6 (corrected paired T-test: p = 0.005). All 

measures returned to baseline after wash out as demonstrated by the comparison between 

block 6 and block 18. 

4.3.2 Basic muscle activity measures of motor adaptation 

Some muscles demonstrated increases in peak EMG amplitude across conditions on a 

block-by-block basis whilst others had more complex patterns of activity change (Figure 

4-6). Table 4-2 presents the results of the 1 way repeated measures ANOVA for Peak 

EMG amplitude, whereby ECR (F = 34.52, p < 0.001), PD (F = 31.13, p < 0.001), BB (F 

= 24.73, p < 0.001), BR (F = 19.46, p < 0.001), FCR (F = 16.33, p < 0.001), TB (F = 

12.06, p < 0.001) and AD (F = 7.72, p = 0.001) were statistically different across blocks, 

but left BB was not (F = 1.92, p > 0.05). Paired-sample T-tests demonstrated that PD peak 

EMG amplitude (p < 0.001) increased during early adaptation compared to baseline and 

did not show any further change during later adaptation and wash out. BB and ECR peak 

EMG amplitude increased in the early adaptation period with respect to baseline (all p < 

0.007) and did not show any further change during later adaptation; ECR peak EMG 

amplitude during late wash out significantly decreased with respect to baseline (p < 

0.007). FCR, TB and BR peak EMG amplitude increased during early adaptation (p < 

0.007), but then progressively decreased towards baseline again by block 7 for FCR, 

block 8 for TB and block 11 for BR. On the contrary, a sustained decrease of EMG peak 
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activity was recorded in the AD muscle during early adaptation (all p < 0.007) with no 

further changes during later adaptation but a return to normal activity by end of wash out. 

The increase of peak EMG amplitude during adaptation was accompanied by changes of 

Peak EMG amplitude latency in all the muscles except for AD and left BB (F < 3.15, p > 

0.018 with no significant paired samples t-Tests). BR (F = 21.43, p < 0.001), TB (F = 

12.67, p < 0.001), and ECR (F = 12.04, p < 0.001) peak EMG amplitude latency shortened 

in early adaptation with no further changes during later adaptation (all p < 0.001). PD (F 

= 11.10, p < 0.001) peak EMG amplitude latency shortened in early adaptation from block 

8 with no further changes during later adaptation (all p < 0.007), whereas BB (F = 5.05, 

p = 0.004) peak EMG amplitude latency significantly shortened only during later 

adaptation (block 12 p < 0.007). On the contrary, a delayed peak EMG amplitude latency 

was reported for muscle FCR (F = 9.14, p = 0.001) during early adaptation which then 

progressively decreased towards baseline again by block 9 (first three blocks p < 0.007).
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Figure 4-4: The motor adaptation process. 

Single-subject trial-by-trial actual trajectories (i.e. thin black lines) performed in the three experimental 

conditions of Familiarization, Motor Adaptation and Wash Out. Thick blue lines represent the ideal straight 

line connecting the central starting point (x = 0; y = 0) with the peripheral target. During Familiarization 

trajectories are very close to the ideal straight line as no disturbance is applied; when the counter-clockwise 

force is on (Motor Adaptation), deviations from the ideal straight line are pronounced towards the left-hand 

side in the beginning (red trajectories = first 5 trials) and slowly reduced trial-by-trial (pink trajectories = 

last 5 trials); during Wash Out, no external force field is applied and a first overcompensation towards the 

force field opposite direction (i.e. right-hand side) is then followed by trajectories with very small 

deviations from the straight line. 
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Figure 4-5: Trial-by-trial kinematic measures of motor adaptation. 

A trial-by-trial population average (N = 18) profile with shaded standard deviation for each kinematic 

measure across the three experimental conditions. Top Left: Movement Onset (black line) and Offset (grey 

line) are almost constant across the whole experiment. Bottom Left/Right: Peak Velocity and Planar Force 

show a typical constant increase of values during the motor adaptation condition. Top Right: movement 

Summed Error slowly decreases during the adaptation condition, with blue lines representing first and late 

5 trials averages during adaptation to highlight changes in error. 
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Figure 4-6: Block-by-block muscle specific activation profiles. 

Block-by-block average (N = 18) activation profiles (from visual cue, t = 0, to 3 seconds afterwards) have 

been colour coded to describe the evolution of muscle specific activation over the adaptation period. 

Represented muscles are Anterior Deltoid (AD), Posterior Deltoid (PD), Biceps Brachii (BB), Triceps 

Brachii (TB), Extensor Carpi Radialis (ECR), Flexor Carpi Radialis (FCR) and Brachioradialis (BR). A 

clear pattern of adaptation to the counter-clockwise force field can be seen in the Triceps Brachii and 

extensor Carpi Radialis muscles. 
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Table 4-1: Kinematics results. 

Block-by-block (n = 8) of the five kinematic measures (Movement Onset, Movement Offset, Peak Velocity, Peak Planar Force, Summed Error). Repeated measures ANOVA F and p-

values are reported in the last two columns on the right, and statistically significant paired samples t-Tests with Bonferroni correction for multiple comparisons are highlighted with * 

(N = 18, Block 6 vs. Blocki with I = 7, ..12, 18; 7 comparisons and corrected p < 0.0071). 

 

 

Null Field Force Field Force Field Force Field Force Field Force Field Force Field Null Field Anova 

 
Block 6 Block 7 Block 8 Block 9 Block 10 Block 11 Block12 Block18 F p 

Movement Onset (ms) 325 (± 32) 296 (± 27) * 311 (± 26) 312 (± 31) 317 (± 31) 309 (± 25) 318 (± 24) 332 (± 24) 8.60 0.001 

Movement Offset (ms) 1219 (± 28) 1329 (± 88) * 1267 (± 77) 1245 (± 50) 1241 (± 56) 1239 (± 36) 1225 (± 45) 1216 (± 49) 9.91 0.001 

Peak Velocity (m/s) 0.25 (± 0.02) 0.3 (± 0.06) * 0.3 (± 0.06) * 0.3 (± 0.06) * 0.3 (± 0.06) * 0.3 (± 0.05) * 0.3 (± 0.06) * 0.26 (± 0.06) 8.11 0.001 

Peak Planar Force (N) 4.4 (± 0.7) 7.4 (± 1.7) * 7.1 (± 1.3) * 6.8 (± 1.3) * 6.9 (± 1.5) * 6.8 (± 1.2) * 6.9 (± 1.3) * 4.5 (± 0.8) 40.66 0.001 

Summed Error (m) 1.9 (± 0.5) 14.9 (± 5.7) * 9.9 (± 4.1) * 8.3 (± 3.9) * 7.6 (± 4) * 7.1 (± 3.4) * 6.7 (± 3.1) * 2.3 (± 2.4) 50.64 0.001 
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Table 4-2: EMG results. 

Block-by-block (n = 8) of two EMG measures (Peak EMG, Peak EMG Latency relative to Movement Onset) for all muscles (Anterior Deltoid (AD), Posterior Deltoid (PD), Biceps 

Brachii (BB), Triceps Brachii (TB), Extensor Carpis Radialis (ECR), Flexor Carpi Radialis (FCR), Brachioradialis (BR) and left Biceps Brachii (left BB)). Repeated measures ANOVA 

F and p-values are reported in the last two columns on the right, and statistically significant paired samples t-Tests with Bonferroni correction for multiple comparisons are highlighted 

with * (N = 18, Block 6 vs. Blocki with I = 7, ..12, 18; 7 comparisons and corrected p < 0.0071). 

 

 

Null Field Force Field Force Field Force Field Force Field Force Field Force Field Null Field Anova 

 
Block 6 Block 7 Block 8 Block 9 Block 10 Block 11 Block12 Block18 F p 

Peak EMG (%)  

AD 0.45 (± 0.15) 0.33 (± 0.17) * 0.28 (± 0.15) * 0.27 (± 0.16) * 0.29 (± 0.17) * 0.29 (± 0.15) * 0.27 (± 0.13) * 0.36 (± 0.17) * 7.72 0.001 

PD 0.17 (± 0.06) 0.53 (± 0.12) * 0.42 (± 0.18) * 0.39 (± 0.16) * 0.36 (± 0.16) * 0.65 (± 0.17) * 0.33 (± 0.15) * 0.17 (± 0.09) * 31.13 0.001 

BB 0.22 (± 0.07) 0.50 (± 0.11) * 0.41 (± 0.11) * 0.36 (± 0.12) * 0.36 (± 0.12) * 0.36 (± 0.11) * 0.32 (± 0.11) * 0.23 (± 0.13) 24.73 0.001 

TB 0.40 (± 0.12) 0.58 (± 0.13) * 0.48 (± 0.16) * 0.47 (± 0.15) 0.46 (± 0.15) 0.44 (± 0.14) 0.44 (± 0.15) 0.33 (± 0.19) 12.06 0.001 

ECR 0.21 (± 0.14) 0.60 (± 0.16) * 0.49 (± 0.18) * 0.45 (± 0.16) * 0.44 (± 0.16) * 0.42 (± 0.16) * 0.4 (± 0.16) * 0.17 (± 0.15) * 34.52 0.001 

FCR 0.23 (± 0.17) 0.47 (± 0.14) * 0.36 (± 0.13) 0.31 (± 0.14) 0.29 (± 0.11) 0.28 (± 0.10) 0.28 (± 0.12) 0.15 (± 0.11) 16.33 0.001 

BR 0.22 (± 0.10) 0.49 (± 0.12) * 0.38 (± 0.13) * 0.34 (± 0.11) * 0.35 (± 0.13) * 0.34 (± 0.13) * 0.32 (± 0.13) 0.21 (± 0.15) 19.46 0.001 

Left BB 0.07 (± 0.03) 0.14  (± 0.19) 0.10 (± 0.06) 0.09 (± 0.05) 0.09 (± 0.05) 0.08 (± 0.05) 0.08 (± 0.05) 0.07 (± 0.04) 1.92 N.S. 

Peak EMG Time – 

Mov. Onset (ms) 

 

AD 575 (± 83) 526 (± 149) 495 (± 152) 504 (± 165) 508 (± 161) 509 (± 155) 497 (± 169) 532 (± 108) 1.76 N.S. 

PD 524 (± 90.4) 483 (± 102) 416 (± 95) * 382 (± 72) * 400 (± 113) * 376 (± 102) * 357 (± 92) * 519 (± 114) 11.10 0.001 

BB 584 (± 92) 580 (± 177) 540 (± 136) 474 (± 135) 463 (± 158) 485 (± 123) 460 (± 113) * 537 (± 98) 5.05 0.004 

TB 556 (± 115) 442 (± 116) * 431 (± 115) * 356 (± 95) * 363 (± 88) * 393 (± 73) * 365 (± 105) * 537 (± 150) 12.67 0.001 

ECR  454 (± 89) 365 (± 67) * 326 (± 115) * 304 (± 74) * 287 (± 99) * 304 (± 101) * 265 (± 102) * 424 (± 145) 12.04 0.001 

FCR  478 (± 122) 670 (± 147) * 622 (± 119) * 606 (± 126) * 540 (± 138) 548 (± 167) 553 (± 144) 449 (± 113) 9.14 0.001 

BR 490 (± 68) 383 (± 100) * 341 (± 82) * 303 (± 82) * 314 (± 97) * 305 (± 87) * 292 (± 79) * 480 (± 100) 21.43 0.001 

Left BB 460 (± 66) 534 (± 113) 470 (± 85) 446 (± 90) 444 (± 82) 428 (± 120) 442 (± 87) 465 (± 80) 3.15 0.018 
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4.4 Discussions 

4.4.1 Novel findings 

A typical motor adaptation paradigm was here described through evidence of kinematics 

and multiple muscle activity: an extended number of upper-limb muscles was studied and 

a detailed description of muscular correlates of motor adaptation was offered. Previous 

investigations have focused on upper-arm and trunk muscles during adaptation to robot-

mediated force fields (Osu et al., 2003; Franklin et al., 2003; Milner and Franklin, 2005). 

However, in this study the trunk of the subject was constrained by seatbelts, thus it was 

opted to investigate if and how forelimb muscles could instead play a role in the 

adaptation process. Indeed, a typical and successful robot-mediated velocity-dependent 

force field motor adaptation process (Huang and Krakauer, 2009) was here reported, 

described by standard kinematics measures, and in parallel supported by specific patterns 

of upper-limb muscle activation. 

4.4.2 The motor adaptation process 

Kinematics and behaviour 

Subjects performed a controlled reaching task within the horizontal plane both in a null 

force field and in a velocity-dependent force field environment. First, subjects completely 

familiarized with the setup and the task as errors of deviation of the actual movement 

from the ideal straight lines reached very small values (Summed Error = 1.9 (± 0.5) ms 

in block 7). Subsequently, a counter-clockwise velocity dependent force field disrupted 

the natural movement causing big deviations from the ideal straight line. Trial-by-trial, 

the initial big deviations were slowly replaced by smaller errors according to a nearly-

exponential trend as previously reported in literature (Huberdau et al., 2015). The removal 

of the force-field showed strong after-effects as subjects over-compensated in the 

direction opposite to the previous-applied force field in the very first trials of wash out. 

However, adaptation decay quickly evolved during the wash out condition as subjects 

performed good reaching movement with little error already after few trials. Our results 

are in line with the assumption that motor adaptation is a reaction to specific changes in 

the environment with which the subject is interacting, consisting of a gradual reduction 

of performance error and a return to baseline performance (Shadmehr and Wise, 2005; 

Huang and Krakauer, 2009). The designed task had a higher level of complexity than 

those employed in previous work as a high force-field intensity was programmed (25 

Ns/m) and the movement direction was fixed at 135° (i.e. North-West). Other studies 

have successfully employed higher level of resisting force (Focke et al., 2013), 
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demonstrating that standard motor adaptation features could be extended to more 

complex study designs. Moreover, the choice of the north-west direction was dictated by 

previous literature investigation according to which different levels of difficulty could be 

obtained by reaching towards different directions (Schawobsky et al., 2007), with the 

chosen direction as one of the most difficult to follow through a motor adaptation 

paradigm. Despite the planned difficulty, subjects showed a typical adapting curve even 

within less than 100 trials. The stronger force (with respect to that produced during a 

natural reaching) constantly exerted during the adaptation condition is symbolic of an 

active compensatory action generated by the subjects. Higher-velocity profiles were also 

observed throughout the whole adaptation process: subjects were required to reach out 

towards the peripheral target always between 1-1.2 seconds, therefore it is reasonable that 

a higher speed was employed to smoothly move within the requested time range. The 

disturbance of reaching trajectory by a velocity-dependent force field has been 

extensively studied in literature (Shadmehr and Mussa-Ivaldi, 1994; Brashers-Krug et al., 

1996; Krebs et al., 1998; Bays et al., 2005; Milner and Franklin, 2005; Hunter et al., 2009; 

Focke et al., 2013; Yeo et al., 2015). The typical trial-by-trial exponential decay of 

movement error has also been subject to many different theoretical models (Smith et al., 

2006; Lonini et al., 2009; Wei and Körding 2010). Moreover, the over-compensating 

after-effect here observed has been extensively reported in literature (Huang and 

Krakauer, 2009): subjects persisted in the adapted state as if the environment was still 

altered. This effect has been pointed out as very important during rehabilitation after 

neural injuries as one could adjust the training environment so that after effects resembled 

natural behaviour (Patton et al., 2006). Moreover, it is symbolic of an anticipatory 

elaboration of the expected state of the environment from the subjects, validating the 

hypothesis of the creation of an internal neural model during adaptation (Milner and 

Franklin, 2005; Lonini et al., 2009).  

Muscle activations 

In the current study previous findings were successfully replicated and novel evidences 

on specific muscle activation patterns supporting the adaptation process were presented. 

Indeed, previous studies have demonstrated how different muscles contribute to the motor 

adaptation process (Osu et al., 2003; Franklin et al., 2003; Milner and Franklin, 2005; 

Darainy and Ostry, 2008; Huang and Ahmed, 2014). In this study however, forearm 

muscles were also included in the investigation and shown to play an active role during 

reaching adaptation. Muscle activities increased significantly with respect to a normal 
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reach and remained higher throughout the whole adaptation duration in those muscles 

mostly required to compensate for the counter-clockwise force-field applied, which is 

Posterior Deltoid, Triceps Brachii, Biceps Brachii and Extensor Carpi Radialis (Table 4-

2, Figure 4-6). In parallel, some muscles also anticipated the time of maximum activity 

during adaptation as likely mostly involved in the compensation process, specifically 

Triceps Brachii, Extensor Carpi Radialis and Brachioradialis (Table 4-2). Resisting a 

counter-clockwise force field during reaching thus engages mostly upper-limb extensors 

with the exception of the Biceps Brachii, which is likely involved to support the other 

muscles during adaptation (Pizzamiglio et al., 2017). Forearm muscles were also involved 

in the opposition to the external perturbation, especially the ECR which is not directly 

involved in the movement of shoulder and elbow joints (since it mostly promotes wrist 

extension) but is more likely stabilizing the lower arm. Of note, despite being always 

higher than during a natural reaching, the maximum EMG values of all muscles decreased 

block-by-block during adaptation, in line with theories of mechanisms of early and late 

stages of adaptation (Milner and Franklin, 2005). Indeed, initial reactions to an external 

perturbation are orchestrated by feedback drives and reflexes implying strong muscles 

activities and co-contraction profiles, whereas feedforward models take over control at 

later stages of adaptation and optimize the behaviour by programming the activation of 

only the necessary muscles for the necessary amount in order to save metabolic cost 

(Huang and Ahmed, 2014; Pizzamiglio et al., 2017). Of note, trunk movements were kept 

minimal by using seatbelts, whereas activity of the contralateral arm was monitored 

throughout the whole experiment duration. No differences in the activity of the Biceps 

Brachii muscle of the left arm were reported: this is symbolic of no contraction of the 

contralateral arm as leverage to counteract the applied force field. The lack of sustained 

activity in the left arm paves the path for reliable future investigations of the neural 

correlates of motor adaptation. Indeed, the bilateral activation of the upper-limbs would 

have induced bilateral complex neural patterns, thus the electrophysiological features of 

the motor adaptation process per se would have been difficult to disentangle. Subsequent 

analyses (see chapters 5 and 6) will focus on the neural aspects of simple reaching and of 

reaching in the robot-mediated force-field environment. 

4.4.3 Further insights into muscular correlates for rehabilitation 

More thorough investigations of motor adaptation co-contraction muscle patterns were 

also performed in separate settings (see Appendix IV; Pizzamiglio et al., 2017) pursuing 

theories claiming that muscles activities are task specific (Feldman 1998; Throughman 

and Shadmehr, 1999; Milner and Franklin, 2005). Subjects were asked to adapt to either 
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the counter-clockwise either to a clockwise robot-mediated force-field (of the same 

intensity, i.e. 25 Nm/s) and the respective muscle activations and muscle-pairs co-

contractions patterns were compared. These analyses demonstrated that muscular activity 

is indeed related to the resisting force applied by the robot, specifically to the direction of 

the velocity-dependent force-field (Pizzamiglio et al., 2017). For the right arm, pairs 

including the flexors muscles were co-contracted earlier in the clockwise condition, 

whereas pairs always including one of the extensor muscles were co-contracted earlier in 

the counter-clockwise condition. It therefore appears that during robot-mediated motor 

adaptation, the force-field direction can modulate muscle activation and co-contraction 

profiles. It has been previously shown that, in early stages of motor adaptation, an 

elevated muscle co-contraction level is engaged in different populations (Huang & 

Ahmed, 2014; Thoroughman & Shadmehr, 1999). Despite the considerable metabolic 

cost, this is still a valuable strategy employed in order to improve performance and reduce 

movement error (Huang & Ahmed, 2014; Oscari et al., 2016). In neurological populations 

however, muscle co-contraction is often considered a pathological factor. In stroke 

patients for example, high levels of antagonist muscle co-contraction is considered as an 

expression of impaired stiffness of the joints (Hammond et al., 1988). How the 

pathological co-contraction level might influence the level of motor impairment in 

neurological populations is still under debate (Busse et al., 2006; Chae et al., 2002; 

Gowland et al., 1992). Recent studies have proposed the use of muscle coupling as a 

marker during neurofeedback training in neurological populations (Wright et al., 2014). 

Targeting the normalization of muscle co-contraction patterns seems in fact a valuable 

rehabilitation target given the easy to follow EMG-based feedback patterns. Relying on 

simple indicators of activity, such as muscle co-contraction levels in different adaptation 

settings (i.e., clockwise vs. counter-clockwise protocols), could be a valuable strategy to 

promote recovery during neurorehabilitative interventions. Previous studies 

demonstrated that some patients require restoring lost muscle couplings, whereas others 

would need the attenuation of excessive muscle couplings (Cheung et al., 2012). Relevant 

individualised therapeutic targets and precise therapeutic programs could be designed, for 

example by modifying the direction of movement or force field to induce specific co-

contraction patterns. It remains to be established how an intervention inducing muscle co-

contraction changes in an impaired population would affect the upper-limb function per 

se: further research including neuropathological populations is needed to eventually 

establish a recommended strategy for individual practice. 
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4.4.4 Limitations 

The number of subjects recruited in this investigation is in line with studies found in 

literature. Given the high repeatability of adaptation behaviour across different subjects 

we considered the recruited sample meaningful for the study purpose. However, future 

studies should perform a priori sample size analyses with respect to the hypothesised 

results in order to more consistently determine the minimum number of subjects needed. 

Even though subjects exponentially adapted to the applied counter-clockwise force field, 

a complete adaptation did not happen as group-level error in the last trials was still 

significantly different from the baseline (see Table 4-1). The choice of employing 96 trials 

in total for each condition was a trade-off between accomplishing adaptation and avoiding 

fatigue and exhaustion. Future studies should provide more trials, at least during the 

adaptation condition, in order to accomplish a full adaptation. Moreover, recent 

investigations have shown that complex setups (e.g. movement of the arm in the 3D space, 

no forearm support against gravity, etc.) could undermine the translation of standard 

adaptation features (Focke et al., 2013). Indeed, an over controlled experimental setup 

prevents the observation of real natural behaviours: it is possible that either the adaptation 

process could manifest itself differently, either other not-yet-considered factors could 

play a role in the process. This has repercussions on the translation of rehabilitation into 

daily-life activity performance: it has been reported that neurologically impaired patients 

undergoing a passive/active rehabilitation might overcome impairments through 

rehabilitation but not fully recover functionality (Huang and Krakauer, 2009). Future 

studies should investigate more complex experimental setup and natural setting to 

disentangle the concepts of impairments and functional recovery and identify how to 

optimize recovery of natural behaviours after neurological injuries. As per our 

investigation, the employment of a simple setup with movements constrained in the 

horizontal plane resembles typical rehabilitation paradigms currently performed in 

hospitals with hemiparetic subjects (Turner 2013). Our goal was indeed to investigate a 

typical rehabilitation protocol and provide further support and evidence of the adaptation 

process that could be then implemented in clinical rehabilitation practice.  
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5 Sensor-level neural correlates of robot-mediated motor adaptation during 

reaching with the upper-limb 

5.1 Introduction 

Healthy individuals perform upper-limb reaching naturally, “not thinking about it”, 

however it is a complex movement that requires the activation of different body parts 

(brain, muscles, joints) as per instructions of an accurate plan quickly scheduled by the 

Central Nervous System (CNS). For example, reaching for a box on a shelf requires the 

definition of both kinematics and dynamics instructions: the former describes the best 

trajectory, velocity and joint torques necessary to achieve the goal; the latter defines the 

required forces to shift or lift the box, thus also involves muscle activations. The CNS 

accomplishes all of this by solving complex problems with numerous variables and 

choosing the plan that minimizes energy and efforts (Shadmehr and Wise, 2005). The 

best solution to this complex problem is computed in the order of milliseconds by 

recruiting specific areas both in parallel and in sequence, each one of them apt to a given 

function within the pipeline. It has been previously hypothesised and demonstrated that 

the reaching movement activates a frontal-parietal network called the “dorsal-visual 

stream” (Grafton et al., 1996; Battaglia-Mayer et al., 2003), which recruits parietal, 

premotor, motor and frontal areas. The introduction of a velocity-dependent force-field 

that disturbs the reaching movement induces movement deviations (errors) from the ideal 

straight planned trajectory followed by augmented co-contraction between the upper-limb 

muscles (Pizzamiglio et al., 2017). The initial large error and high co-contraction are 

slowly reduced over time, trial-by-trial, with practice, thanks to feedback and feedforward 

adapting processes and internal models developing within the CNS (Milner and Franklin, 

2005). Studies employing techniques with high spatial resolution, such as fMRI and PET, 

have previously demonstrated that different phases of motor adaptation and motor 

learning recruit specific brain areas (Della Maggiore and McIntosh, 2005). At early stages 

of adaptation a cortical-striatal loop is involved (Krebs et al., 1998), whereby the frontal 

cortex plays a major role as temporary storage of sensorimotor information for imminent 

use (Shadmehr and Holcomb, 1997). As adaptation takes over and performance improves, 

a different, cortico-cerebellar loop enters the game (Krebs et al., 1998), in which the 

parietal cortex as well as the cerebellum act as long-term memory storages (Shadmehr 

and Holcomb, 1997). The passage from novice to skilled performer is therefore conveyed 

by a switch from cortico-striatal to cortico-cerebellar control of the performed motor 

action and practice; the long-term learning of new skills, commonly believed to be 

obtained through the formation of new internal motor models proper of the new skill, is 
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then believed to happen within the parietal and motor cortices (Villalta et al., 2013; Della 

Maggiore et al., 2015). Despite the high spatial resolution of these techniques, these 

findings are limited in temporal resolution as only slow changes in brain blood-oxygen 

activity could be recorded. 

More recent investigations have employed EEG for its high temporal resolution (ms) in 

order to study fast changes in brain dynamics during numerous motor tasks. Specific 

spatial activations can be identified through measures of 1) Event-Related Potentials 

(ERPs), automatic responses of the brain to external stimuli obtained as mathematical 

average of the recorded signal in the time domain, and 2) Event-Related Spectral 

Perturbations (ERSPs), induced dynamics in the EEG spectrum by the onset of external 

stimuli (Makeig, 1993) described as increases or decreases of the power of the EEG signal 

of a specific frequency at a given time point with respect to a pre-stimulus undisturbed 

period. Many studies have analysed the time-frequency EEG correlates of hand/finger 

movements (Babiloni et al., 2016; Pollok et al., 2014; Derosiere et al., 2014; Manganotti 

et al., 1998) as well as of arm reaching (Storti et al., 2015; Formaggio et al., 2013; 

Formaggio et al., 2014). Typical voluntary upper-limb movements are characterised by a 

decrease of the power in low frequency ranges (α (8 – 12 Hz), β (15 – 30 Hz)), called 

Event-Related Desynchronization (ERD), during movement execution (or imagination) 

mainly in the primary sensorimotor cortex of the hemisphere contralateral to the moved 

limb, and most of the time also in the ipsilateral hemisphere (Van Wijk et al., 2012). The 

end of the voluntary movement is usually accompanied by an increase of β power called 

Event-Related Synchronization (ERS) previously demonstrated to be symbolic of trial-

by-trial motor learning and internal models update (Tan et al., 2014; Torrecillos et al., 

2015; Fry et al., 2016; Tan et al., 2016). Very little has been studied on the effects of force 

field motor adaptation with a focus on the movement preparation and execution period: 

given the potentiality of this type of motor adaptation protocol in robot-mediated 

rehabilitation for the neurologically impaired (Huang and Krakauer 2009; Turner 2013), 

it would be useful to investigate the effects this type of rehabilitation practice has on the 

human brain. 

The neural correlates of the robot-mediated motor adaptation protocol described in 

chapter 4 were therefore investigated through different descriptors of the recorded EEG 

signals recorded at the scalp level. Our goal was to identify specific changes within the 

brain activations that could be related to 1) the applied external force field the subjects 

had to face, and/or 2) the development of adaptive or compensatory strategies optimizing 
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the behaviour and/or the performance. Positive findings could pave the path for more 

advanced investigations of the neural correlates of this motor adaptation protocol as well 

as be translated into real rehabilitation practice and used as potential fingerprint of a 

healthy behaviour for recovery. 

5.2 Materials and methods 

5.2.1 Data collection and experimental protocol 

The raw EEG data were obtained in the experiments described in chapter 4. For details 

on subjects’ recruitment, experimental setup and protocol, see chapter 4, paragraph 4.2.1 

to 4.2.5. 

5.2.2 Data analyses 

Data analyses were carried out with MatLab 2015b (The MathWorks, Inc.), with the 

support of EEGLab and FieldTrip open-source toolboxes for the analysis of EEG data 

(Delorme and Makeig, 2004; Oostenveld et al., 2010). 

EEG pre-processing 

EEG data are very sensitive to external (i.e. environmental) and internal (i.e. 

physiological) sources of artefacts, therefore the first step of the data analyses consists of 

cleaning the signals from spurious noise and removing those elements that could affect 

further analyses and lead towards biased results. A meticulous pre-processing pipeline for 

EEG data has been developed with EEGLab toolbox (Delorme and Makeig, 2004) 

following guidelines found in literature and customising it according to our specific 

protocol. First, for each subject and each condition separately, data were band-pass 

filtered between 0.5 Hz and 100 Hz (FIR filter, order automatically set by EEGLab), notch 

filtered at 50 Hz (FIR notch filter, order = 3302) to remove the power line noise, and 

again notch filtered at 25 Hz (FIR notch filter, order = 3302) to remove an electrical noise 

present within the laboratory setup. Data were then segmented into epochs of 3 seconds 

each from -1000 ms to 2000 ms with respect to each trigger (i.e. visual cue). From now 

on, the segmented data will be referred as trials. Visual inspection was performed on 

segmented data and served to identify 1) EEG channels affected by sustained noise 

throughout the whole experiment duration (i.e. bad channels), and 2) trials heavily 

corrupted by non-stereotypical artefacts (i.e. bad trials). Bad channels were marked and 

later on temporarily removed from the data, whereas bad trials were permanently deleted 

from the dataset. Subsequently, a period of 900 ms between -1000 ms and -100 ms before 

the visual cue in each trial was defined as baseline, which represents a period of reference 

for the task-related signal (i.e. data after the visual due). For each channel in each trial, 
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baseline was removed from the task-related data, bad channels were temporarily 

removed, and data were re-referenced to a common average reference. Data were 

subsequently decomposed using Independent Component Analysis (ICA) with the 

extended Infomax algorithm as provided by EEGLab (Cardoso, 1997; Delorme et al., 

2007). Spectral, spatial and temporal features of each Independent Component (IC) were 

inspected and those symbolic of stereotypical artefacts (e.g. electrical noise, blink, neck 

muscles, etc.) were removed from the data (see Figure 5-1 for examples). The remaining 

components were back-projected to the scalp channels and previously removed channels 

were eventually reconstructed from the cleaned dataset through interpolation of the 

neighbouring electrodes (method = ‘spherical’ as implemented in EEGLab, which uses 

superfast spherical interpolation) (Perrin et al., 1989; Ferree, 2000). Data were then re-

referenced again to common average and one last visual inspection was performed to 

check the quality of the cleaned data and eventually remove still noisy trials. At the end 

of the pre-processing step, a total of 64 electrodes were available for each subject in each 

condition, even though the two mastoids channels were never considered in more 

advanced analyses. 

Event-Related Potentials (ERPs) 

Event-Related Potentials (ERP) are the measured brain responses to specific sensory, 

cognitive or motor events (Luck, 2014) and are usually classified in Negative (N) or 

Positive (P) components (i.e. deflections). The timing of these responses is thought to 

provide a measure of the timing of the brain's communication or timing of information 

processing. Moreover, ERPs are well-known for their consistency to novel stimuli, which 

make them a reliable variable for analysis. ERPs were calculated for each subject, block 

and channel as simple mathematical averages across trials.  This analysis aimed to 

investigate ERPs correlates of the natural reaching movement and demonstrate the 

presence/lack of significantly different neural responses to the reaching task between 

perturbed and unperturbed conditions. After visual inspection of the ERPs data and 

specific literature investigation component-specific time windows of interest were 

defined as follow: N/P100 (90-110 ms), N/P170 (160-190 ms) and N/P300 (280-360 ms) 

(Naranjo et al., 2007). It was hypothesised that early components (N/P100) wouldn’t 

change across conditions because they are more related to the visual cue reaction (i.e. 

constant across conditions), but that later components associated to information 

processing (mainly N/P300) would show statistically significant changes between 

conditions. Considering only the cleaned trials remained after pre-processing, ERPs were 

evaluated for Late Familiarization (average of second half of left trials in Familiarization, 
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Late Fam = 42 (± 2) trials), Early Motor Adaptation (average of first half of remaining 

trials in Motor Adaptation, Early MA = 42 (± 2) trials), Late Motor Adaptation (average 

of second half of remaining trials in Motor Adaptation, Late MA = 42 (± 2) trials), and 

Late Wash Out (average of second half of remaining trials in Wash Out, Late WO = 41 

(± 2) epochs). ERPs data were averaged across a higher number of trials in comparison 

to kinematics and EMG data (averaged in a 16-trials blocks) because of the higher 

variance of electroencephalographic data. 

Event-Related Spectral Perturbations (ERSPs) 

Time-Frequency (TFr) analysis represents a decomposition of the EEG signal into 

amplitude and phase information for each frequency within the EEG (so-called ‘‘spectral 

decomposition’’), and it describes changes of power in specific frequencies over time 

with respect to task events (in our case, a visual cue). In order to quantify the responses 

in the time-frequency domain, for each subject, separately for the three conditions, for 

each electrode (except for the mastoids), Event-Related Spectral Perturbation (ERSP) 

changes in the power spectrum in each trial were measured using Morlet wavelet 

decomposition (function pop_newtimef in EEGLab) with the following parameters: 

• High frequency: 80 Hz; 

• Wavelet width at lowest frequency: 3 oscillation cycles; 

• Wavelet width at highest frequency: 18 cycles; 

• Hanning window size: 437 ms; 

• Time steps: 10 ms. 

 Single-trial spectrograms were normalized by subtracting the mean baseline power 

spectrum, with baseline defined as a window of 900 ms from -1000 ms to -100 ms before 

the visual cue in each trial. Significant deviations in each task-related power spectrum 

were evaluated by applying a bootstrap statistical method based on a surrogate 

distribution randomly derived from the pre-stimulus baseline. Statistical significance 

level was set at p < 0.01 and only significant values were considered in the analysis. This 

method (single-trial-based ERSP baseline correction method with bootstrap) has been 

shown to minimize contribution from artefactual data and to be robust to outliers, yielding 

more reliable results than standard baseline correction methods (Grandchamp and 

Delorme, 2011). Baseline correction in time-frequency analysis is crucial for 

distinguishing event-related contribution to the EEG power from background noise or 

non-related activities. Again, considering only the cleaned trials remained after pre-

processing, ERSPs were averaged for each subject across trials for Late Familiarization 
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(average of second half of left trials in Familiarization, Late Fam = 42 (± 2) trials), Early 

Motor Adaptation (average of first half of left trials in Motor Adaptation, Early MA = 42 

(± 2) trials), Late Motor Adaptation (average of second half of left trials in Motor 

Adaptation, Late MA = 42 (± 2) trials), and Late Wash Out (average of second half of left 

trials in Wash Out, Late WO = 41 (± 2) epochs) conditions. ERSPs data were also 

averaged across a higher number of trials in comparison to kinematics and EMG data 

(averaged in a 16-trials blocks) because of the higher variance of electroencephalographic 

data. As an example, Figure 5-2 shows a typical output of this method, here specifically 

applied to the Late Fam condition: the frequency range considered in the analyses was 

from 8.01 Hz to 80 Hz and the time range covered from -0.706 sec to 1.7 sec around each 

visual cue. Such ranges are the result of the algorithm optimization as implemented in 

EEGLab and allow us to observe changes in power spectrum over the full period of 

movement. This approach allows us to identify typical power changes during natural 

reaching (Late Fam) as the task-related data are statistically tested against a null-mean 

pre-stimulus baseline, during which the arm is still and the subject relaxed. 
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Figure 5-1: Stereotypical artefactual Independent Components topoplots. 

These brain activations plots show the activity intensity (colours) and location from which typical 

artefactual components can be recognised. Electronic noise was caused by a 25 Hz interference due to lab 

setting and is represented by a scattered/dotted topographical representation with no specific dipole. Eye 

blinks are stereotyped by a strong frontal activation only. Neck muscles are represented by sharp strong 

activations at the edge of the head. 
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Figure 5-2: Group grand average whole-brain Event-Related Spectral Perturbation changes during natural 

undisturbed reaching.  

62 channel time-frequency spectral power during Late Fam are represented according to the used 

Waveguard cap layout. Bottom right: plot legend for each channel. Bottom left: axes limits details (xlim = 

-0.706 – 1.7 sec; ylim = 8 – 80 Hz; zlim = -1.5 – 1.5 dB). Changes in the time-frequency domain are 

assessed through mean of statistical bootstrapping between baseline (900 ms before visual cue) and task-

related data (whole period after visual cue). Significant decrease of power with respect to baseline is colour-

coded with light-blue/blue. Significant increase of power with respect to baseline is colour-coded with 

yellow/red. Colour intensity is proportional to the value of ERSPs in dB. Not-significant time-frequency 

data are green masked. 
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5.2.3 Statistics 

ERPs 

First, typical natural reaching ERPs components were investigated by comparing Late 

Fam vs. a zero-baseline (as previously reported in literature; Naranjo et al., 2007) and vs. 

the pre-familiarization resting-state with eyes open (as per similar subject and arm 

position and vision towards the centre of the screen). Secondly, differences of sensor-

level ERPs across conditions (Late Fam vs. Early MA, Late MA and Late WO) were 

assessed. In both instances, non-parametric cluster based permutation tests as 

implemented in FieldTrip were employed to correct for multiple comparisons (i.e. 

electrodes, time points) (Maris and Oostenveld, 2007). In line with previous EEG studies 

(Negrini et al., 2017), to analyse sensor-level EEG data, multiple dependent sample t-

Tests were applied on each channel separately for the three components of interest. In 

particular, a paired sample t-Test was conducted for each electrode at each time bin within 

the components specific time windows. T-values exceeding an a priori threshold of p < 

0.01 were clustered based on adjacent time bins and neighbouring electrodes. Cluster-

level statistics were computed by taking the sum of the t-values within every cluster. The 

statistical comparisons were done with respect to the maximum values of summed t-

values. By means of a permutation test (i.e. randomizing data across conditions and 

rerunning the statistical test 1500 times, Monte-Carlo approximation) a randomization 

distribution of the maximum of summed cluster t-values was obtained to evaluate the 

statistics of the actual data. Clusters in the original dataset were considered to be 

significant at an alpha level of (αcluster) 5% if less than the 5% of the permutations (αcluster 

= 0.05, α = 0.025 for 2-tailed tests, N = 1500) used to construct the reference distribution 

yielded a maximum cluster-level statistic larger than the cluster-level value observed in 

the original data. As three different tests were carried out (Late Fam vs. Early MA, vs. 

Late MA and vs. Late WO), further correction for multiple comparison was run with 

Bonferroni method (p = 0.025/3 = 0.0083 for two-tailed test). Between-condition 

contrasts were performed on all electrodes (total of 62 electrodes, except for the mastoids) 

due to exploratory nature of the investigation. 

ERSPs 

The same cluster-based permutation statistical approach previously used has been then 

employed also for the evaluation of ERSPs changes across conditions (for a total of three 

comparisons as in paragraph 4.3.1). Multiple dependent sample t-Tests were applied on 

each channel separately for the four FOIs, α (8 – 12 Hz), β (15 – 30 Hz), low γ (31 – 45 

Hz) and high-γ (46 – 80 Hz), and in five separated 300 ms – windows of interest from 0 
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sec (i.e. visual cue) to 1.5 sec afterwards (as a control, a 300 ms – window pre-stimulus 

was tested to confirm that no changes in the baseline occurred across conditions). In 

particular, a paired sample t-Test was conducted for each electrode at each time-frequency 

bin within the components specific time windows. T-values exceeding an a priori 

threshold of p < 0.05 were clustered based on adjacent time-frequency bins and 

neighbouring electrodes. Cluster-level statistics were computed by taking the sum of the 

t-values within every cluster. The statistical comparisons were done with respect to the 

maximum values of summed t-values. By means of a permutation test (i.e. randomizing 

data across conditions and rerunning the statistical test 1500 times, Monte-Carlo 

approximation) a randomization distribution of the maximum of summed cluster t-values 

was obtained to evaluate the statistics of the actual data. Clusters in the original dataset 

were considered to be significant at an alpha level of (αcluster) 5% if less than the 5% of 

the permutations (αcluster = 0.05, α = 0.025 for 2-tailed tests, N = 1500) used to construct 

the reference distribution yielded a maximum cluster-level statistic larger than the cluster-

level value observed in the original data. Due to the lack of any “a priori” predictions 

about the location from where potential conditions effect could rise, and since fMRI/PET 

literature highlighted activity in several cortical and subcortical areas (Krebs et al., 1998), 

all the channels were simultaneously entered in the analysis (total of 62 electrodes, except 

for the mastoids). As three different tests were carried out (Late Fam vs. Early MA, vs. 

Late MA and vs. Late WO), further correction for multiple comparison was run with 

Bonferroni method (p = 0.025/3 = 0.0083 for two-tailed test). 

5.3 Results 

5.3.1 ERPs during natural undisturbed reaching 

Figure 5-3 presents typical ERPs over time at each channel during undisturbed reaching 

(Late Fam), as well as topographical activations at each window of interest. For a clear 

understanding of the ERP time evolution within the trial period, a group-level average of 

undisturbed reaching movement velocity profile is also provided. In Figure 5-3 (A), 

highlighted electrodes (*) represents the scalp location in which the detected EEG activity 

significantly differed from a dummy activation (i.e. zero activity). Specifically, 

significant activations were found in: 

• 90-110 ms time window: 

Positive Cluster = {F7, F3, FC5, FC1, FC2, T7, C3, CZ, AF7, F5, FC3, FCZ, C5, 

C1}, p = 0.007 
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Negative Cluster = {T8, CP6, P4, P8, POZ, O1, OZ, O2, C6, CP4, P2, P6, PO4, PO6, 

FT8, PO8}, p = 0.008 

• 160-190 ms time window: 

Positive Cluster = {FP1, FPZ, F7, F3, FC5, AF7, AF3, AF4, F5, F1, FC3, C5, FT7}, 

p = 0.021 

• 280-360 ms time window: 

Positive Cluster = {C4, CP5, CP2, CP6, P3, PZ, P4, P8, POZ, O2, CP4, P5, P1, P2, 

P6, PO5, PO3, PO4, PO6, PO8}, p = 0.001 

Negative Cluster = {FPZ, FP2, F3, FZ, F4, F8, FC1, FC2, FC6, AF3, AF4, AF8, F1, 

F2, F6, FC3, FCZ, FT8}, p = 0.001 

A positive cluster represents a statistically significant increase of activity in the first term 

of one comparison with respect to the second term. A negative cluster represents a 

statistically significant decrease of activity in the first term of one comparison with 

respect to the second term. From the above it can be said that, with respect to a zero-

activity: 

• There is a statistically significant positive deflection of activity in a left-medial pre-

frontal-central cluster in a period of time between 90 ms and 100 ms after the visual 

cue (P100); 

• There is a statistically significant negative deflection of activity in a right-medial 

temporal-parietal-occipital cluster in a period of time between 90 ms and 100 ms after 

the visual cue (N100); 

• There is a statistically significant positive deflection of activity in a left-medial pre-

frontal cluster in a period of time between 160 ms and 190 ms after the visual cue 

(P170); 

• There is a statistically significant positive deflection of activity in a bilateral parietal-

occipital cluster in a period of time between 280 ms and 360 ms after the visual cue 

(P300); 

• There is a statistically significant negative deflection of activity in a bilateral pre-

frontal cluster in a period of time between 280 ms and 360 ms after the visual cue 

(N300); 
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In Figure 5-3 (B), highlighted electrodes (*) represents the scalp location in which the 

detected EEG activity significantly differed from the pre-familiarization resting-state 

with eyes open. Specifically, significant activations were found in: 

• 90-110 ms time window: 

Positive Cluster = {F7, FC5, FC1, FC2, T7, C3, CZ, AF7, F5, FC3, FCZ, C5, C1, 

FT7}, p = 0.009 

• 160-190 ms time window: 

Positive Cluster = {FP1, FPZ, F7, F3, FC5, AF7, AF3, F5, F1, FC3, FT7}, p = 0.047 

• 280-360 ms time window: 

Positive Cluster = {C4, CP5, CP2, CP6, P3, PZ, P4, P8, POZ, O2, CP4, P5, P1, P2, 

P6, PO5, PO3, PO4, PO6, PO8}, p = 0.001 

Negative Cluster = {FPZ, FP2, F3, FZ, F4, F8, FC1, FC2, FC6, AF3, AF4, AF8, F1, 

F2, F6, FC3, FCZ, FT8}, p = 0.001 

From the above it can be said that, in comparison to a pre-experimental resting-state with 

eyes-open condition: 

• There is a statistically significant positive deflection of activity in a left-medial pre-

frontal-central cluster in a period of time between 90 ms and 100 ms after the visual 

cue (P100); 

• There is a statistically significant positive deflection of activity in a left-medial pre-

frontal cluster in a period of time between 160 ms and 190 ms after the visual cue 

(P170); 

• There is a statistically significant positive deflection of activity in a bilateral parietal-

occipital cluster in a period of time between 280 ms and 360 ms after the visual cue 

(P300); 

• There is a statistically significant negative deflection of activity in a bilateral pre-

frontal cluster in a period of time between 280 ms and 360 ms after the visual cue 

(N300). 
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Figure 5-3: ERPs during natural reaching. 

Group-level grandaverage of ERPs time evolution and topographical plots during Late Fam represent 

typical activations during undisturbed reaching movements. Three time-windows of interest have been 

identified according to literature: 90-110 ms (N/P100), 160-190 ms (N/P170) and 280-360 ms (N/P300), 

highlighted with the three dashed squares. As shown here, ERPs temporal evolutions take place before or 

straddling movement onset. A) Left: Group-level velocity profile average is reported for a better 

understanding of time of ERPs in comparison to time of movement. Right: 62 channels ERPs profiles are 

reported together with Movement Onset trace (vertical dashed black line). B) Significant activations with 

respect to a null distribution (as reported in previous literature). C) Significant activations with respect to 

pre-familiarization resting-state with eyes open (as nowadays common practice). 
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5.3.2 ERSPs during natural undisturbed reaching 

Figure 5-2 showed statistically significant changes in spectral power during natural 

reaching (Late Fam) in comparison to the pre-stimulus baseline for each channel. Time-

frequency representations are colour coded so that statistically significant decreases of 

power with respect to the baseline (Event-Related Desynchronization, ERD, p < 0.01) are 

coded with cold colours (i.e. light-blue/blue), whereas statistically significant increases 

of power in comparison to the baseline (Event-Related Synchronization, ERS, p < 0.01) 

are coded with warm colours (i.e. yellow/red). A significant ERD is visible at low 

frequency (α and β) after the visual cue and sustained for the whole trial duration. A 

significant ERS is visible at high frequencies (low and high ) later during the trial. Figure 

5-4 shows the temporal evolution of the group-level grand average of ERSPs, averaged 

across trials within the Late Fam condition, during natural reaching in each FOI and in 

time windows of 300 ms from -0.3 sec to 1.5 sec around the visual cue. Baseline activity 

(-0.3 – 0 sec) is masked in green, symbolic of no significant activity in the pre-stimulus 

interval; significant changes of spectral power with respect to the baseline are visible from 

0.3 sec after the visual cue, when a whole-brain-spread α ERD appears and remains 

sustained throughout the whole trial duration; β ERD is also visible from this time point 

but mainly localized bilaterally over the sensorimotor areas. Ultimately, no specific 

changes in both low and high γ frequency bands are observed. 
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Figure 5-4: ERSPs during natural undisturbed reaching in each FOI. 

ERSPs during Late Fam condition divided into windows of 300 ms each starting from -0.3 sec before visual 

cue (t = 0 sec) till 1.5 sec after. No significant activity is detected before the visual cue, confirming the 

reliability of the baseline. By 0.3 sec after visual cue, a strong and persistent α and β ERD 

(desynchronization) with respect to the baseline is visible mainly over the bilateral sensorimotor areas 

(colour-coded values are in dB). 
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5.3.3 ERPs changes during robot-mediated motor adaptation with respect to 

natural reaching 

The analysis of the N/P100 and N/170 did not show any statistically significant difference 

between Late Fam and any subsequent condition (all p > 0.05). The analysis of P/N300 

reported significant differences when comparing Late Fam vs. Early and Late Fam vs. 

Late MA, but no differences between Late Fam and Late WO. Specifically, significant 

differences were found in: 

• Early MA. vs. Late Fam N300: 

Negative Cluster = {FZ, F4, FC1, FC2, FC6, C3, CZ, C4, CP2, AF4, F1, F2, F6, FC3, 

FCZ, FC4, C1, C2, C6, CPZ}, p = 0.008; 

• Late MA vs. Late Fam N300: 

Negative Cluster = {F3, FZ, F4, FC1, FC2, C3, CZ, C4, AF3, AF4, F1, F2, FC3, FCZ, 

FC4, C1, C2}, p = 0.004. 

Figure 5-5 shows the actual activations during each condition of interest and the 

topographical location of the statistical significant clusters. As also shown in the last row 

of Figure 5-5, from the above it can be observed that there is a significantly more negative 

deflection during both Early MA and Late MA in comparison to Late Fam in a bilateral 

frontal-central cluster in a period of time between 280 ms and 360 ms after the visual cue 

(N300). 
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Figure 5-5: ERPs activations and statistical comparisons for the N300 component. 

ERPs activations (µV) in the four conditions of interest are represented in the first row. Statistical 

significance was obtained through non-parametric cluster-based permutation tests only when comparing 

Early MA vs. Late Fam and Late MA vs. Late Fam. Electrodes that passed the non-parametric test and the 

subsequent correction for multiple comparisons (p < 0.0083) are highlighted with * in the second row. 

Average activity of the significant electrodes per each comparison are showed in the third row: the black 

line always represents Late Fam ERP, the blue line represents the Early MA and Late MA respectively, and 

the red dashed square identifies the time-window of interest (280 – 360 ms after the visual cue, t = 0 s). 



111 

 

5.3.4 ERSPs changes during robot-mediated motor adaptation with respect to 

natural reaching 

Figure 5-6, 5-7 and 5-8 show the temporal evolution of the group-level grand-average of 

the ERSPs, averaged across trials within each condition (i.e. Early MA, Late MA, Late 

WO), over the duration of a reaching trial for each FOI. Electrodes whose spectral power 

significantly changed in each condition in comparison to Late Fam (p < 0.0083 pas per 

Bonferroni correction), according to the employed non-parametric tests, are highlighted 

with *. Specifically, significant differences were found in: 

• Early MA vs. Late Fam β, 300 – 600 ms time window: 

Positive Cluster = {T7, C3, CP5, CP1, P7, P3, C5, CP3, P5, PO5, TP7, PO7}, p = 0.001 

• Late MA vs. Late Fam β, 300 – 600 ms time window: 

Positive Cluster = {T7, C3, CP5, P7, P3, FC3, C5, CP3, P5, P1, PO5, PO3, TP7, PO7}, 

p = 0.004 

From the above it can be said that a significantly higher β spectral power (i.e. less intense 

ERD) in Early MA and Late MA in comparison to Late Fam is detected over the 

contralateral (i.e. left) sensorimotor cortex in a period of time between 300 ms and 600 

ms after the visual cue. Table 5-1 reports all the results from the cluster-based non-

parametric tests: no significant changes were obtained in the frequency bands of α and . 

5.3.5 ERSPs during robot-mediated motor adaptation 

As a control analysis, a cluster-based permutation test was also run to test whether any 

changes took place from early to late adaptation. Figure 5-9 shows the ERSPs difference 

between Late MA and Early MA (group-level grand-average) over the duration of a 

reaching trial for each FOI. The non-parametric statistics revealed a positive cluster (p = 

0.021) including electrodes bilaterally located over the frontal-premotor cortex ({FZ, 

FC1, FC2, AF4, F1, F2, FC3, FCZ}), resembling an increase of β spectral power (i.e. less 

intense ERD) in the late phase of adaptation in comparison to the early stages. 
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Figure 5-6: ERSPs changes during early adaptation to the robot-mediated force field in each FOI. 

ERSPs during Early MA condition divided into windows of 300 ms each starting from -0.3 sec before 

visual cue (t = 0 sec) till 1.5 sec after. No significant activity is detected before the visual cue, confirming 

the reliability of the baseline. Cluster-based permutation tests assessed the difference between Early MA 

vs. Late Fam in each window and FOI, and statistically significant electrodes are highlighted with * (p < 

0.0083). In the time window 0.3 – 0.6 sec after visual cue, a significant increase of β power during Early 

MA with respect to Late Fam is detected over the left sensorimotor region (colour-coded values are in dB). 
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Figure 5-7: Event-Related Spectral Perturbations changes during late adaptation to the robot-mediated force 

field in each FOI.  

ERSPs during Late MA condition divided into windows of 300 ms each starting from -0.3 sec before visual 

cue (t = 0 sec) till 1.5 sec after. No significant activity is detected before the visual cue, confirming the 

reliability of the baseline. Cluster-based permutation tests assessed the difference between Late MA vs. 

Late Fam in each window and FOI, and statistically significant electrodes are highlighted with * (p < 

0.0083). In the time window 0.3 – 0.6 sec after visual cue, a significant increase of β power during Late 

MA with respect to Late Fam is detected over the left sensorimotor region (colour-coded values are in dB). 



114 

 

 

Figure 5-8: Event-Related Spectral Perturbations during late wash out of the adaptation effects in each FOI. 

ERSPs during Late WO condition divided into windows of 300 ms each starting from -0.3 sec before visual 

cue (t = 0 sec) till 1.5 sec after. No significant activity is detected before the visual cue, confirming the 

reliability of the baseline. Cluster-based permutation tests assessed the difference between Late WO vs. 

Late Fam in each window and FOI: no statistically significant electrodes were found (colour-coded values 

are in dB). 
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Figure 5-9: Event-Related Spectral Perturbations differences between late and early adaptation in each FOI. 

Difference ERSPs between Late MA and Early MA conditions divided into windows of 300 ms each 

starting from -0.3 sec before visual cue (t = 0 sec) till 1.5 sec after. Cluster-based permutation tests assessed 

the difference between the two adaptation phases in each window and FOI, and statistically significant 

electrodes are highlighted with *. In the time window 0.3 – 0.6 sec after visual cue, a significant increase 

of β power during Late MA with respect to Early MA is detected over the central frontal-premotor region 

(colour-coded values are in dB). 
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Table 5-1: Non-parametric cluster-based permutation test on Event-Related Spectral Perturbations changes with respect to natural reaching. 

For the β frequency band comparisons are made within time windows of 300 ms from visual cue (t = 0 sec) to 1.5 seconds after; only significant comparisons are reported. Clusters of 

electrodes whose ERSP is significantly different between the two compared conditions are highlighted (* for p < 0.0083 according to Bonferroni correction for two-tailed test). 

Comparison  0 – 0.3 sec 0.3 – 0.6 sec 0.6 – 0.9 sec 0.9 – 1.2 sec 1.2 – 1.5 sec 

β (13 – 30 Hz) 

EarlyMA vs. LateFam N.S. p = 0.001* 

{T7, C3, CP5, CP1, P7, P3, C5, CP3, P5, PO5, TP7, PO7} 

N.S. N.S. N.S. 

LateMA vs. Late Fam N.S. p = 0.004* {T7, C3, CP5, P7, P3, FC3, C5, CP3, P5, P1, PO5, PO3, TP7, PO7} N.S. N.S. N.S. 
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5.4 Discussions 

5.4.1 Novel findings 

In this chapter, the neural correlates of a typical reaching movement were described in 

both the time- and frequency-domain. Complex patterns of neural activations are reported 

altogether, whereas previous studies have focused on only one aspect of this behaviour. 

Moreover, changes in cortical activations of disturbed reaching movements during a 

robot-mediated force-field adaptation task were also reported through means of EEG 

recording technique and the implemented robust statistical method. The employed 

measures of Event-Related Potentials (ERPs) and Event-Related Spectral Perturbations 

(ERSPs) are here confirmed as valid assessment tools and pave the path for more complex 

investigations of the undertaken motor adaptation process. 

5.4.2 The natural reaching movement 

Previous work has shown that a reaching movement recruits a frontal-parietal network 

called the “dorsal-visual stream” (Grafton et al., 1996; Battaglia-Mayer et al., 2003), 

which includes parietal, premotor, motor and frontal areas. Many techniques have been 

previously employed to study the reaching movement and its neural correlates and, 

among those, EEG is able to describe the subsequent and parallel neural activations of 

the aforementioned areas with an excellent temporal resolution. ERPs are spontaneous 

responses of the brain to external stimuli (i.e. auditory, mechanical, visual, etc.) and are 

very reliable and repeatable within subjects and conditions (Luck, 2014). The time and 

direction of a given ERP can be informative of specific brain activations and could be 

also related to certain behavioural aspects. Spontaneous brain activity during cued 

reaching movement has been studied before in different settings (Naranjo et al., 2007; 

Dipietro et al., 2014) and results are in line with what is reported here. In the early period 

after the visual cue and before movement onset (0 – 200 ms) there is an increased 

negativity in electrodes over the occipital-parietal areas (bilaterally) paralleled by a 

significant positive potential in electrodes located over frontal-premotor and motor areas 

contralateral to the engaged arm. These activations have been previously shown to be not-

sequential (Naranjo et al., 2007) and involved in target (~ 170 ms) and movement (~ 200 

ms) selection both in humans and monkeys (Hoshi and Tanji, 2004). An inversion of 

polarity is then visible from 300 ms afterwards: a significant negative deflection is indeed 

observed in a cluster of electrodes over frontal-premotor regions, whereas a significant 

positive potential is shown in a parietal-occipital cluster, in both cases bilaterally in line 

with previous work (McDowell et al., 2002; Dipietro et al., 2014). The time of these last 
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activations is crucial, as it straddles Movement Onset (~ 325 ms after visual cue during 

Late Fam as reported in chapter 4, see Figure 5-3 (A)), for which these areas are believed 

to play a role in the transition from movement planning to movement execution (Naranjo 

et al., 2007). The validity of previous claims and of our results was here assessed by 

investigating neural potentials during natural reaching against a dummy-null activation 

(as previously reported in literature, Naranjo et al., 2007) as well as with respect to 

spontaneous activations during a period of resting-state prior to the experiment start. 

During resting-state recording, subjects maintained the same posture and fixation point 

as during the robot-mediated task. Consequently, differences in neural potentials with 

respect to the resting-state condition would be due to the planning and execution of the 

reaching movement itself. As a matter of fact, the two analytical approaches undertaken 

returned very similar results, with only one difference in the window of N/P170. As a 

good common practice, future investigations should include a period of resting-state EEG 

prior to the task to be used as “baseline” and as a term of comparison in subsequent 

statistical analyses. 

Time-Frequency (TFr) analysis of EEG data is a technique operating in both the time and 

the frequency domain, more advanced than ERPs (operating is the time domain only), 

that evaluates the energy (power) of certain waves oscillating at a given frequency at a 

specific time point of interest. Advanced TFr methodology based on Morlet wavelet 

decomposition were here employed (Grandchamp and Delorme, 2011) and statistically 

significant changes (according to a bootstrap method) in energy/power (ERSPs) were 

observed during the performing of natural reaching movements in comparison to a period 

of stillness (i.e. baseline pre-stimulus). Specifically, a sustained decrease of power during 

movement execution (also called ERD, Event-Related desynchronization) with respect to 

the pre-stimulus baseline was observed in both α and β frequency bands mainly in 

electrodes located bilaterally over the sensorimotor areas (see Figure 5-4), but also spread 

over the whole head (see Figure 5-2) (Jurkiewicz et al., 2006; Babiloni et al., 2016). 

Bilateral low frequency ERD during reaching has been extensively reported via surface 

(Pfurtscheller and da Silva, 1999; Pfurtscheller, 2001; Demandt et al., 2012; Storti et al., 

2015) or cortical EEG recordings (Babiloni et al., 2016), as well as during other visual-

guided manual tasks such as hand-grip (Derosiere et al., 2014) and sequential finger 

movements (Manganotti et al., 1998). β band oscillations are thought to be of an inhibitory 

nature and are required to desynchronize in order to promote an “active state”, sub-

serving sensorimotor integration and voluntary movements (Engel and Fries, 2010). β 

ERD has been observed in both voluntary, passively performed and imagined movements 
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(Formaggio et al., 2013), which makes it a suitable neural marker for Brain-Computer 

Interfaces. Moreover, is has been recently shown to be highly reproducible within 

subjects across different experimental sessions (Espenhahn et al., 2017), which makes it 

also an ideal candidate as an individual descriptor in clinical evaluations. Despite the uni-

manual movement performed in our study, a bilateral β ERD over the two sensorimotor 

cortices is visible, in line with previous findings: the simultaneous desynchronization of 

the ipsilateral motor areas (i.e. right hemisphere in our case) is thought to be a result of 

an inter-hemispheric cross-talk required to handle task of high difficulty (Desoriere et al., 

2014; Formaggio et al., 2013), or of inhibitory processes towards the opposite upper limb 

(Van Wijk et al., 2012). At the same time, a temporary increase of power after movement 

onset (also called ERS, Event-Related Synchronization) with respect to the pre-stimulus 

baseline is reported in low and high  frequency ranges, spread over a broad area including 

frontal, sensorimotor and occipital-parietal electrodes bilaterally (see Figure 5-2 and 

Figure 5-4). Increased high  activity time-locked to movement onset has been previously 

reported during both upper- and lower-limb voluntary movements as recorded from the 

contralateral motor cortex (Ball et al., 2008; Cheyne et al., 2008; Babiloni et al., 2016) 

and thought to be involved in online feedback during movement. Moreover, fronto-

parietal  activity has also been attributed to mechanisms of top-down attention (Corbetta 

and Shulman, 2000; Gonzalez Andino et al., 2005). 

In summary, the natural reaching movement performed in our experimental setup 

exhibited typical motor and fronto-parietal neural activations in line with the theory of 

the “dorso-visual stream” (Naranjo et al., 2007). The positive outcome of this first 

analysis confirms the validity of our experimental setup and of the analytical pipeline for 

the investigation of the spatio-temporal neural correlates of the reaching movement in the 

neurorehabilitation robotics context. 

5.4.3 The disturbed reaching movement and the motor adaptation process 

As a first step, any changes that the applied perturbation might have caused in the typical 

neural parallel and sequential activations of reaching were investigated. For both ERPs 

and ERSPs, differences between the adaptation condition with respect to the natural 

reaching were statistically tested. As expected, no changes in spontaneous EEG potentials 

were detected in the period straight after the visual cue (N/P100, N/P170). Indeed, the 

same visual cue (i.e. peripheral target turning red as described in chapter 4, paragraph 

4.2.3) was provided throughout the whole experiment, thus the same visual processing 

was likely activated. Moreover, target location was also constant, thus target and 
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movement selection processes were likely to be the same. A significant reduced N300 

was however found in a wide cluster of electrodes located over the frontal-premotor and 

motor bilateral areas (see Figure 5-5), sustained for the whole adaptation condition. These 

areas are commonly involved in processes of movement selection, planning and execution 

(Hardwick et al., 2013; Hardwick et al., 2015; Lefebvre et al., 2012; Lage et al., 2015): 

the sustained increase of cortical activation during adaptation with respect to natural 

reaching could represent a state-dependent process via which the brain handles a more 

complex motor task. Given the higher task complexity, it is likely that, within this window 

of time, these areas receive more feedback from the periphery to online update the 

movement allowing the counteraction (Scott et al., 2015; Pruszynski and Scott, 2012). On 

the other hand, ERSPs changes during adaptation showed a reduced β ERD sustained for 

the whole adaptation condition in electrodes over the left (controlateral) sensorimotor 

cortex in a period corresponding to the initiation of the movement (300 – 600 ms after 

visual cue). To the author’s knowledge, very little has been previously reported on 

differences between natural and disturbed reaching movements. Studies on both humans 

(Pollok et al., 2014) and monkeys (Khanna and Carmena, 2017) have successfully 

described a correlation between reduced β ERD and faster movement onsets in self-paced 

movements, as it would allow for the search of new strategies. However, in this study 

subjects were explicitly asked to move within a predefined period of time and group-level 

values of movement onset did not show prominent differences across conditions (see 

chapter 4, Table 4-1). Studies on the maintenance of a finger steady-state motor output 

claimed that higher cortical motor β power correlated with better performance (Kristeva 

et al., 2007). Despite the different context (isometric contraction recruiting stronger β 

activity) and motor task involved, control analyses were also performed to inspect any 

potential relationships between reduced β ERD and changes in performance, however 

there was none. Moreover, the increase in relative β power is sustained for the whole 

adaptation duration, thus it is likely to be related to the task itself and its complexity, and 

not to an adaptation process underlying. This is further supported by intra-cortical 

recordings in monkeys which showed that neurons in the primary motor cortex are tuned 

to a preferred movement direction during reaching (Georgopulus et al., 1982), which is 

however altered during reaching in a force field as neurons decode the direction of the 

required compensatory force (Gandolfo et al., 2000), supporting the hypothesis of cortical 

changes due simply to the applied load and not to adaptation or plasticity processes. 

Interestingly, it is known that patients suffering of neurological deficits and impairments, 

such as stroke or Parkinson’s disease, show an anomalous increase of β power (reduced 
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β ERD) during voluntary movements (Rossiter et al., 2014; Shiner et al., 2015; Moisello 

et al., 2015). This pathological increase of β power has been suggested to be symbolic of 

less flexible sensorimotor and cognitive control of voluntary actions (Engel and Fries 

2010). This is in line with uni- and bi-manual learning tasks that claimed that a proper β 

modulation is necessary to maintain movement stability (Houweling et al., 2010). A 

recent investigation also demonstrated that the level of motor functions after stroke 

negatively correlated with the intensity of the β rhythm recorded from the central 

sensorimotor regions of the affected hemisphere (Thibaut et al., 2017). A similar principle 

is here suggested: it is indeed possible that the applied novel strong perturbation causes 

movement instability and, subsequently, a stronger sensorimotor β range synchrony due 

to the reduced control of voluntary movements available to the subjects. 

The adaptation condition per se was then analysed in order to investigate if any correlates 

of the adaptation process itself could be observed. No changes in ERPs and in low (α) or 

high () time-frequency ERSPs were detected between early and late adaptation. 

However, a statistically significant reduction of β ERD (i.e. increase of β power) in a 

cluster of electrodes located over the frontal-premotor bilateral regions was successfully 

identified during late with respect to early adaptation in the period of movement initiation 

(300 – 600 ms). As aforementioned, the frontal cortex (FC), the DLPFC and the 

Supplemental Motor Area (SMA) are indeed altogether involved in the early stages of 

motor learning and adaptation (Lefebvre et al., 2012; Shadmehr and Holcomb, 1997) in 

movement selection and initiation as well as in motor memory consolidation (Lage et al., 

2015). A variety of studies have previously reported a similar reduction over learning in 

both healthy (Kranczioch et al., 2008; Studer et al., 2010) and neurologically impaired 

populations (Moisello et al., 2015). According to their findings, the reduced β ERD 

resembles decreased motor-related cortical activations, which could be symbolic of less 

effort needed to perform the task and of a newly acquired automaticity. It is therefore 

likely that an increased cortical activation in the frontal regions is symbolic of the creation 

of internal models specific to the disturbed reaching (Shadmehr and Holcomb, 1997). 

Optimization strategies are not confined to the brain only, but also develop at the 

periphery, whereby reduced co-contraction across muscles is replaced by a more 

orchestrated synchrony (i.e. higher inter-muscular coherence) exactly in the period of 

movement initiation (Pizzamiglio et al., 2017). Altogether, these findings support the 

hypothesis that our nervous system optimizes activations and behaviour in order to 

minimize efforts and save energy.  
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5.4.4 Error-Related Negativity during motor adaptation 

A valid alternative interpretation to the reported findings, specifically to the sustained 

increase of ERP negative deflection at 300 ms after the visual cue during adaptation to 

the counter-clockwise force-field, can be found within the theory of Error-Related 

Negativity (ERN). ERN was first introduced during studies on error processing during 

discrete response (Falkenstein et al., 2000) and prism adaptation protocols (MacLean et 

al., 2015). Two specific event-related deflections were identified in these studies, both at 

around 300 ms: a positive potential (P300), linked to learning processes, and a negative 

potential, eventually related to error processing (ERN). Investigations based on motor 

control tasks also identified an ERN component starting right before the movement onset, 

likely from the anterior cingulate cortex (ACC), (Krigolson and Holroyd, 2006), and 

eventually suggested to be related to the creation of predictive feedback models during 

the error-based tasks. The findings reported in this chapter appear to be in line with this 

theory as the timing (around 300 ms) and location (medial frontal, likely capturing 

activity coming also from ACC sources) of the significantly increased negative ERP 

component during adaptation (condition during which subjects performed movement 

errors on a trial basis) resemble those of a typical ERN. This is further supported by the 

fact that subjects did not completely adapt to the external perturbation (see chapter 4, 

paragraph 4.3.1, figure 4-5 and table 4-1), which could have caused the sustained ERN 

during adaptation. It could be therefore argued that this sustained negative component is 

the signature of an error processing strategy developed by a predictive model. Previous 

studies defined motor learning and adaptation as guided by prediction errors (Shadmehr 

et al., 2010), whereby an internal forward model is usually developed which foresees the 

consequences of each movement based on the actual state of the system (Wolpert and 

Miall, 1996; Shadmehr and Holcomb, 1997; Krebs et al., 1998). Interestingly, a 

concurrent increased cortical activation (i.e. reduced β ERD) was observed in the current 

investigations and discussed (see paragraph 5.4.3) as a potential indicator of the creation 

of an internal model specific to the disturbed reaching. ERN could therefore be likely 

considered as a marker of the error processing functions the motor system develops during 

learning and activates immediately before the actual error commission in a predictive 

fashion, in contrast to the typical ERN response (detected when performing errors during 

reaction time tasks) and ERN feedback (detected when the result of an action is not as 

expected) which both appear after the actual error commission (Krigolson & Holroyd, 

2006; Völker et al., 2018). As abovementioned, subjects did not completely adapt to the 

external perturbation (i.e. summed error values did not return to baseline level), which 
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explains the observation of a sustained ERN during adaptation, because a constant error 

processing was required. Neural activations have been shown to shift from the prefrontal 

cortex (early adaptation) to the posterior parietal cortex and cerebellum (late adaptation) 

(Shadmehr and Holcomb, 1997; Krebs et al., 1998). Such a shift in neural activations was 

not observed in the current investigation, confirming the nature of the employed paradigm 

as of “short-adaptation”. The ERN could be a valid and strong marker of learning 

processes in pathological conditions as it was demonstrated that ERN levels are 

significantly reduced in patients with medial frontal lesions (Hogan et al., 2006; Stemmer 

et al., 2004; Swick and Turken, 2002) and in healthy but elderly subjects (Colino et al., 

2017). Moreover, investigations with stroke patients demonstrated that neural infarcts can 

selectively impair motor preparation functions executed by the pre-frontal areas and the 

ACC (Wiese et al., 2015). ERN could be employed as valid marker of motor learning in 

pathological conditions not only as an assessment measure but also as a target for specific 

rehabilitation protocols such as neurofeedback training. Interestingly, ERN has been 

demonstrated not to be influenced by stimulus modality (Falkenstein et al., 2000), output 

differences (Holroyd et al., 1998) and even robot-mediated force-field direction 

(Desowska, Pizzamiglio and Turner, 2018 Journal of Neuroscience under review). This 

would make the ERN a reliable indicator of the learning levels of patients during 

rehabilitation, independently of the specific motor task and output. 

5.4.5 Limitations 

As previously mentioned (see chapter 4, paragraph 4.4.4), even though subjects showed 

a typical adaptation profile in movement error, no complete adaptation was reached at the 

end of the condition. This is further supported by the neural findings: more trials would 

allow subjects to completely adapt to the novel environment, promoting β ERD over the 

primary motor cortex to return to its natural values and eventually developing other 

specific neural activations directly correlated to performance improvement. Moreover, as 

per our study design, no long-term memory could be assessed after this single adaptation 

session: consolidation and novel internal model creation has been demonstrated to take 

place in primary motor and posterior parietal regions (Della Maggiore et al., 2015), thus 

future studies should comprehend multiple testing sessions in order to evaluate long-term 

memory formation. Repetitive sessions would also facilitate the disentanglement of 

neural correlates of adaptation from those of simple reaction to the applied perturbation. 

An alternative approach was here followed by which adaptation correlates could be 

identified in spontaneous neural oscillations recorded during resting-state EEG before 

and after adaptation, the results are reported elsewhere (see Faiman, Pizzamiglio and 
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Turner 2017, master thesis and paper in preparation). Future studies should also involve 

neurologically impaired patients, such as stroke survivors, and investigate how their 

neural correlates during this motor adaptation task are shaped in comparison to the healthy 

populations’, thus to eventually define specific marker of adaptation and/or optimization 

and adjust the rehabilitative process to maximize recovery. Moreover, more advanced 

techniques of functional connectivity should be implemented to define a proper 

relationship between brain and behaviour and find mechanisms of motor control shaping 

through motor adaptation. A very recent study investigating cortico-muscular correlates 

of isometric and dynamic motor tasks showed that, at high level of forces, β band cortico-

muscular coherence (CMC) as well as inter-muscular coherence (IMC) are reduced in 

dynamic with respect to isometric contractions and resemble task-specific synergistic 

control strategies (Reyes et al., 2017). Very similar findings were found (Pizzamiglio et 

al., 2017), whereby β IMC was reduced during the dynamic reaching movement and 

eventually replaced by higher frequencies activations. On the other hand, β CMC has 

gained a lot of interest in stroke rehabilitation (Rossiter et al., 2013) as a measure of the 

relationship between cortical changes and muscle activations during recovery. This 

background encourages the study of the cortico-muscular correlates of disturbed reaching 

movements during the motor adaptation task as it could shed some light on the 

relationship between brain and muscles during adaptation and how this changes with 

respect to a natural reaching behaviour (see chapter 6).  
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6 Source-level neural correlates of robot-mediated motor adaptation during 

reaching with the upper-limb 

6.1 Introduction 

Brain oscillations are subject- and task-specific, with peaks in the α (8-12 Hz), β (15-30 

Hz) and  (35-up to 80 Hz) commonly observed (Baker, 2007). It has been shown that 

oscillations within the β band in the sensorimotor cortex are coherent with 

electromyogram activities at similar frequencies in contralateral musculatures, mostly 

during isometric contractions (Conway et al., 1995; Halliday et al., 1995; Kilner et al., 

1999; Kilner et al., 2000; Kristeva et al., 2007). This brain-muscle synchronization shifts 

towards higher oscillatory frequencies when, during isometric contractions, dynamic 

forces or movement are introduced (Marsden et al., 2000; Omlor et al., 2007; Mehrkanoon 

et al., 2014). The measure commonly used to evaluate the strength and quality of the 

brain-muscle relationship is Cortico-Muscular Coherence (CMC) (Rosenber et al., 1989), 

a methodology extensively employed in studies with both primates (Murthy and Fetz, 

1992; Takei and Kazuhiko, 2008; Witham et al., 2010) and humans (Kamp et al., 2013; 

Babiloni et al., 2008; Dal Maso et al., 2012; Mendez-Balbuena et al., 2011; Reyes et al., 

2017). Amplitude of CMC can convey information on the quality of the brain-muscle 

communication and integrity of the pyramidal system (Mima et al., 1999), on the 

synchronization between cortical and spinal cord during movement (Mima and Hallet, 

1999), and it is indeed altered in neuro-degenerative disorders and after neural injuries 

(Fang et al., 2009; Kamp et al., 2013; Rossiter et al., 2013; Airaksinen et al., 2015; 

Belardinelli et al., 2017). CMC phase has the potentiality to measure the communication 

delay between brain and muscles as well as its directionality, disentangling between 

feedforward and feedback drives (Witham et al., 2010; Mehrkanoon et al., 2014). CMC 

in low frequencies such as α (8-12 Hz) have been attributed to a pulsatile communication 

between brain and muscles (Vallbo and Wessberg, 1993) and to feedback motor 

processing functions when transiting from two steady states (Mehrkanoon et al., 2014); β 

CMC drives have always been attributed a feedforward role guiding muscles, required to 

maintain the status-quo (Engel and Fries, 2010) and the steady state motor output, or 

enrolled in more complex sensorimotor (Baker, 2007) and muscular binding (Reyes et 

al., 2017) processes;  cortico-muscular coherence has been linked to higher processes of 

sensorimotor integration (Mehrkanoon et al., 2014), promotion of voluntary movements 

(Fang et al., 2009) and focused attention (Schoffelen et al., 2005). 
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CMC has been used in clinical practice to assess the grade and quality of recovery after 

neural injuries as well as of degenerative processes. On the one hand, studies on stroke 

survivors investigated the reliability of CMC to assess 1) the quality of the recovering 

communication between brain and muscles (Fang et al., 2009), 2) the cortical changes 

occurring after stroke (Rossiter et al., 2013; Belardinelli et al., 2017), and 3) the cortical 

changes as patients move from the acute to the chronic stage (von Carlowitz-Ghori et al., 

2014). On the other hand, studies on Parkinson’s disease patients employed the CMC 

method to assess the potential positive effects of different therapies on tremor entity and 

motor performance (Caviness et al., 2006; Park et al., 2009; Airaksinen et al., 2015), 

however not reaching a common conclusion. Lastly, investigations on the effects of 

degenerated cortical executive functions and motor control in elderly utilized CMC to 

extract information on potential compensatory strategies used to preserve motor 

performance (Kamp et al., 2013; Bayram et al., 2015). In summary, cortico-muscular 

coherence could be a valid methodology in clinical practice for example, 1) to assess the 

entity of abnormal bilateral or ipsilateral activations when executing a movement after 

stroke, 2) to evaluate the benefits of certain drug- or stimulation-based therapies for 

tremor reduction in Parkinson’s disease and other tremor-based disorders, as well as 3) to 

assess the entity and progress of cortical inefficiency in ageing. 

In this study the coherent neural-muscular drives during natural reaching in healthy 

subjects and their changes due to the robot-mediated motor adaptation process were 

investigated. Given the poor spatial resolution typical of EEG signals, a source-

reconstruction methodology was employed to transfer the scalp electrical signals to the 

cortex and locate the sources of the neural activity. Moreover, investigations were 

restricted specifically to the relationships between the brain and those muscles most 

recruited during adaptation to the applied counter-clockwise force-field, specifically 

Triceps Brachii (TB), Biceps Brachii (BB) and Extensor Carpi Radialis (ECR) muscles 

(Pizzamiglio et al., 2017). Given the previous evidence of CMC during reaching in 

healthy subjects (Fang et al., 2009), β and/or  CMC activity was expected to arise in the 

contralateral (left) sensorimotor cortex during natural reaching. However, as there is no 

precedent on the investigation of cortico-muscular coherence during a robot-mediated 

motor adaptation protocol, condition-specific changes in CMC were hypothesised to 

happen within the primary motor cortex and areas involved in 1) the integration of sensory 

feedback from the periphery (i.e. sensory cortex) and in 2) the planning/execution of the 

movement (i.e. frontal and premotor cortices). According to the theories of motor 

learning, the early stages of a motor adaptation process are characterised by a strong 
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cortico-striatal activity, whereby the frontal cortex is mostly involved as temporary 

storage of info and memories (Shadmehr and Holcomb, 1997; Krebs et al., 1998). Thus, 

changes in frontal, premotor and subsequently parietal areas were expected to be 

significant during the adaptation process. Positive results of this advanced analysis will 

shed some light on the coherent cortico-muscular drives during the adaptation process 

and will validate the employment of CMC in clinical practice with neurologically 

impaired patients. 

6.2 Materials and methods 

6.2.1 Data collection and experimental setup 

The raw EEG data were obtained in the experiments described in chapter 4. For details 

on subjects’ recruitment, experimental setup and protocol, see chapter 4, paragraph 4.2.1 

to 4.2.5. 

6.2.2 Data analyses 

Data analyses were performed with MatLab 2015b (The MathWorks, Inc.), with the 

support of FieldTrip open-source toolbox (Oostevenld et al., 2010). 

Cortico-Muscular Coherence (CMC) at sensor-level 

To observe the changes in cortico-spinal synchronization during the reaching movement 

across different conditions, Cortico-Muscular Coherence (CMC) was estimated between 

all EEG channels and the EMG signals from TB, BB and ECR muscles. Analyses focused 

on these three muscles only as previously shown to be most recruited during adaptation 

to counter-clockwise force-field (Thoroughman and Shadmehr, 1999; Pizzamiglio et al., 

2017). To assess CMC, raw EEG data previously pre-processed (see chapter 5, paragraph 

5.2.2) where used, whereas raw EMG data were de-trended, band-pass filtered between 

2 Hz and 100 Hz (Butterworth, order 3, dual-pass fashion to avoid phase lag) and notch 

filtered (50 Hz, IIR Comb Notching filtered as designed in MatLab, order 20). No 

rectification was implemented to calculate CMC as it was previously demonstrated not to 

be necessary and valuable when high forces are involved (McClelland et al., 2012; Farina 

et al., 2013). Filtered EMG data were then segmented into epochs of 3 seconds each from 

-1000 ms to 2000 ms with respect to each trigger (i.e. visual cue) in line with the pre-

processed EEG, and the same subject-condition-specific epochs removed from the neural 

signals were discarded also in the muscular signals for consistency. Spectral analysis of 

EEG and EMG signals was performed with the support of FieldTrip toolbox for MatLab 

(Oostenveld et al., 2010) on data segments of 1 second for each trial (0.3 – 1.3 sec after 

visual cue). This period of time was considered according to kinematic evidences of 
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start/end of movement (see chapter 4, paragraph 4.3.1 and Table 4-1) in order to 

specifically investigate cortico-muscular correlates during a complete reaching 

movement. The auto- and cross-spectra were assessed within a frequency range from 2 

Hz to 80 Hz for the entire data length of 1 second via Fast Fourier Transform (FFT) with 

a multi-taper fashion (Muthuraman et al., 2012) as implemented in FieldTrip with the 

function ft_freqanalysis, method = ‘mtmfft’. The methodology analyses an entire 

spectrum for the entire data length (i.e. no time-domain, only frequency results), using 

discrete spheroidal sequences (Slepian sequences, method dpss as implemented in 

MatLab) as tapers by default (Slepian, 1978). Coherence between EEG (𝑥(𝑡)) and EMG 

(𝑦(𝑡)) signals was computed according to the Equation 5, whereby 𝑆𝑥𝑥 and 𝑆𝑦𝑦 are the 

individual power spectra (i.e. of an EEG channel and an EMG muscle respectively), 

whereas 𝑆𝑥𝑦 is the cross-spectrum between the two signals. The obtained coherence 

values at each frequency are normalized between 0 (i.e. lack of correlation between the 

two signals) and 1 (i.e. complete correlation between the two signals). To inspect if 

obtained values of CMC during natural reaching (i.e. Late Fam condition only) were 

statistically significant, for each subject a Confidence Limit was defined according to the 

formula (Rosenberg et al., 1989): 

𝐶𝐿 = 1 − (1 −  𝛼)
1

𝐿−1 

Equation 6-1: Confidence Interval formula. 

with α being the significance level (95%) and L being the number of disjoint segments 

used (i.e. number of trials). The cross-spectrum results, or Cross-Spectral Density matrix 

(CSD) between neural and muscular signals was saved and further used for source level 

localization of cortico-spinal coherent activities. 

Source localization 

The Beamformer technique with Dynamic Imaging of Coherent Sources (DICS) 

methodology as implemented in FieldTrip was employed in order to localize sources 

responsible for producing coherent activity with the arm muscles of interest (i.e. TB, BB 

and ECR) in β (15-25 Hz) and low  (35-45 Hz) frequency bands. This technique 

estimates the amount of activity at a given location in the brain via a linear projection of 

the sensor data using a spatially adaptive filter computed from the lead fields of the 

sources and the cross spectral density matrix between neural and muscular signals 

previously calculated (Gross et al., 2001). The brain volume is filled with regularly spaced 

dipoles defined on a 3D grid and the source strength for each grid point is computed, 
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producing a 3D spatial distribution of the power of the neuronal source. This distribution 

is then usually overlaid on a structural image of each subject’s brain in order to optimize 

the results to the individual anatomy. As none of the healthy adults recruited in the study 

have ever had a brain MRI scan before, a template 3D grid based on a template anatomical 

volume in Montreal Neurological Institute (MNI) space with dipole spacing of 8 mm as 

provided in FieldTrip was here used in order to have dipole locations directly comparable 

across participants and conditions. Individual maps of CMC were spatially normalized 

and interpolated on a template T1-weighted MRI scan as provided in FieldTrip. 

6.2.3 Statistics 

Cluster-based permutation tests 

The cluster-based non-parametric statistical approach previously used has been employed 

here again for the evaluation of changes in coherent activity between brain and the 

muscles of interest (i.e. TB, BB and ECR) across conditions for a total of three 

comparisons (Late Fam vs. Early MA, vs. Late MA and vs. Late WO). CMC with each 

muscle in each frequency band were assessed separately and the effects of interest were 

evaluated by means of multiple dependent sample t-Tests applied to each 3D voxel. T-

values exceeding an a priori threshold of p < 0.05 were clustered based on adjacent voxels 

exhibiting the same effect. Cluster-level statistics were computed by taking the sum of 

the t-values within every cluster. The statistical comparisons were done with respect to 

the maximum values of summed t-values. By means of a permutation test (i.e. 

randomizing data across conditions and rerunning the statistical test 1500 times, Monte-

Carlo approximation) a randomization distribution of the maximum of summed cluster t-

values was obtained to evaluate the statistics of the actual data. Clusters in the original 

dataset were considered to be significant at an alpha level of (αcluster) 5% if less than the 

5% of the permutations (αcluster = 0.01, α = 0.025 for 2-tailed tests, N = 1500) used to 

construct the reference distribution yielded a maximum cluster-level statistic larger than 

the cluster-level value observed in the original data. As three different tests were carried 

out (Late Fam vs. Early MA, vs. Late MA and vs. Late WO), further correction for 

multiple comparison was run with Bonferroni method (p = 0.025/3 = 0.0083 for two-

tailed test). 

Regions of Interest (ROIs) 

Preliminary investigations not reported here handled the statistical problem 

aforementioned with a whole-brain approach. On the one hand, this approach is not 

optimal, as too many voxels are included in the analysis increasing the number of multiple 
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comparisons to a non-realistic number. On the other hand, the definition of an a priori 

hypothesis would promote the exclusion from the statistical analysis of those brain areas 

a priori known not to be involved in the control of peripheral muscles. Therefore, different 

comprehensive meta-analyses on the neural correlates of voluntary upper-limb 

movements (Witt et al., 2008; Pool et al., 2013; Turesky et al., 2016) and motor learning 

(Lohse et al., 2014) have been cross-checked to define a reduced number of Regions of 

Interest (ROIs) on which to explore changes of CMC during motor adaptation. At first, 

the identified ROIs included: 

• Left Premotor Cortex (PM); 

• Bilateral Supplementary Motor Area (SMA); 

• Bilateral Primary Motor Cortex (M1); 

• Left Sensorimotor Cortex (S1); 

• Right Inferior Parietal Lobule (IPL); 

• Bilateral cerebellum (forearm and upper arm areas, Mottolese et al., 2013); 

• Left Putamen; 

• Right Insula. 

Despite the potentiality of source-localization techniques in improving the spatial 

resolution of EEG data and identify specific cortical/cerebellar activations, it is far beyond 

its possibilities to reliably reconstruct activities generated in deeper structures than the 

cortex, such as the Striatum or the Basal Ganglia. Therefore, deep structures were 

excluded from the statistical analysis (i.e. left Putamen and right Insula), which eventually 

resulted in 17 ROIs defined according to FieldTrip toolbox, specifically: 

• Left Superior Frontal Cortex; 

• Left Medial Frontal Cortex; 

• Bilateral M1; 

• Bilateral SMA; 

• Left S1; 

• Bilateral Cerebellar Area 6; 

• Bilateral Cerebellar Area 7b; 

• Bilateral Cerebellar Area 8; 

• Bilateral Cerebellar Area 9; 

• Bilateral Paracentral Lobule. 
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6.3 Results 

6.3.1 Sensor- and source-level CMC during reaching in different conditions 

Figure 6-1 shows a typical subject CMC behaviour during natural reaching (i.e. Late Fam 

condition) for both β and low  frequency bands where not-significant values have been 

put equal to zero. The significant threshold of coherence for this specific subject was 

0.0618, thus values reported on the colour-bar are all significant. Clusters of β and low  

CMC can be seen over the contralateral sensorimotor cortex in almost all the CMC 

frequency-muscle combinations. The number of trials averaged during Late Fam 

condition ranged from 38 to 47 (mean (± std) = 43 (± 2)), thus the threshold values for 

CMC ranged from 0.0618 to 0.0758 (mean (± std) = 0.0682 (± 0.0036)). Only a few (n = 

5) subjects didn’t show a significant CMC for any muscle-frequency combinations during 

natural reaching thus analyses were carried on as repetitive practice of a motor task has 

been shown to induce changes in CMC (Perez et al., 2006; Mendez-Balbuena et al., 2011; 

Fu et al., 2014). Figure 6-2, 6-3 and 6-4 represent the source-level results in both the β 

and low  frequency bands of CMC with TB, BB and ECR respectively across each 

condition. The obtained source-localized activity is a volumetric reconstruction specified 

in head-coordinates and, in order to be able to visualise the results, functional data needed 

to be interpolated to the anatomical MRI template. The passage from sensor- to source-

level consistently improved the spatial-resolution of the data: for example, higher values 

(i.e. yellow) of CMC with all the three muscles in the β band during Late Fam are indeed 

localized in the left sensorimotor cortex as expected. During the motor adaptation 

condition muscle specific CMC patterns develop and by the end of the wash out condition 

β CMC remains high in the left motor sensorimotor regions. Low  CMC show more 

variable patterns across muscles, with however a common increase in values during 

different stages of adaptation across muscles. 
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Figure 6-1: Sensor-level plots of an exemplary single subject cortico-muscular coherence between all EEG 

electrodes and the Triceps Brachii (first row), the Biceps Brachii (second row) and the Extensor Carpi 

Radialis (third row) muscles in both β and low  frequency bands during natural reaching. 

Topoplots of a single-subject β (left column) and low  (right column) CMC at sensor-level for each muscle 

of interest are reported for Late Fam condition only (i.e. natural reaching). Values of CMC are colour-coded 

so that warm (i.e. red) colours represent high values, whereas cold (i.e. blue) colours represent low values. 

Dark blue areas are masked as not above the specific subject threshold (0.0618). 
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Figure 6-2: Source-level plots of all subjects grand average of cortico-muscular coherence between all EEG 

electrodes and the Triceps Brachii muscle. 

Surface-plots of group-level β (left column) and low  (right column) CMC at source-level for the Triceps 

Brachii muscle are reported for each condition. Values of CMC are colour-coded so that black-red colours 

represent low values, whereas yellow-white colours represent high values. 
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Figure 6-3: Source-level plots of all subjects grand average of cortico-muscular coherence between all EEG 

electrodes and the Biceps Brachii muscle. 

Surface-plots of group-level β (left column) and low  (right column) CMC at source-level for the Biceps 

Brachii muscle are reported for each condition. Values of CMC are colour-coded so that black-red colours 

represent low values, whereas yellow-white colours represent high values. 
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Figure 6-4: Source-level plots of all subjects grand average of cortico-muscular coherence between all EEG 

electrodes and the Extensor Carpi Radialis muscle. 

Surface-plots of group-level β (left column) and low  (right column) CMC at source-level for the Extensor 

Carpi Radialis muscle are reported for each condition. Values of CMC are colour-coded so that black-red 

colours represent low values, whereas yellow-white colours represent high values. 
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6.3.2 CMC correlates of robot-mediated motor adaptation 

The non-parametric statistical analysis yielded muscle specific results which are all 

reported in Table 6-1. No significant changes during adaptation with respect to natural 

reaching were observed for the TB muscle. Instead, a significant increase of BB-low  

CMC (p = 0.006, positive cluster) was observed during Early MA with respect to Late 

Fam in left frontal-, bilateral premotor- and motor-, left sensory- and bilateral medial 

central areas. Figure 6-5 shows the statistically significant cluster t-maps of BB-low  

CMC on a brain surface (i.e. surface-plot) and over an MRI template sliced along the 

three main axes of the head coordinate system for improved visualization (i.e. ortho-plot). 

Moreover, a statistically significant decrease of ECR-β CMC (p = 0.008) was observed 

during Late MA with respect to Late Fam in left frontal-, bilateral premotor- and motor- 

and bilateral medial central areas. Figure 6-6 shows the statistically significant cluster t-

maps of ECR-β CMC through both a surface- and an ortho-plot. Despite the different 

results obtained, some areas are commonly involved in the changes of CMC across 

condition, frequency bands and muscles, specifically: left M1, left Superior Frontal 

Cortex (FC), left Medial FC and bilateral SMA. 

6.3.3 CMC changes during adaptation 

Given the positive results of the previous analysis and the definition of a set of ROIs 

commonly involved in the changes of CMC during adaptation with respect to natural 

reaching (i.e. right/left M1, right/left SMA, right/left Paracentral Lobule, left 

superior/medial FC), a further cluster-based permutation test was run to test whether any 

changes took place from early to late adaptation only. A statistically significant decrease 

of BB-β CMC (p = 0.015) was observed during Late MA with respect to Early MA in left 

frontal areas (superior and medial). Moreover, a significant decrease of ECR-β CMC (p 

= 0.045) was reported during adaptation in bilateral SMA. Figure 6-7 shows the 

statistically significant clusters t-maps of (A) BB-β and (B) ECR-β CMC through an 

ortho-plot. No significant changes were observed in TB-β CMC and for low  CMC of 

any muscles. Results summary is reported in Table 6-2. CMC, by definition, describes 

the relationship between a certain brain area and a given muscle therefore, in order to 

investigate if the observed cortico-muscular changes during adaptation where symbolic 

of specific behavioural changes, linear regression models were attempted to describe 

kinematic variables. For each subject and each condition (i.e. Late MA and Early MA), 

the average BB-β CMC was extracted from the left superior and medial FC ROIs and the 

average ECR-β CMC was obtained from the left and right SMA ROIs. Only the difference 
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between Late MA and Early MA was further considered. Kinematics data of Summed 

Error, Movement Onset and Peak Force, previously discussed (see chapter 4, paragraph 

4.3.1), were considered as Dependent Variables (DVs) in regression models: β CMC 

changes correlating with movement error changes during practice would resembled an 

adaptive strategy; β CMC changes correlating with movement onset changes during 

training would be symbolic of a faster-movement strategy; β CMC changes correlating 

with maximum force changes during adaptation would show a partial adaptive strategy 

simply based on force production. Multiple Regression models were stepwise created 

with the format: 

∆𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠 =  𝛽0 + 𝛽𝑖 ∙ ∆𝛽_𝐶𝑀𝐶𝑚𝑢𝑠,𝑅𝑂𝐼 +  𝜀 

Equation 6-2: Multiple regression models formula. 

where ΔKinematics is the difference between Late MA and Early MA values of any of 

the three kinematic variables considered (i.e. Summed Error, Movement Onset and Peak 

Force), Δβ_CMCmus,ROI are the differences between Late MA and Early MA of the 

average β CMC values from the specific muscle and ROI (Left Superior FC for BB, Left 

Medial FC for BB, Left SMA and Right SMA both for ECR) entered into the model as 

Independent Variables (IVs), 𝛽𝑛 are the intercept and coefficient associated to each model 

predictor, and ε is the error. Data were first centred (i.e. the mean score was subtracted 

from each observation) and scaled (i.e. standard deviation was set equal to 1) in order to 

reduce the chance of multicollinearity. Only one regression model was successfully 

created for ΔPeak Force (R-squared = 0.234, p = 0.042) for which all assumptions were 

met (no multicollinearity, no auto-correlation, no homoscedasticity). Specifically, only 

the IVs significantly contributing to the prediction of Peak Force were entered stepwise 

into the model. The final model predicts the DV based only on Left SMA – ECR-β CMC 

(B = -0.432, p = 0.042) as shown in Figure 6-8. The final model equation can therefore 

be written as follow: 

∆𝑃𝑒𝑎𝑘 𝐹𝑜𝑟𝑐𝑒 =  −0.108 −  0.432 ∙ ∆𝑙𝑒𝑓𝑡𝑆𝑀𝐴_𝐸𝐶𝑅_𝛽𝐶𝑀𝐶 

Equation 6-3: ΔPeak Force multiple regression model formula. 

 



138 

 

 

Figure 6-5: Source-level non-parametric permutation test on  CMC with Biceps Brachii muscle when 

comparing Early MA vs. Late Fam. 

Surface- and ortho-plots of group-level positive clusters during Early MA with respect to Late Fam in low 

 frequency band. Colour-coded areas represent significant changes (i.e. increase, p < 0.0083) in CMC of 

the Biceps Brachii muscle between the two conditions. 
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Figure 6-6: Source-level non-parametric permutation test on β CMC with Extensor Carpi Radialis muscle 

when comparing Late MA vs. Late Fam. 

Surface- and ortho-plots of group-level negative clusters during Late MA with respect to Late Fam in β 

frequency band. Colour-coded areas represent significant changes (i.e. decrease, p < 0.0083) in CMC of 

the Extensor Carpi Radialis muscle between the two conditions. 
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Figure 6-7: Source-level non-parametric permutation test on β CMC with Biceps Brachii (A) and Extensor 

Carpi Radialis (B) muscle when comparing Late MA vs. Early MA. 

Ortho-plots of group-level negative clusters during Late MA with respect to Early MA in β frequency band. 

Colour-coded areas represent significant changes (i.e. decrease) in CMC of the Biceps Brachii (A) and of 

the Extensor Carpi Radialis (B) muscle during adaptation. 
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Figure 6-8: Changes in ECR-left SMA β CMC average between late and early adaptation correlate with 

differences in maximum exerted force. 

Single-subjects maximum force values (difference between Late MA and Early MA) are plotted against the 

ECR-left SMA β CMC average values (difference between Late MA and Early MA). This correlation shows 

that a reduction of β CMC in left SMA moderately contributes to the stabilization and regulation of the 

maximum exerted force: subjects that needed to diminish their force indeed increased cortical activations 

(β CMC). 
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Table 6-1: Non-parametric cluster-based permutation test on CMC changes with respect to natural reaching. 

For each significant comparison (p < 0.0083) the statistically significant ROIs, the number of voxels found 

significant per each ROI and their percentage with respect to the total within the ROI are reported 

Early MA vs. Late Fam, low  (35-45 Hz) 

Muscles ROIs Num. 

Sig.Voxels 

Num. Sig. Voxels/tot ROI 

Voxels (%) 

Biceps Brachii Left M1 14 23.7 

Right M1 17 28.3 

Left Superior FC 37 53.6 

Left Medial FC 55 75.3 

Left SMA 22 84.6 

Right SMA 30 66.7 

Left S1 5 8.3 

Left Paracentral 

Lobule 21 100 

Right Paracentral 

Lobule 13 81.2 

Late MA vs. Late Fam, β (15-25 Hz) 

Extensor Carpi 

Radialis 

Left M1 14 23.7 

Right M1 22 36.7 

Left Superior FC 25 36.2 

Left Medial FC 46 63.0 

Left SMA 6 23.1 

Right SMA 24 53.3 

Left Paracentral 

Lobule 3 14.3 

Right Paracentral 

Locule 2 12.5 

 

Table 6-2: Non-parametric cluster-based permutation test on CMC changes during adaptation. 

For each significant comparison the statistically significant ROIs, the number of voxels found significant 

per each ROI and their percentage with respect to the total within the ROI are reported. 

Late MA vs. Early MA, β (15-25 Hz) 

Biceps Brachii ROIs Num. Sig. 

Voxels 

Num. Sig. Voxels/tot ROI Voxels 

(%) 

Left Superior 

FC 28 40.6 

Left Medial FC 55 75.3 

Extensor Carpi 

Radialis 

Left SMA 2 7.7 

Right SMA 30 66.7 
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6.4 Discussions 

6.4.1 Novel findings 

Evidence of cortico-muscular communication during a robot-mediated force-field motor 

adaptation task was identified in the current study. The primary goal of the investigation 

was to observe changes in cortico-muscular coherence over time across different stages 

of motor adaptation and with respect to a natural reaching behaviour. Sensor-level CMC 

data were projected back from the scalp to the cortex via beamforming techniques, which 

allowed for a better localization and higher spatial resolution of the coherence evidence. 

At source level, changes in CMC across different stages of adaptation in comparison to 

natural reaching were identified in multiple brain regions as frontal, premotor and 

sensorimotor areas, in line with previous findings (Baker, 2007; Babiloni et al., 2008; 

Fang et al., 2009; Whitam et al., 2010; Rossiter et al., 2013; Gentili et al., 2015; 

Belardinelli et al., 2017). Moreover, CMC differences observed specifically during the 

motor adaptation process were confined to frontal areas (i.e. superior frontal cortex, 

medial frontal cortex and SMA) and successfully correlated with the maximum force 

exerted by subjects, thus showing a direct link between cortical oscillations and muscular 

activations required to properly perform the task. These findings consolidate the belief 

that CMC is a valid assessment tool for motor impairments, integrity of the cortico-

muscular communication line and recovery after neural injuries (Mima et al., 2000; Fang 

et al., 2009; Rossiter et al., 2013; von Carlowitz-Ghori et al., 2014; Belardinelli et al., 

2017), for degenerative processes such as ageing (Kamp et al., 2013; Bayram et al., 2015), 

as well as a potential reference measure for BCI rehabilitation applications (von 

Carlowitz-Ghori et al., 2015), and could be used to evaluate progress in recovery with 

motor adaptation paradigms in clinical practice. 

6.4.2 The natural reaching movement 

An exemplary subject sensor-level CMC results showed muscle- and frequency specific 

activations above the subject-specific threshold (Rosenberg et al., 1989) (Figure 6-1): 

only a few subjects (n = 5) did not present significant coherence values in line with 

previous literature, confirming the observation that not all individuals present CMC 

during both upper- and lower-limb motor task (Perez et al., 2006; Fu et al., 2014), likely 

due to differences in cortical wiring and efficiency, and that a period of practice and 

adaptation can enhance the cortico-muscular relationship (Mendez-Balbuena et al., 2011). 

Accordingly, attention was given to the differences that the planned motor adaptation 

paradigm was able to induce rather than the absolute coherence values per-se (same 
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approach as Gentili et al., 2015), thus all subjects were included in the subsequent 

analyses. Source-localized activities during natural reaching show a prominent peak of 

CMC on the contralateral (left) sensorimotor cortex in β band for each muscle of interest 

(Figure 6-2, 6-3 and 6-4, first row), with less contribution from the  band. β band CMC 

is known to reflect mainly efferent drives from the motor cortex to muscles (Mehrkanoon 

et al., 2014) and to be context specific (Baker, 2007), thus multiple theories have been 

proposed to account for its activity. Extensive work has been done on the maintenance of 

a steady motor output through isometric contraction tasks (Conway et al., 1995; Halliday 

et al., 1995; Kilner et al., 1999; Kilner et al., 2000; Kristeva et al., 2007; Witte et al., 

2007), whereby β band CMC is stronger when compensating for a static perturbation and 

disappears in favour of  CMC when counteracting a dynamic force (Kilner et al., 1999; 

Marsden et al., 2000; Omlor et al., 2007; Kamp et al., 2013). According to this line of 

research, β band oscillations represent a cortical state promoting maintenance of the 

“status-quo” and the steady state motor output in terms of muscles force (Engel and Fries 

2010). An increase of β CMC was linked to augmented isometric contraction and 

performance (Kilner et al., 2000; Kristeva et al., 2007; Mehrkanoon et al., 2014), but its 

decrease when compensating for a dynamic force in an isometric fashion suggests that 

the maintenance of the motor output is not its only function. Moreover, the task performed 

in the current study was dynamic and more complex: reaching requires target definition, 

planning and movement accuracy to be precisely executed. The cortico-muscular 

relationship in both the β and  frequency bands have been previously reported for 

dynamic complex movements such as reaching (Fang et al., 2009) and hand grip (Rossiter 

et al., 2013) in both healthy and stroke populations, as well as during a pick-up task in 

monkeys (Murthy and Fetz, 1992), finger movements (Fu et al., 2014) and dynamic 

bilateral ankle dorsi-flexion movements (Yoshida et al., 2017) in humans. In more 

complex contexts, it is likely that cortico-muscular coherence is symbolic of the 

integration of both the central (feedforward, motor) and peripheral (feedback, sensory) 

drives (Baker, 2007) for the optimal fulfilment of the task. The β band CMC observed 

during natural reaching is here suggested as not merely indicative of cortical motor 

commands guiding muscle activity but instead symbolic of a sensorimotor integration 

phenomenon, whereby motor and sensory drives are integrated to accomplish an optimal 

performance. 
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6.4.3 The disturbed reaching movement and the adaptation process 

At the early stages of adaptation an increase of  CMC occurred in frontal (i.e. superior 

frontal cortex, medial frontal cortex), premotor (i.e. SMA) and sensorimotor (i.e. M1 and 

S1) areas for the Biceps Brachii, muscles (see Figure 6-5 and Table 6-1), a muscle actively 

involved in counteracting the applied perturbation (Pizzamiglio et al., 2017). The areas 

showing increased  cortico-muscular coupling have been previously identified as playing 

a major role during visuomotor adaptation (Brovelli et al., 2015). As previously 

mentioned, also  CMC involves mainly efferent drives to muscles (Mima et al., 2000; 

Schoffelen et al., 2005; Witham et al., 2010; Mehrkanoon et al., 2014) and represents a 

complex process by which sensory feedback drives and motor feedforward commands 

are integrated to organise voluntary motor actions (Brown et al., 1998; Omlor et al., 2007; 

Fang et al., 2009). The increased  CMC could therefore be attributed to changes in both 

feedforward and feedback drives (Riddle and Baker, 2005; Baker, 2007). The 

introduction of an external force-field changed how muscles and joints were stimulated 

with respect to a natural reaching movement, thus more feedback information was likely 

to be sent to the central system in order to properly plan and counteract the perturbation. 

Increased  CMC could therefore be the result of a stronger sensorimotor integration due 

to the increased amount of sensory feedback coming from the periphery. This argument 

implies that the changes are simply task- and condition-related: as the perturbation is 

constant for the all trials of MA, the change in CMC should have persisted in both early 

and late stages of adaptation. However, this is not the case, as during late adaptation  

CMC is not significantly higher than during natural reaching. Therefore, stronger  CMC 

is likely the result of an increase in both sensory feedback and feedforward motor 

commands at early stages of adaptation when subjects are still naïve to the perturbation 

and the reaction is based on strong muscle co-contraction and reflexes rather than on 

strategic adaptive compensation (Milner and Franklin, 2005; Pizzamiglio et al., 2017). 

This is further validated by the fact that at later stages of adaptation  CMC is visibly 

stronger than during natural reaching: here feedback drives are constantly higher than 

during natural reaching, but subjects are progressively adapting and need less control over 

the task (i.e. from controlled and naive to automatic and skilled). Indeed, increased  CMC 

occur in a wide cortical cluster including frontal, premotor and sensorimotor areas which 

are either directly (M1) either indirectly connected to the muscles. This confirms CMC 

as a symbol of complex processes that, through integration of sensory and motor 

information (M1/S1) (Witham et al., 2010), plan the required muscle activation to 
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compensate for the perturbation (Babiloni et al., 2008), minimizing error and optimizing 

performance. Moreover, previous work has demonstrated that CMC can be modulated by 

motor as well as cognitive demands: more focused attention and cognitive efforts (Safri 

et al., 2006; Safri et al., 2007; Schoffelen et al., 2005) enhance  CMC, whereas the 

execution of simultaneous secondary tasks and divided attention (Safri et al., 2007; 

Kristeva-Feige et al., 2002) reduces it. In this study, subjects were likely to be more 

attentive at the beginning of the adaptation condition, when naïve to the perturbation, and 

then release the attention at later stages when the task became more automatic thanks to 

ongoing adaptive strategies. Therefore, the increased  CMC during early stages of 

adaptation could be the result of a stronger sensorimotor integration process combined 

with more focused attention to the task from which specific muscle activations and inter-

synchronizations would result for a better performance (Reyes et al., 2017; Pizzamiglio 

et al., 2017). 

With respect to natural reaching, during late stages of adaptation a decrease of β CMC 

was observed for the Extensor Carpi Radialis muscle (see Figure 6-6 and Table 6-1). TB, 

BB and ECR are all actively involved in counteracting the applied perturbation: if the 

upper-arm muscles are the “propeller” and major actuators of the reaching movement, the 

forearm muscle is likely to be involved in the stabilization of the forearm during the 

disturbed movement. It was previously demonstrated that muscles specifically involved 

in the promotion of the reaching movement and in the counteraction of the perturbation 

share a coherent intermuscular coupling at high frequencies which enable a reduction of 

useless co-contraction and the saving of energy (Pizzamiglio et al., 2017). In parallel, 

recent findings have shown that the cortico-muscular relationship resembles a complex 

mechanism of intermuscular binding at the cortical level whereby reduced β CMC 

represents a muscular unbinding process required to handle the requested motor task 

through independent (not synergetic) muscle activations (Reyes et al., 2017). A decrease 

of β intermuscular coherence is thus likely to occur in unstable situations (i.e. perturbed 

reaching movement and spring compression at high level of force) (Houweling et al., 

2010), when novel intermuscular collaborations need to be developed or independent 

control of muscles takes over synergetic mechanisms. In line with what was previously 

mentioned, the reduced β CMC in a wide cortical cluster (including frontal, premotor and 

sensorimotor areas) is here suggested to be the result of sensorimotor integration and 

planning processes according to which less forearm activation (co-contraction) is required 

to compensate for the force in later stages of adaptation, when performance is improving 

thanks to ongoing adaptive strategies. 
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The cortical areas that showed both an increase in  CMC and a decrease of β CMC during 

early and late stages of adaptation respectively were further tested for changes during the 

adaptation process only. A decrease of BB-β CMC was found in the superior and medial 

frontal cortex, whereas a decrease of ECR-β CMC was observed in the bilateral SMA 

(see Figure 6-7 and Table 6-2). Interestingly, the reduction of β CMC during adaptation 

occurs not in the primary motor cortex but in the frontal (superior-medial) and SMA 

regions, indirectly connected to muscles through connections to M1 (Darian-Smith et al., 

1993). Frontal and premotor areas (extending from superior to medial inferior frontal 

gyrus) have been previously shown to be recruited during hand flexion-extension 

movements in stroke survivors after 4-weeks BCI rehabilitation (Belardinelli et al., 2017). 

These areas are therefore likely to be indirectly involved in the control of voluntary 

movements, and more specifically in the early stages of the motor adaptation process as 

extensively described in literature (Krebs et al., 1998; Shadmehr and Holcomb, 1997; 

Lage et al., 2015). The anterior prefrontal cortex (namely the BA10 area; Carlen, 2017) 

has been previously shown to indirectly control cognitive-motor performance (Babiloni 

et al., 2008). β cortico-cortical coherence between FZ and F3 electrodes (positioned over 

SMA and dlPFC areas) was reduced during a visuomotor adaptation task whereby 

subjects had to draw lines in a centre-out fashion, suggesting the involvement of medial-

left prefrontal cortex in the modulation of adaptation control (Gentili et al., 2015). This 

phenomenon of “cortical refinement” was attributed to a progressive disengagement of 

not-essential frontal executive processes as a result of practice. Our findings cannot 

speculate on the formation of internal models of adaptation and on the progressive transfer 

of the control of learning from the cortico-striatal to the cortico-cerebellar loop (Krebs et 

al., 1998), but can convey information on the changes in control on the activation of 

muscles during the adaptation process. Indeed, a linear relationship was found between 

changes in ECR-β CMC in the left SMA and changes in the maximum exerted force 

(Figure 6-8). ECR-β CMC in the left SMA is moderately correlated with the maximum 

exerted force so that stronger cortical activations (i.e. increased β CMC) are needed to 

reduce the exerted force, if exceeding the minimum needed. Previous work has found a 

linear relationship between CMC and output force in both healthy and elderly (Bayram 

et al., 2015; Brown et al., 1998; Mima et al., 1999). SMA is known to provide input to 

the primary motor cortex (Witham et al., 2010; Darian-Smith et al., 1993) and to be 

involved in the motor adaptation process: it is likely to be recruited to plan the muscle 

activation required during the task to produce the needed counteracting force and 

minimize the energy costs. β CMC in SMA is therefore here suggested to resemble a force 
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modulation process operating through changes in muscular activations (Reyes et al., 

2017) during which natural synergetic strategies are disrupted and new ones are created 

to optimize performance and minimize energy expenses. 

6.4.4 Cortico-muscular and intermuscular coherence in rehabilitation 

Evaluating CMC allows assessment of the integrity and functionality of the neural 

pathways linking the brain and the muscles, in both descending and ascending directions. 

To further strengthen the validity of the presented cortico-muscular findings, parallel 

investigations evaluated intermuscular coherence (IMC), a measure of the neural 

coupling between muscles evaluated in the frequency domain. IMC likely encompasses 

efferent and afferent inputs from both the cortical (i.e. cerebellar, reticulospinal) and the 

local peripheral (i.e. spinal, motorneuronal) circuits (Brown et al., 1999; Grosse et al., 

2002; Lemon, 2008; Narzarpour et al., 2012). Given the broad spectrum of influences 

embedded within measures of intermuscular evidence, it is a valid argument in support 

of cortico-muscular claims made here when aiming to disentangle the effects of cortical 

inputs on muscles activity (Boonstra, 2013). Recent studies claimed that movements 

performed in unstable situations require the disruption of actual muscular couplings in 

favour of the creation of novel binding mechanisms able to sustain the requested motor 

tasks; at this regard, reduced β intermuscular and cortico-muscular coherence were 

suggested as potential indicators of such decoupling processes (Houweling et al., 2010; 

Reyes et al., 2017). A preliminary investigation of intermuscular coherence during motor 

adaptation to an external clockwise robot-mediated force field was undertaken during this 

work of thesis but in separate settings (Pizzamiglio et al., 2017). Time-frequency mapping 

of IMC during the period from visual cue to 3 seconds afterwards showed a progressive 

significant increase of IMC from early to late adaptation in high γ frequencies (40-100 

Hz) in those pairs of muscles mostly recruited to promote the reaching movement and 

concurrently counteract to the external perturbation. Interestingly, the progressive 

increase of high γ IMC occurred in parallel to the decrease of movement error and co-

contraction profiles. It was postulated that the observed IMC changes were symbolic of 

an underlying neural strategy coordinating multiple muscles together in order to optimize 

performance (Mohr et al., 2015), while minimizing co-contraction levels, effort and 

metabolic costs (Huang and Ahmed, 2014; Watanabe and Kohn, 2015). Little attention 

was at that time given to IMC changes in lower frequency bands, whereby a reduction of 

IMC was observed during the dynamic stage of the movement with respect to the static 

isometric initial and final phases (Pizzamiglio et al., 2017, see Figure 6 for example). 

Additional analyses will be carried out in the current investigation in order to focus on 
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the changes in IMC during adaptation in the β frequency (Pizzamiglio, Belardinelli, 

Ziemann and Turner, 2018, in preparation): in line with the theories reported above, a 

significant decrease of β IMC is expected during adaptation among muscles undergoing 

an unbinding process, further validating the findings of reduced β CMC. All these 

arguments reveal an added value of the IMC approach with respect to other 

methodologies, such as co-contraction analyses. As previously demonstrated 

(Pizzamiglio et al., 2017), during adaptation all muscles exhibit high levels of co-

contraction in early stages of adaptation and only the time of maximum co-contraction 

seems to reliably disentangle the effects of specific motor tasks (i.e. opposite force-field 

directions). Therefore, IMC seems a more valid technique to evaluate the most relevant 

functional contribution during specific motor tasks (De Marchis et al., 2015). Moreover, 

IMC has been shown not to depend on age, consequently representing another strong 

eligible biomarker for neurological changes in muscle activation (Jaiser et al., 2016). 

Consequently, IMC as well as CMC might be appointed as reliable assessment measures 

during rehabilitative interventions. Interestingly, online modulation of cortico-muscular 

coherence has been recently tested in a neurofeedback experiment with a cohort of healthy 

adults (von Carlowitz-Ghori et al., 2015). Subjects were requested to move a lever with 

their right thumb against a load and hold it maintaining a constant level of generated force 

whilst receiving feedback on a screen based on the level of CMC produced [0-1]. The 

task required them to either increase either decrease the level of CMC through a self-

chosen mental strategy without changing the motor outcome (i.e. the level of generated 

force). Outstandingly, subjects successfully modified their CMC level through the 

neurofeedback provided without changing the level of force produced, suggesting that no 

functional changes occurred between the cortex and the spinal cord, but that specific 

neurophysiological mechanisms were developed only cortically. These findings are quite 

promising as rehabilitation based on the online modulation of cortico-muscular or even 

intermuscular couplings could induce the repair and/or the creation of neural mechanisms 

in the affected areas (i.e. both cortex and cortico-spinal pathways), promoting 

neuroplasticity and recovery. Indeed, the mental strategies that would most effectively 

promote online modulation of these features are still to be reliably identified, thus further 

research with both healthy individuals and, for example, stroke survivors is needed to 

consolidate such approaches. In conclusion, both CMC and IMC could be used as reliable 

markers during rehabilitation, whereby specific neural and muscular couplings could be 

the targets of specific individualised therapies. 
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6.4.5 Limitations 

As previously mentioned (see chapter 4, paragraph 4.4.4, and chapter 5, paragraph 5.4.5), 

subjects did not show a complete adaptation by the end of the condition. This is further 

supported by the cortico-muscular findings: more trials would result in more reliable 

coherence evidence (in terms of subject-specific threshold calculation) and would allow 

subjects to completely adapt to the novel environment, likely promoting stronger and 

more specific CMC changes. Moreover, despite the positive results obtained through the 

localization of cortico-muscular neural source, only 62 channels (mastoids excluded) and 

a template T1-MRI scan were used in the beamforming algorithm. Future studies should 

consider employing a higher number of electrodes (e.g. 128) and individual structural 

MRI in order to optimize the process of localization of cortical sources.  



151 

 

Study II: Real-world Scenario 

7 Neural correlates of single- and dual-task walking in the real-world 

7.1 Introduction 

The study of human behaviour in its natural environment has always been hindered by 

limited technology and the large number of external influences one would have to account 

for. On the other hand, the laboratory-based approach undertaken in the last decades by 

the neuroscientific community have enabled a better understanding of specific (neuro-) 

physiological control mechanisms in the human brain responsible for locomotion. The 

advantage of having a fully-controlled lab environment that requires the subjects to focus 

only on one specific task however pays the cost of leaving the “real-world” context 

excluded (i.e. not-ecologically valid). Furthermore, using un-natural stimuli and 

experimental designs was of significant concern in the past (Brunswick, 1943; 

Bronfenbrenner, 1977) and is currently regaining much attention because of the 

translation of assistive and supportive technologies into daily-life applications (Gramann 

et al., 2014; Gramann et al., 2017). Indeed, studying behavioural and psychological 

phenomena abstracted from the environment in which they usually take place results in 

an uncomplete understanding of the mechanisms behind them. Animal studies have 

demonstrated how the same behaviour is obtained with different neurophysiological 

mechanisms when performed in the over-controlled laboratory compared to the natural 

environment and/or when moving (Chen et al., 2013; Arenz et al., 2017). Recent 

technology developments have focused on the production and validation of “mobile” 

instrumentation: light-weight, easy to mount and nearly-wireless and some studies have 

adopted this “mobile lab” approach allowing subjects to move freely and thus enabling 

the study of their behaviour in a more natural framework (Ehinger et al., 2014; Jungnickel 

and Gramann, 2016; Wagner et al., 2016). The further development of robustly designed 

mobile technology for the recording of body movement and dynamics (e.g. inertial 

sensors), muscles activities (e.g. electromyography) and brain neural and hemodynamic 

oscillations (e.g. electrophysiology and spectroscopy) now allows the researcher to 

venture outside the laboratory and observe human natural behaviour in the real-world.  

Bipedal walking is the most important behaviour typical of the human species and has 

been extensively investigated from a biomechanical perspective in the healthy young 

population and older and neurologically impaired individuals (Beyart et al., 2015; Del 

Din et al., 2016). For healthy individuals, walking is one of the most natural activities to 

perform and for a significant proportion of time further tasks such as navigating, 
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conversing or listening to music are often undertaken. However, even healthy subjects 

demonstrate decreased gait performance when walking and engaging in a challenging 

secondary task such as messaging over a smartphone (Schabrun et al., 2014; Agostini et 

al., 2015). Therefore, the human habit of walking and simultaneously doing something 

else should rise some concerns on the level of attention required for each task and how 

this would affect alertness of the surroundings (e.g. when walking and texting while 

navigating on a crowded sidewalk). For neurological impaired patients (e.g. hemiplegic 

stroke survivors, Parkinson’s disease patients, elderly with executive functions deficits) 

walking itself can be challenging or even impossible without external support (Iosa et al., 

2014; Menz et al., 2003; Latt et al., 2009; Maidan et al., 2016). If engaged in a secondary 

task or in a more complex path / route, even the well-recovering neurological patients can 

show greater attention and effort paired with gait speed reduction and a tendency towards 

impaired locomotion (Maidan et al., 2017). Therefore, understanding the neural correlates 

of dual-task walking could shed some light on the potential side effects and risks it 

conveys for healthy subjects, as well as consolidate the understanding of the limits of the 

neurologically impaired brain. The final goal would be identifying new opportunities for 

assistive and supportive technologies for daily-life real-world activities. Thanks to the 

progress in mobile technologies, the neural correlates of gait in the healthy young 

population have been recently investigated with high-density electroencephalography 

(Gwin and Ferris, 2012; Seeber et al., 2014; Wagner et al., 2012; Wagner et al., 2014; 

Wagner et al., 2016). In parallel, many studies have observed the impact of walking while 

performing a secondary task on brain hemodynamics through means of functional near-

infrared spectroscopy (fNIRS), both in healthy young and old adults and neurological 

groups (Al-Yahya et al., 2016; Lin and Lin, 2016; Maidan et al., 2016; Maidan et al., 

2017). The challenge of being able to record natural human behaviour in the real-world 

is now possible to overcome, however much still needs to be done to understand how our 

brain and behaviour are linked in their natural environment. 

In this study, a fully-mobile setup for real-world applications was designed, implemented 

and further validated by investigating neural correlates of natural single- and dual-task 

walking in an open-space, outside the laboratory environment. In order to insert subjects 

within the most natural settings and mimic daily-life experiences, secondary tasks 

consisted in either having a conversation with the experimenter or reading and replying 

to an email from a smartphone. Gait performance was expected to decrease from single-

task to dual-task walking as previously and extensively described (Menz et al., 2003; 

Francis et al., 2015; Schaubrun et al., 2014; Caramia et al., 2017; Yogev-Silgemann et 
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al., 2010). Neural correlates of single-task walking were expected to replicate previous 

findings obtained within the laboratory environment (Gwin et al., 2010; Seeber et al., 

2014) as representing the neurophysiological bases of walking per se. However, 

predicting how the brain would react to a simultaneous and continuous secondary task 

while walking (i.e. moving) in the real-world is challenging, as most dual-task studies 

have been carried out within the laboratory environment with highly restrictive 

experimental settings (Wahn and König, 2017). We hypothesized that real-world dual-

task conditions would engage brain areas related to higher executive functions and 

planning (e.g., anterior and dorso-lateral pre-frontal cortex, PFC; Ford et al., 2002; Giraud 

et al., 2007) and areas involved in complex sensorimotor integration and spatial 

navigation (e.g., sensorimotor cortex, SMC; posterior parietal cortex, PPC; Buneo and 

Andersen, 2006; Engel and Fries, 2010; Sipp et al., 2013; Beurskens et al., 2016; Bradford 

et al., 2016; Wagner et al., 2016). The results suggested that there were condition-specific 

patterns of neural activation that differed with the nature of the secondary task and that 

there were frequency specific neural biomarkers for different real-world ambulatory 

scenarios. 

7.2 Materials and methods 

7.2.1 Ethical approval 

Eighteen right-handed healthy young adults [age mean (± standard deviation; SD) = 25 

(± 3), 7 male/11 female, range = 20-31] with no previous history of neurological, 

musculoskeletal or gait disorders (see Appendix II), agreed to participate in this study by 

giving written informed consent (see Appendix III). The study was approved by the 

University of East London Ethics Committee (UREC_1415_29, see Appendix I) and all 

experiments were conducted in accordance with the Declaration of Helsinki. Data of three 

subjects were discarded because of problems during data acquisitions (2 males, 1 female), 

leaving a total of fifteen subjects [age mean = 26 (± 3), 5 male/10 female, range = 20-31]. 

One subject (female) was ultimately excluded from group-level analysis due to the very 

high level of gait-related noise within the neurophysiological data, leaving a total of 

fourteen subjects [age mean = 26 (± 3), 5 male/9 female, range = 2-31]. 

7.2.2 Experimental protocol 

Subjects were first prepared in the laboratory room UH.2.07, University House building 

(UH), Stratford Campus, University of East London (Figure 7-1). Once ready, they started 

the experiment by performing three minutes of resting state (i.e. Baseline) standing still 

with their eyes open in the lab. Subjects were then guided through the UH building outside 
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to the garden (Figure 7-1): during this period, no signals were recorded and subjects were 

told to get familiar with the setup and communicate to the experimenter if anything was 

not properly set. Once outside, subjects were given all the details related to the 

experiment, specifically 1) the predefined walking path was shown to them (Figure -1), 

2) they were told to walk at their preferred natural speed, as it has been shown that it 

optimizes gait behaviour (Sekine et al., 2013) and 3) they were asked to minimize any 

artefacts or extreme-movements that could have affected the recordings. Experiments 

consisted of three conditions during which subjects walked along the predefined path 

naturally (Single-Task, ST), conversing with the experimenter (Dual-Task1, DT1) or 

texting with their smartphone (Dual-Task2, DT2). The dual-task conditions were 

randomized across subjects in order to avoid bias in gait behaviour and recordings, 

whereas the ST condition was performed always as first in order to have a common 

baseline before the dual-task and to familiarise the participants  with the walking path. 

The designed dual-task conditions were meant to represent real-life situations and, to 

standardise them, conversations during DT1 were based on a set of standard questions, 

whereas in DT2 subjects read and replied to a standard email (Table 7-1). In each 

condition, subjects walked the predefined path twice covering a total distance of 200 

metres. Between-condition resting periods were given to subjects to avoid fatigue and to 

remind them of the next condition instructions. The experimenter followed the subjects 

during each condition recording videos of gait behaviour. Experiments were carried out 

only during dry days free from strong winds and/or rain. During the ST condition, the 

subject walked freely with arms swinging on either side of the trunk; in both the dual-task 

conditions the subject walked with the hands in front holding the smartphone, but with 

the head straight when conversing (i.e. DT1) and bent downwards slightly looking at the 

smartphone when texting (i.e. DT2). Consequently, each condition is characterised by 

slightly different whole-body biomechanics. A summary of each single subject 

experiment is reported in Table 7-2. 

7.2.3 Recording techniques 

The implemented setup presented in 7 6-2 is fully mobile and allows the recording of 

physiological and behavioural data during walking (or any other mobile situation). 

Muscle activity (EMG; mV) was recorded from the right/left Tibialis Anterior and Soleus 

by two monopolar superficial electrodes per muscle, positioned at a 1.5 cm inter-electrode 

distance according to the belly-belly montage and following the SENIAM guidelines 

(Hermens et al., 2000). Brain activity (EEG; μV) was recorded via a high-density 64 

channel Waveguard cap (ANT Neuro, Enschede, Netherlands), with impedances kept 
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below 5 kΩ for the whole duration of the experiment. EMG and EEG activities were 

simultaneously and continuously recorded by an EEGoPro amplifier (ANT Neuro, 

Enschede, Netherlands) at a sampling frequency of 1 kHz and filtered between 0.1 and 

500 Hz. During the recording, EEG data were referenced to the FCz channel. The EEG 

cap was connected to the amplifier via two separate 32-pins serial ports (i.e. 32 channels 

per port). Surface EMG electrodes were plugged into a bipolar-channel box external to 

the amplifier and connected to it via a secondary 25-pins serial port. Data were recorded 

and saved within the same file (thus they were already synchronized) by the EEGoPro 

software installed on a DELL tablet, connected via USB to the amplifier and carried by 

the subject within the backpack, together with the amplifier. A Samsung Galaxy S4 mini 

smartphone was fixed at the subject’s lower back with an elastic belt and data from its 

internal accelerometers and gyroscope were recorded through the AndroSensor app 

(http://www.fivasim.com/androsensor.html) at a frequency of 200 Hz, saved as .csv files 

at the end of each condition and ultimately downloaded for offline analyses. Smartphone 

position choice was dictated by literature investigation: lower back position is the 

currently most preferred and reliable location to observe changes in gait patterns across 

different conditions and populations (Iosa et al., 2014). Two digital Force Sensing 

Resistor sensors (FSRs) were employed as contact switches and fixed underneath the 

subject’s heels to detect times of heel strikes. Data were recorded at 1 kHz by a 14 bit 

analog-to-digital converter (DataLog MWX8, Biometrics Ltd, Newport, UK) fixed at the 

subject’s hip by the elastic belt. These sensors return a digital binary output where the 

active edge is set 1-to-0, i.e. 0 when the heels make contact with the ground. A digital 

button (1-to-0 active edge) was also connected to the converter and pressed by the subject 

for circa 5 seconds at the beginning and at the end of each condition to define time points 

of start and finish. Signals were recorded on a micro SD card and further downloaded and 

stored for offline analyses. Elastic bands were also placed around the subject thighs to fix 

the cables of contact switches and surface EMG electrodes to avoid uncomfortable 

situations and prevent the subject from falling/stepping on them. To synchronize data 

from the digital sensors representing important time points (i.e. start, heel strikes, end) 

with physiological evidences, a common TTL pulse was simultaneously sent to both the 

DataLog MWX8 converter and the EEGoPro amplifier at the beginning and at the end of 

the experiment, and then offline used as milestones for realigning the signals’ time axes. 

Moreover, a video of the subject walking during each condition was recorded to monitor 

the behaviour and keep track of any important events (e.g. external disturbance, big 

movements, etc). 

http://www.fivasim.com/androsensor.html
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Figure 7-1: UEL Stratford Campus map and subjects walking path. 

Subjects were first prepared in the laboratory (pink star) and then accompanied outside along the black-

dashed path. They were then given specific instructions on the path to follow during the experiment (red-

dashed path), starting and finishing always in the same position (yellow start). 
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Figure 7-2: Mobile Setup for real-world experiments.  

During walking experiments, subjects carried all the setup on themselves. Brain activity was recorded by a 

64 channel EEG Waveguard cap connected to the EEGoPro amplifier via 2 serial ports (32 channels 

connection per port). The amplifier was put into a backpack together with a DELL tablet on which the 

recording software ran. Surface EMG electrodes were placed on the subject’s Tibialis Anterior and Soleus 

muscles on both legs and plugged into an external box connected to the EEGoPro amplifier via a secondary 

serial port. Contact Switches were placed underneath the subject’s heels and connected to a digital input of 

the MWX8 DataLog analog-to-digital converter. The converter was fixed at the subject’s hips level by an 

elastic belt. Elastic bands placed around the subject’s thighs made sure cables remained fixed and didn’t 

disturb the gait performance. A digital button was also connected to the converter through a secondary 

digital input and eventually pressed by the subject at specific time points. The Samsung Galaxy S4 mini 

was firmly placed at the subject’s lower back through the elastic belt. 
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Table 7-1: Dual-task conditions. 

Conversations and texts were always based on the same set of questions and email, respectively 

Questions for DT1 

condition 

1. How was your last weekend? 

2. What are you currently doing and where? 

3. Where do you live? 

4. Have long have you been in London? Do you like it? 

5. (How was your summer?) 

Email for DT2 

condition 

Hi there, 

 

How are u?! Hope everything is going well! 

 

As you probably remember from our last meeting, it is about time we start 

thinking about the company's party! 

 

Since you volunteered to take over this, I am here reminding you of few things 

you should think about, specifically: 

 

- Date and time of the day (previously we have always started in the late 

afternoon, but I think it's time for a change!); 

 

- Location (something suggestive or rooftop?! definitely in case also a Plan B 

option according to weather!) 

 

- Theme of the party: to this everything else should be related as costumes, 

decorations, finger-food etc; 

 

- Invites and who will be in charge of doing them (again, made according to 

the party theme!); 

 

- Last but not least: "price for the best..." 

 

Please do not hesitate to ask for any help or suggestions! 

 

Best, 

S. 
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Table 7-2: Summary of each single subject experiment. 

Out of 18 subjects recruited, 3 were excluded (R) because of technical issues during recordings (i.e. Contact 

Switches not properly working), and 1 was eventually excluded from the analysis because of major gait 

artefacts in the EEG data. In DT1, subjects were asked the same questions and only for few subjects one 

additional question was asked before the end of the predefined path. In DT2, some subjects didn’t manage 

to finish replying to the email reported in Table 7-1 (n.a.), whereas for the others the total number of 

characters (including blank spaces) in the reply-email is here reported. 

Subjects Questions asked Email number of characters Maintained (M)/Rejected (R) 

AC 1, 2, 3, 4 472 M 

AP 1, 2, 3, 4 N.A. M 

CB 1, 2, 3, 4 N.A. M 

CK 1, 2, 3, 4 204 M 

EB 1, 2, 3, 4 N.A. M 

FB 1, 2, 3, 4, 5 535 M 

IF 1, 2, 3, 4 371 M 

JS 1, 2, 3, 4 N.A. R – technical issue in recording 

KO 1, 2, 3, 4 99 R – big gait artefacts in EEG data 

LGV 1, 2, 3, 4, 5 N.A. M 

MP 1, 2, 3, 4 N.A. M 

MT 1, 2, 3, 4 289 R – technical issue in recording 

MTT 1, 2, 3, 4 N.A. M 

MW 1, 2, 3, 4 928 R – technical issue in recording 

PS 1, 2, 3, 4, 5 400 M 

RC 1, 2, 3, 4, 5 31 M 

SC 1, 2, 3, 4 336 M 

ST 1, 2, 3, 4 184 M 
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7.2.4 Data analyses 

Offline data analyses were run in MatLab 2015b (The MathWorks, Inc.) and Figure 7-3 

describes the analytical pipeline followed for the analyses. First of all, the time of the first 

TTL pulse was detected in both the digital and the physiological recordings in order to 

synchronize the data. The binary signal obtained from the contact switches was used as 

the reference for synchronization: either part of its initial data was removed (i.e. backward 

shifting), if the DataLog converter started recording before the EEGoPro amplifier, or a 

series of 1 was added in the beginning (i.e. forward shifting), if the DataLog converter 

started recording after the EEGoPro amplifier. The amount of data removed/added to the 

signal was calculated to match times of the first common TTL pulse between the two 

separate recordings. Secondly, time points of each button press were identified to divide 

the continuous recordings into conditions: when the binary signal from the button was 

equal to 0 for a period longer than 4 seconds, for the first, third and fifth presses (i.e. 

condition start) the last instant of changed polarity (i.e. from 0 to 1) was defined as 

“Button Press - Start”, whereas for the second, fourth and sixth presses (i.e. condition 

end), the first instant of changed polarity (i.e. from 1 to 0). Eventually, time points of each 

heel strike were extracted (i.e. when the binary signal from the contact switches changed 

polarity (i.e. from 1 to 0, the first moment of change was defined as “Heel Strike”, right- 

or left-) and related events were created in the physiological data file. From these 

latencies, measures of gait behaviour, such as Step latency and Stride Duration, were also 

evaluated for later usage. 
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Figure 7-3: Offline analyses analytical pipeline. 

The offline analytical pipeline provides means for offline synchronization of the recorded evidences so that time axes of physiological data and digital sensors are first re-aligned thanks 

to the common TTL pulse, and then synchronized so that times of button presses and heel strikes are added to the physiological evidences. Once synchronized, all data are pre-processed 

and cleaned before performing any analyses.
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Gait measures 

Linear acceleration data recorded in each condition with the smartphone were separately 

uploaded into the free software iGAIT (MatLab interface) for the analysis of gait pattern 

(Yang et al., 2012). This toolbox provides a simple user-friendly GUI to display and 

analyse gait linear acceleration data recorded by different types of accelerometers. Spatio-

temporal as well as frequency features of gait were assessed and saved as .txt files. 

Extracted and further used measures were, for example, Cadence (step/min), Mean Step 

Length (m), Velocity (m/s), Stride Regularity, Step Regularity and Symmetry in the 

Vertical and Antero-Posterior directions, acceleration Root Mean Square (RMS) in each 

movement direction (i.e. Vertical (ver-), Medio-Lateral (ml-), Antero-Posterior (ap-). 

Acceleration RMS is a measure of the magnitude of the acceleration in each movement 

direction and has been previously extensively applied in the evaluation of gait 

abnormalities in healthy subjects as well as neurological patients (Latt et al., 2009; Iosa 

et al., 2014; Van Criekinge et al., 2017). Recent findings have also successfully proved 

that normalized acceleration RMS in the medio-lateral direction is a good marker of gait 

stability and abnormality regardless of the walking speed (Sekine et al., 2013). To 

consistently investigate gait stability across our experimental conditions, a measure of 

normalized RMS (RMS Ratio, RMSR) was employed and calculated according to the 

equation: 

𝑅𝑀𝑆𝑅𝑥 =  
𝑅𝑀𝑆𝑥

√𝑅𝑀𝑆𝐴𝑃
2 +  𝑅𝑀𝑆𝑉𝑒𝑟

2 +  𝑅𝑀𝑆𝑀𝐿
2

 

Equation 7-1: RMSR formula. 

where x = ver-, ap- and ml- directions of acceleration. RMSRx represents the ratio 

between the RSM in each direction and the overall RMS magnitude. 

EMG pre-processing and basic muscle activity 

As reported in paragraph 7.2.3, EMG and EEG data were simultaneously recorded and 

stored in the same file. In the pre-processing phase the two data types were considered 

separately: signals recorded from the two monopolar surface EMG electrodes located on 

the same muscle were first subtracted to obtain a bipolar representation of each muscle 

activation. Continuous EMG data were first de-trended, high-pass filtered at 20 Hz 

(Butterworth, order 3, dual-pass fashion to avoid phase-lag) to remove intrinsic low-

frequency noise sources (De Luca et al., 2010), and notch filtered (50 Hz, IIR Comb 

Notching filter as designed in MatLab, order 20) to remove the power-line noise. When 

performing visual inspection (see next paragraph), EMG data were inspected in parallel 
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with EEG evidence to remove the same artefactual periods from the two physiological 

signals. After visual inspection, EMG data were segmented into epochs of 1.8 seconds 

from -200 ms to 1600 ms around each right heel strike to capture a full gait stride even at 

the lowest speeds. Segmented data were then rectified and normalized for each muscle 

maximum activation through all the recording to remove differences across subjects and 

recordings due to skin conductance and surface electrodes positioning. A low pass filter 

with cut-off frequency at 6 Hz (Butterworth, order 3, dual-pass fashion to avoid phase-

lag) was then applied to compute the linear envelope of each muscle signal and the Root 

Mean Square (RMS) was eventually calculated epoch-by-epoch for each muscle in each 

condition and for each subject. 

EEG pre-processing 

Since EEG data are highly sensitive to movement artefacts as well as to physiological and 

environmental noises, a meticulous cleansing of the raw recorded signals was performed 

for each subject. Offline pre-processing of EEG data was carried out using EEGLab 

toolbox for MatLab (Delorme and Makeig, 2004) following a customised self-developed 

pipeline adapted to our data from literature. Data were first band-pass filtered between 

0.5 Hz and 100 Hz (FIR filter, order automatically set by EEGLab), to minimize slow 

drifts and remove high-frequency components, and notch filtered at 50 Hz (FIR notch 

filter, order = 3302), to remove the power line noise. Visual inspection was performed on 

continuous data: EEG channels affected by major noise sources throughout the whole 

experiment were identified and temporarily removed from the analyses; prominent 

artefacts affecting all the recording channels were also removed from the data. Next, data 

were re-referenced to the common average reference and then decomposed using 

Independent Component Analysis (ICA) with the extended Infomax algorithm as 

implemented in EEGLab (Cardoso, 1997; Delorme et al., 2007). Power spectral, spatial 

and temporal features of each Independent Component (IC) were carefully inspected and 

those representing typical artefacts (e.g. eye blinks, saccades, neck muscles etc.) were 

eventually removed from the data. Remaining components were projected back to the 

scalp channels. Previously removed bad channels were then interpolated (method = 

‘spherical’ as implemented in EEGLab, which uses superfast spherical interpolation, 

Perrin et al., 1989; Ferree, 2000) and all data then re-referenced again to the common 

average reference. Continuous data were then segmented into epochs of 1.8 sec duration 

from -200 ms to 1600 ms around each right heel strikes in order to capture a complete 

stride (composed by, in order: right, left, right heel strikes) even at the slowest speed. One 

last visual inspection was ultimately performed to check the quality of the cleaned data 
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and eventually remove still noisy epochs. Of note, the final number of channels for each 

subject in each condition, after interpolation, was 63 and not 64. This was due to the 

default hardware reference within the EEGoPro amplifier (i.e. CPz, changed to FCz in 

this study as per better contact with the scalp) not listed in the active channels, thus not 

directly recorded by the system. 

Time-Frequency analyses 

Time-Frequency (TFr) analysis represents a decomposition of the EEG signal into 

amplitude and phase information for each frequency within the EEG (so-called ‘‘spectral 

decomposition’’) and the characterization of their changes over time with respect to task 

events. However, according to our experimental design, each condition could be 

considered as “continuous” since no specific external triggers were applied and the 

subject performed the same task for the whole duration. Consequently, data were first 

explored and their quality checked in both the time- and frequency-domain and then to 

remove the time domain from further statistical analysis. Therefore, the time-frequency 

spectral correlates of each condition for each subject were first investigated through 

means of Morlet wavelet decomposition, and then the Power Spectral Density (PSD) in 

each condition during its whole duration for each subject. Both analyses were run with 

EEGLab toolbox for MatLab. 

Morlet-wavelet decomposition 

In order to visualize the responses in the time-frequency domain, for each subject, 

separately for the three conditions, for each electrode (except for the mastoids), the 

spectral power changes were measured with respect to the baseline (i.e. resting-state) in 

each epoch using wavelet decomposition through the EEGLab function pop_newtimef 

with the following parameters: 

• High frequency: 50 Hz; 

• Wavelet width at lowest frequency: 3 oscillation cycles;  

• Wavelet width at highest frequency: 14.35; 

• Hanning window size: 359 ms; 

• Time steps: 10 ms. 

Single-epoch spectrograms were first computed and time warped to the median step 

latency (across subjects) using linear interpolation. With this method, time points of heel 

strikes in each epoch were aligned across epochs. Spectral power changes with respect to 

the baseline (i.e. resting state) were evaluated through the mean difference between each 
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single-epoch log-spectrum and the mean Baseline log-spectrum. Significant deviations 

from Baseline were detected using a non-parametric bootstrap approach (Grandchamp 

and Delorme, 2011), with the statistical significance level set at p < 0.01. This method 

was employed in order to obtain an informative visualization of each subject power 

spectrum during one full stride in each condition and check the quality of the pre-

processed data. Figure 7-3 shows the results of this method for each subject across the 

three conditions (epochs averaged: ST = 179 (± 28), DT1 = 148 (± 20), DT2 = 188 (± 

30)) from two representative electrodes located above the posterior parietal cortices (i.e. 

P3 and P4) with values expressed in dB. The frequency range considered in the analyses 

spread from 8.4 Hz to 50 Hz, whereas the time range covered from -0.4 ms to 1399 ms 

around each right heel strike. Such ranges are the result of the algorithm optimization as 

implemented in EEGLab. On the left-hand side of each condition section, the real power 

spectral changes with respect to the baseline are reported; on the right-hand side, a green 

mask has been applied on those pixels that didn’t pass the bootstrap statistical test (i.e. 

pixels whose value is not significantly different from Baseline). The majority of subjects 

showed typical gait-related power spectral changes along the time axis and across 

frequencies with respect to a standing upright condition (i.e. our Baseline, resting state), 

as previously shown in literature (Seeber et al., 2014; Gwin et al., 2010). Specifically, a 

sustained α (8.4 – 12 Hz) and β (15 – 30 Hz) desynchronization (colour coded in blue) is 

clear in all subjects and is also fairly consistent across conditions. A modulated 

synchronization (colour coded red) is then visible at higher frequencies, from 30 to 50 

Hz, with stronger values mostly in the DT1 condition. The fact that DT1 shows stronger 

synchronization in high-frequency could be related to the type of task undertaken by the 

subjects during this condition: talking indeed implies the activation of facial muscles and 

the alternating opening of the mouth to create speech. Muscle activity could have indeed 

added to the brain-related sources. Consequently, high-frequency brain oscillations will 

not be further considered in the analyses as potentially influenced by task-related artefacts 

during walking while conversing. Of note, one subject (Subject 8) was removed from 

further analyses after careful inspection of TFr data and identification of ineligible gait-

related artefacts (Oliveira et al., 2017). 

Power Spectral Density (PSD) 

To assess spectral information regardless of the time domain, for each subject, separately 

for each condition (also for the resting-state) and for each electrode (except for the 

mastoids), PSD was measured in each epoch through the EEGLab function spectopo. This 

function uses the Welch’s overlapped segment averaging estimator as implemented in 
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MatLab (pwelch() MatLab function) to calculate the PSD. A default Hamming window 

of 400 ms with a 50% overlap (i.e. 200 ms) was adopted and PSD for frequencies from 2 

Hz to 50 Hz calculated. Figure 7-4 shows topological representations (i.e. topoplots) of 

the PSD grand-average (epochs averaged: RS = 96 (± 7), ST = 179 (± 28), DT1 = 148 (± 

20), DT2 = 188 (± 30)) across all subjects for the three main frequency bands of interest 

(FOIs):  (4 - 7 Hz), α (8 – 12 Hz) and β (15 – 30 Hz) (values expressed in dB). Empty 

circles in Figure 7-4 represent electrodes location according to the 64-channel cap used 

during recordings. PSD data format was then adjusted so that it could be handled by 

FieldTrip toolbox for MatLab (Oostenveld et al., 2010) for further statistical analyses 

which focused on differences across conditions. 
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Figure 7-4: Time-Frequency power spectrum for each single subject across conditions from P3 (A) and P4 

electrode (B).  

A time–frequency image of each subject ERSPs with respect to baseline (i.e resting state) is here reported 

on the right side of each condition section. A time–frequency image of each subject significant changes 

with respect to baseline (green mask according to the bootstrap method) is reported on the left side of each 

condition section. Colour-bar (dB) is constant across plots and reports increase (values > 0, warm-colour 

coded) and decrease (values < 0, cold-colour coded) of power spectrum with respect to the baseline. 
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Figure 7-5: Condition specific topoplots of PSD grand-average across all subjects in each FOI.  

Average (N = 14) condition-by-condition topological representations of PSD show a similar spatial pattern 

across condition. Colour-bar (dB) is constant across plots and describes high (warm-colour coded) and low 

(cold-colour coded) intensities of PSD. 
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7.2.5 Statistics 

Statistical analyses were run mostly in SPSS 23 software (IBM). EEG specific analyses 

were run in MatLab 2015b as per methods implemented in FieldTrip (Maris and 

Oostenveld, 2007). 

Statistical analyses of gait measures 

Gait measures were first assessed separately for each condition and for each subject and 

ultimately group-level differences between conditions were assessed. Kolmogorov-

Smirnoff test for normality was first used to test the distribution of the data. Data were all 

normally distributed, thus parametric statistical tests where further employed. 1 way 

repeated measures ANOVA with factor “Condition” (3 conditions) was applied to each 

gait measure of interest to identify variance differences across conditions. Subsequently, 

paired samples T-tests with Bonferroni correction for multiple comparisons were run to 

specifically define differences between conditions. Significance level was set at α = 0.05, 

with number of repeated measures = 3 (ST vs DTi with i = 1, 2 and DT1 vs. DT2), which 

meant an adjusted α = 0.05/3 = 0.0167 for multiple comparisons. The choice of 

Bonferroni correction through all the statistical analyses of this study was dictated by the 

less-controlled environment: as Bonferroni correction is an extremely robust method, 

results are less likely to be biased by chance. 

Statistical analyses of EMG measures 

EMG RMS measures were averaged across all epochs within each condition (epochs 

averaged: ST = 179 (± 28), DT1 = 148 (± 20), DT2 = 188 (± 30)) for each subject and 

ultimately group-level differences between conditions were assessed. Kolmogorov-

Smirnoff test for normality was first used to test the distribution of the data. Data were all 

normally distributed, thus parametric statistical tests where further employed. 1 way 

repeated measures ANOVA with factor “Condition” (3 conditions) was applied to each 

muscle RMS measure to identify variance differences across conditions. Subsequently, 

paired samples T-tests with Bonferroni correction for multiple comparisons were run to 

specifically define differences between conditions. Significance level was set at α = 0.05, 

with number of repeated measures = 3 (ST vs DTi with i = 1, 2 and DT1 vs. DT2), which 

meant an adjusted α = 0.05/3 = 0.0167 for multiple comparisons. 

Non-parametric cluster-based permutation tests on PSD 

Differences of sensor-level power spectral density across conditions (ST vs DTi with i = 

1, 2 and DT1 vs. DT2) were assessed through non-parametric cluster-based permutation 

tests as provided in FieldTrip. This analysis has been extensively used in EEG studies as 
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it successfully tackles the Multiple Comparisons Problem (MCP) (Maris and Oostenveld, 

2007; Negrini et al., 2017). Specifically, a paired sample t-Test was conducted for each 

electrode and t-values exceeding an “a priori” threshold were clustered based on adjacent 

neighbouring electrodes. Cluster-level statistics were computed by taking the sum of the 

t-values within every cluster. The statistical comparisons were done with respect to the 

maximum values of summed t-values. By means of a permutation test (i.e. randomizing 

data across conditions and rerunning the statistical test N times, Monte-Carlo 

approximation) a randomization distribution of the maximum of summed cluster t-values 

was obatined to evaluate the statistics of the actual data Clusters in the original dataset 

were considered to be significant at an alpha level (αcluster) of 1% if less than the 5% of 

the permutations (αcluster = 0.01, α = 0.025 for 2-tailed tests, N = 1500) used to construct 

the reference distribution yielded a maximum cluster-level statistics larger than the 

cluster-level value observed in the original data. As three different tests were carried out 

(ST vs DTi with i = 1, 2 and DT1 vs. DT2), further correction for multiple comparison 

was run with Bonferroni method (p = 0.025/3 = 0.0083 for two-tailed test). Cluster-based 

permutation tests were run on PSD data for each FOI separately, specifically  (4 - 7 Hz), 

α (8 – 12 Hz) and β (15 – 30 Hz). Of note, all the 63 channels were simultaneously entered 

in the analysis, which resulted in a high number of multiple comparisons. This choice was 

guided by the exploratory nature of this analyses requiring to reject results given only by 

chance. Given our a-priori hypothesis, a more restricted number of electrodes could have 

been included in the analyses, which however would have biased our results. Specifically, 

this robust analysis should have confirmed the a-priori hypothesis of changes in frontal-

parietal areas across conditions, even with the most restrictive parameters. 

7.3 Results 

7.3.1 Gait measures 

Subjects (N = 14) walked along the predefined path of 200 m in an average time of 226 

sec (± 25 sec) during single-task (ST) walking, 235 sec (± 28 sec) when walking while 

conversing (DT1) and 260 sec (± 41 sec) when walking while texting over the smartphone 

(DT2). Measures of velocity (Figure 7-6) and acceleration RMS/RMSR (Figure 7-7) in 

each direction are represented by an averaged condition-by-condition trend (thick lines) 

and standard deviation (whiskers). Condition-by-condition descriptive statistics across 

the three conditions are reported in Table 7-3. Repeated measures ANOVA values were 

not significantly different across conditions for measures of Mean Step Length, ml-

RMSR, ver-Step Regularity, ver-Stride Regularity and ver-Symmetry (F < 3.099, p > 
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0.05). Paired samples t-Tests with Bonferroni correction for multiple comparisons 

revealed Velocity as the only measure significantly different (ANOVA F = 34.215, p = 

0.001) in both DT1 (t = 4.199, p = 0.001) and DT2 (t = 6.847, p = 0.001) with respect to 

the ST condition, and between DT1 vs. DT2 (t = 4.991, p = 0.001). Gait measures of 

Stride Duration, ver-RMS and ap-RMS, whose ANOVA was significant (F > 12.165, p < 

0.001), only showed statistical differences, according to paired-samples t-Test, between 

DT2 vs. ST (t > (-) 3.503, p < 0.004) and DT2 vs. DT1 (t > (-) 3.793, p < 0.002). Gait 

measures of Cadence, ml-RMS, ap-Step Regularity and ap-Stride Regularity, whose 

ANOVA was significant (F > 4.559, p < 0.043), only showed statistical differences, 

according to paired-samples t-Test, between DT2 vs. ST (t > 2.772, p < 0.016). Gait 

measures of ver-RMSR, ap-RMSR and ml-Stride Regularity, whose ANOVA was 

significant (F > 3.990, p < 0.031), only showed statistical differences, according to paired-

samples t-Test, between DT2 vs. DT1 (t > 3.618, p < 0.003). 

7.3.2 EMG RMS measures 

Figure 7-8 shows EMG profiles averaged across epochs and subjects for each muscle in 

each condition. A slightly higher activation can be seen in all the lower limb muscles 

during single-task walking in comparison to the dual-task conditions. The difference is 

statistically confirmed as reported in Table 7-4, were Repeated Measures ANOVA 

showed a significant effect of Condition for all the muscles (F > 10.498, p < 0.005). Paired 

samples t-Test with Bonferroni correction for multiple comparison showed a consistent 

decrease of RMS from single-task to dual-task conditions for all muscles (p < 0.0167) 

except for left Tibialis Anterior during DT2. RMS of left Tibialis Anterior was 

significantly higher during DT2 in comparison to DT1 (t = -2.770, p = 0.016). This is the 

only muscle for which the comparison DT2 vs. DT1 passes the adjusted significance 

value for multiple comparisons. 



172 

 

 

Figure 7-6: Condition-by-condition gait speed.  

A condition-by-condition population average (N = 14) profile with standard deviation error bars. Average 

gait velocity decreases in the two dual-task conditions with respect to the single-task condition. Statistically 

significant paired-samples t-test corrected for multiple comparisons (Bonferroni, x 3, p < 0.0167) are 

highlighted with * (ST vs DTi with i = 1, 2) and/or ** (DT1 vs. DT2). Detailed results are reported in Table 

7-3. 
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Figure 7-7: Condition-by-condition acceleration RMS and RMSR profiles. 

Condition-by-condition population average (N = 14) profiles with standard deviation error bars for each 

movement direction (ver = Vertical, ml = Medio-Lateral, ap = Antero-Posterior). Statistically significant 

paired-samples t-test corrected for multiple comparisons (Bonferroni, x 3, p < 0.0167) are highlighted with 

* (ST vs DTi with i = 1, 2) and/or ** (DT1 vs. DT2). Detailed results are reported in Table 7-3. Average 

acceleration RMS decrease in the two dual-task conditions with respect to the single-task condition 

regardless of movement direction. Average acceleration RMSR decrease in the vertical direction and 

increase in the medio-lateral and antero-posterior directions decrease in the two dual-task conditions with 

respect to the single-task condition regardless of movement direction. 
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Figure 7-8: Lower limb muscles EMG profiles. 

Each muscle EMG activity was averaged first across epochs and then across subjects (N = 14). Vertical 

black lines represent median time of right/left heel strikes across subjects (N = 14). Averaged EMG profiles 

of the three conditions are reported together with different colours (blue = ST, green = DT1, red = DT2). 
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Table 7-3: Single- and Dual-task conditions gait measures. 

Condition-by-condition (n = 3) mean (± std) of the measures of gait of interest for the sample population 

(N = 14). Repeated measures ANOVA p-values are reported in the sixth column on the right. Statistically 

significant paired-samples t-test corrected for multiple comparisons (Bonferroni, x 3, p < 0.0167) are 

highlighted with * (ST vs DTi with i = 1, 2) and/or ** (DT1 vs. DT2). 

 Single Task Dual Task 1 Dual Task 2 Anova F Anova p 

Stride Duration (ms) 1054 (± 87) 1060 (± 79) 1106 (± 107) *, ** 12.165 0.001 

Cadence (step/min) 107 (± 10) 104 (± 12) 99 (± 16) * 4.559 0.043 

Mean Step Length (m) 0.53 (± 0.06) 0.52 (± 0.08) 0.51 (± 0.07) 0.0769 N.S. 

Velocity (m/s) 0.90 (± 0.10) 0.86 (± 0.10) * 0.78 (± 0.12) *, ** 34.215 0.001 

ver-RMS 2.65 (± 0.56) 2.59 (± 0.55) 2.26 (± 0.63) *, ** 17.554 0.001 

ml-RMS 1.48 (± 0.32) 1.47 (± 0.31) 1.37 (± 0.40) * 7.769 0.008 

ap-RMS 2.19 (± 0.28) 2.09 (± 0.25) 0.96 (± 0.33) *, ** 16.946 0.001 

ver-RMSR 0.70 (± 0.05) 0.70 (± 0.05) 0.67 (± 0.06) ** 5.839 0.008 

ml-RMSR 0.40 (± 0.07) 0.40 (± 0.06) 0.41 (± 0.08) 1.735 N.S. 

ap-RMSR 0.59 (± 0.06) 0.58 (± 0.053) 0.60 (± 0.06) ** 7.165 0.003 

ver-Step Regularity 0.75 (± 0.09) 0.69 (± 0.19) 0.69 (± 0.13) 2.027 N.S. 

ver-Stride Regularity 0.75 (± 0.07) 0.68 (± 0.19) 0.65 (± 0.16) 2.537 N.S. 

ver-Symmetry 0.03 (± 0.02) 0.04 (± 0.03) 0.06 (± 0.04) 3.099 N.S. 

ap-Step Regularity 0.76 (± 0.09) 0.73 (± 0.11) 0.71 (± 0.09) * 6.642 0.005 

ap-Stride Regularity 0.72 (± 0.08) 0.69 (± 0.10) 0.65 (± 0.12) * 7.158 0.009 

ap-Symmetry 0.03 (± 0.02) 0.05 (± 0.03) 0.07 (± 0.05) 4.783 0.034 

ml-Stride Regularity 0.46 (± 0.20) 0.46 (± 0.13) 0.35 (± 0.16) ** 3.990 0.031 

 

Table 7-4: Single- and Dual-task conditions EMG measures. 

Condition-by-condition (n = 3) mean (± std) of the measures of RMS for each lower limb muscle for the 

sample population (N = 14). Repeated measures ANOVA p-values are reported in the sixth column on the 

right. Statistically significant paired-samples t-test corrected for multiple comparisons (Bonferroni, x 3, p 

< 0.0167) are highlighted with * (ST vs DTi with i = 1, 2) and/or ** (DT1 vs. DT2). 

Muscle RMS [a.u.] Single Task Dual Task 1 Dual Task 2 Anova F Anova p 

Right Tibialis Anterior 0.03 (± 0.01) 0.02 (± 0.01) * 0.02 (± 0.01) * 11.005 0.001 

Right Soleus 0.023 (± 0.01) 0.02 (± 0.01) * 0.02 (± 0.01) * 10.666 0.004 

Left Tibialis Anterior 0.02 (± 0.01) 0.01 (± 0.01) * 0.02 (± 0.01) ** 10.872 0.002 

Left Soleus 0.02 (± 0.01) 0.01 (± 0.01) * 0.01 (± 0.01) * 10.498 0.004 
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7.3.3 Natural walking vs. resting-state EEG: non-parametric cluster-based tests 

on PSD 

Significant cluster-based permutation tests t-values topological maps are reported in 

Figure 7-9 for the comparison ST vs. resting state EEG. Specifically, significant 

differences were found in: 

• α (8 - 12 Hz) 

Negative Cluster = all electrodes, p = 0.001; 

• β (15 – 30 Hz) 

Negative Cluster = {FP2, F3, FZ, F4, FC1, FC2, FC6, C3, CZ, C4, T8, CP5, CP1, 

CP2, CP6, P3, AF4, AF8, F2, F6, FC3, FCZ, FC4, C1, C2, CP3, CP4, P5, P1, FT8}, 

p = 0.002. 

A positive cluster represents a statistically significant increase of activity in the first term 

of one comparison with respect to the second term. A negative cluster represents a 

statistically significant decrease of activity in the first term of one comparison with 

respect to the second term. From the above it can be said that: 

• There is a significant decrease of PSD in the α band over the whole brain during 

natural walking in comparison to resting-state standing still, with stronger differences 

(i.e. deeper blue colour = lower t-values) bilaterally over the sensorimotor cortices; 

• There is a significant decrease of PSD in the β band in a wide cluster including frontal-

, central- and parietal- bilateral areas when naturally walking with respect to resting-

state standing still. 

• No significant differences were detected for θ PSD. 

7.3.4 Dual-task vs. single-task walking EEG: non-parametric cluster-based 

permutation tests on PSD 

Significant cluster-based permutation tests t-values topological maps are reported in 

Figure 7-10 for the comparison DT1 vs. ST and Figure 7-11 for the comparison DT2 vs. 

DT1. No statistically significant differences were obtained for the comparison Dt2 vs. ST. 

Specifically, significant differences were found in: 

• DT1 vs. ST  (4 - 7 Hz) 

Positive cluster 1 = {CP2, CP6, P4, P8, O2, CP4, P2, P6, PO4, PO6, TP8, PO8}, p = 

0.002; 
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Positive cluster 2 = {T7, F7, FC5, AF7, F5, FT7}, p = 0.002; 

• DT1 vs. ST β (15 – 30 Hz) 

Positive Cluster = {P4, P8, O2, P6, PO4, PO6, TP8, PO8}, p = 0.005. 

And in: 

• DT2 vs DT1 β (15 – 30 Hz) 

Negative cluster = {FP1, FPZ, FP2, F7, F4, F8, FC5, FC2, FC6, T7, C4, CP2, CP6, 

PZ, P4, P8, POZ, O2, AF7, AF3, AF4, AF8, F5, F2, F6, FC4, C5, CP4, P2, P6, PO4, 

PO6, FT7, FT8, PO8}, p = 0.002. 

A positive cluster represents a statistically significant increase of activity in the first term 

of one comparison with respect to the second term. A negative cluster represents a 

statistically significant decrease of activity in the first term of one comparison with 

respect to the second term. From the above it can be said that: 

• There is a significant increased PSD in the  band in a right-parietal-temporal cluster 

as well as in a left-frontal-temporal cluster during DT1 with respect to ST; 

• There is a significant increase of PSD in the β band in a right-parietal cluster during 

DT1 in comparison to ST; 

• There is a significant decrease of PSD in the β band in a wide frontal- and right-

parietal cluster during DT2 with respect to DT1. 
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Figure 7-9: Non-parametric cluster-based permutation test comparing PSD in ST and Resting State. 

FOI-topological maps are colour-coded according to the permutation tests t-values resulted from the 

comparison of PSD between ST and Resting-State. Clusters of electrodes whose PSD is significantly 

different between the two conditions are highlighted (* for p < 0.01, x for 0.01 < p < 0.05, Bonferroni 

corrected p < 0.0083). In the α frequency band, a general decrease of PSD activity is reported over the 

whole brain. In the β frequency band, a decreased PSD activity is reported in a wide cluster including left-

frontal-, bilateral-central- and bilateral parietal areas. 
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Figure 7-10: Non-parametric cluster-based permutation test comparing PSD in DT1 vs. ST. 

FOI-topological maps are colour-coded according to the permutation tests t-values resulted from the 

comparison of PSD between DT1 and ST. Clusters of electrodes whose PSD is significantly different 

between the two conditions are highlighted (* for p < 0.01, x for 0.01 < p < 0.05, Bonferroni corrected p < 

0.0083). In the  frequency band, an increased PSD activity is reported in a left frontal and in a right 

occipital-parietal cluster. In the β frequency band, an increased PSD activity is reported in a right occipital-

parietal cluster. 
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Figure 7-11: Non-parametric cluster-based permutation test comparing PSD in DT2 vs. and DT1. 

FOI-topological maps are colour-coded according to the permutation tests t-values resulted from the 

comparison of PSD between DT2 and DT1. Clusters of electrodes whose PSD is significantly different 

between the two conditions are highlighted (* for p < 0.01, x for 0.01 < p < 0.05, Bonferroni corrected p < 

0.0083). In the β frequency band, a decreased PSD activity is reported in a wide cluster extending from 

left-central frontal-temporal regions to right occipital-parietal areas. 
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7.4 Discussions 

7.4.1 Novel findings 

The current study provides novel evidence of neural correlates of walking under different 

conditions in the real world, outside the over-protected laboratory environment. A novel 

fully-mobile setup was designed and created with the aim for ambulatory daily-life 

applications and hereby tested with natural walking paradigms embedded into real-life 

situations. The successful performance of the setup and the customized offline analysis 

pipeline is validated by the obtained results of gait performance and neurophysiological 

activity. Specifically, gait performance (as described with measures of velocity, RMSR 

and regularity) decreased with increasing task demands and challenges in line with 

previous literature (Menz et al., 2003; Menz et al., 2003). In parallel, brain activations as 

assessed via electroencephalography showed activation patterns specific to walking (see 

Figure 7-4), which also find ground truth within the current literature (Bradford et al., 

2016; Bulea et al., 2015; Wagner et al., 2016). Despite the major great interest of previous 

literature on the prefrontal cortex (PFC) during multi-tasking (Al-Yahya et al., 2016; 

Maidan et al., 2017), it was here demonstrated that also posterior parietal brain regions 

are involved during different dual-task conditions and that they are specifically recruited 

by the brain according to attentional and possible energy-optimization strategies (Wahn 

and König, 2017). 

7.4.2 Gait and EMG measures 

Even though only healthy young adults with no neurological or muscular history were 

recruited in the current study, changes of gait pattern and performance were still observed 

across conditions. Specifically, decreased of gait velocity, regularity and muscular ativity 

was observed during dual-task with respect to single-task walking. Previous studies 

reported changes in gait pattern when simultaneously talking (Holtzer et al., 2011) or 

texting (Schabrun et al., 2014; Agostini et al., 2015; Caramia et al., 2017). Both secondary 

tasks induced a decrease of gait speed, with the latter also impairing gait stability. In line 

with these studies, our results demonstrated a general decrease of gait velocity in both 

dual-task conditions in comparison to a natural walking condition, but a more 

significantly impaired gait behaviour during walking while texting, expressed through 

various gait measures as reported in Table 7-3. This could be first attributed to the fact 

that people are more used to walk while talking than they are to walk while texting. 

Previous studies have investigated the relationship between dual-task demand and gait 

behaviour with the aim of identifying which elements mostly undermines performance. 
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Cognitive interferences as mental arithmetic (Springer et al., 2006; Francis et al., 2015) 

and sensorimotor tasks (Beurskens and Bock, 2013) seem not to affect gait performance 

as much as motor interferences such as road complexity (Menz et al., 2003; Menz et al., 

2003; Lin and Lin, 2016; Maidan et al., 2016) and hand engagement (Beurskens et al., 

2016). Secondary tasks that require a higher continuous visual processing have been 

classified as more likely to impair gait performance (Beurskens and Bock, 2013; Francis 

et al., 2015). Indeed, a continuous scan of the surrounding environment is crucial when 

walking on difficult paths. Walking and texting prevent subjects from monitoring the 

surroundings as their eyes are mostly focused on the phone, thus decreasing the visual 

scan of the environment and altering the gait performance. This doesn’t hold for walking 

and talking for example, during which subjects could continuously (or periodically, if 

sometimes looking at the speaker) scan the surrounding environment thus maintaining 

gait stability and performance. Gait deficits related to lack of constant visual processing 

are indeed exacerbated in people with reduced executive functions capabilities such as 

the elderly with a history of falls (Springer et al., 2006). If lack of visual processing skills 

is the major contributor to gait instability during dual-task walking in health, then other 

neurological impairments could undermine gait performance per se as a consequence of 

neural injuries. Elderly (Holterz et al., 2011; Iosa et al., 2014), Parkinson’s disease 

patients (Latt et al., 2009; Maidan et al., 2016) and stroke survivors (Al-Yahya et al., 

2016) always demonstrate reduced performance paired with stronger brain activations 

when task demands increase. Conversely, healthy young adults usually show little to 

moderate changes in gait behaviour when simultaneously performing secondary tasks, 

which could be related to their more effective adaptive strategies and mechanisms. This 

theory was validated during a prioritization study with both healthy young and older 

adults (Yogev-Silgemann et al., 2010), whereby the behavioural correlates of single-task 

walking and dual-task walking (i.e. while simultaneously performing a cognitive Verbal 

Fluency Test) were investigated. When walking while performing the cognitive task 

without any specific prioritization instruction both young and elderly adults reduced their 

walking speed with respect to the natural walking speed. When priority was given to the 

motor task gait speed significantly increased in both groups, although to a less extent for 

elderly adults. The simultaneous performance of the cognitive task influenced gait 

variability in older but not in young adults, and this effect did not depend on prioritization 

instructions. To summarise, walking while carrying out a secondary cognitive task 

without any specific priority increases gait variability in both young and older adults, 

whereas task prioritization seems to influence gait variability more in young subjects, 
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likely due to ageing reduced skills to flexibly allocate different attentional resources to 

simultaneous tasks. 

7.4.3 Neurophysiological evidence 

Previous investigations questioned whether dual-tasking significantly alters brain 

activity, which elements influence these changes the most and which populations are most 

affected by lack of multi-tasking abilities. fNIRS over the pre-frontal cortex has been 

widely used for testing these hypotheses. Different groups have found consistent 

increases in oxygen levels in the pre-frontal cortex of healthy young adults when 

performing any type of dual-task condition (Holtzer et al., 2011; Al-Yahya et al., 2016; 

Lin and Lin, 2016) and the increases are greatest in those populations who are more 

cognitively impaired such as the elderly, stroke patients and Parkinson’s disease patients 

(Holtzer et al., 2011; Al-Yahya et al., 2016; Maidan et al., 2017). These studies confirm 

the active recruitment of the prefrontal cortex during multi-tasking but were limited by 

the restricted number of channels that could be recorded (i.e. only pre-frontal cortex, no 

possibility for whole-brain recordings). Consequently, there is the need for more 

complete and accurate brain scans during dual-task conditions. Thanks to the recent 

developments in mobile technologies, it is now possible to record ambulatory 

electroencephalography of the whole brain with little to moderate (but removable) 

artefactual components from the external environment. The results presented here are 

amongst the first of this kind and they confirm previous findings obtained from the 

protected laboratory environment with virtual reality or treadmill walking with or without 

gait support (Bradford et al., 2016; Seeber et al., 2014; Wagner et al., 2012; Wagner et 

al., 2014; Wagner et al., 2016). 

Natural walking in the real-world 

Single subject brain activities registered over the posterior parietal areas during natural 

walking (ST) showed sustained α and β desynchronization through all the gait duration 

in parallel with a more time-specific higher frequency modulation (Figure 7-4). The 

careful inspection of the time-frequency representation of each subject neural activity 

aimed at validating the quality of the data. At the group level (Figure 7-5 and Figure 7-

9), α and β frequency band desynchronization is evidently strong over the two sensori-

motor areas, in line with previous EEG (Gwin et al., 2010; Seeber et al., 2014) as well as 

fNIRS studies (Miyai et al., 2001). As previously suggested in literature (Wagner et al., 

2012; Ehinger et al., 2014; Wagner et al., 2014), α and β desynchronization represent an 

“active state” of the brain and are likely to be involved in maintenance of the current 
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motor status that promotes the voluntary movement of walking (Engel and Fries, 2010). 

α PSD is lower over the whole brain during natural walking with respect to resting-state 

recorded standing still, with however higher values over posterior-occipital areas likely 

to be involved in visual scan and processing of inputs from the environment. 

Walking while conversing 

Walking while talking to a friend is one of the most common dual-task activities people 

perform in their daily-life. The neural correlates of such an everyday activity were here 

compared to those of a natural non-communicative walk. Specifically, a significantly 

higher θ theta activity was observed in a cluster of electrodes located over the left frontal-

temporal cortex, which could be associated to an increased activity of the Broca area for 

the creation of speech. Moreover, a second group of channels located over the right 

posterior parietal-occipital cortex (see Figure 7-10) showed significantly higher θ and β 

activities. Recent studies reported a major role for the right occipital-parietal cortical 

region during spatial attention and how it could be affected by age (Learmonth 2017). 

Intracranial studies on monkeys performing a visual search attention task showed the 

active involvement of β and the sequence of communication between frontal (first, the 

sender) and parietal (second, the receiver) regions during top-down attention (Buschman 

and Miller, 2007). Neurological impairments such as neglect could cause a reduction of 

frontal-parietal network strength within the θ and β frequency bands during conscious 

visual tasks (Yordanova et al., 2016), validating the hypothesis of their involvement in 

both spatial attention and visual processing. However, in this work of research, subjects 

were not performing a simple visual attention task, but a dual-task combining walking 

along a known predefined path, listening to questions posed by the experimenter and 

speaking in response to the posed enquiries by recollecting personal memories and 

experiences (see Table 7-1). A recent fNIRS investigation hypothesised and demonstrated 

that plural cortical areas (i.e. temporal, premotor and parietal regions) are involved in 

walking while talking (i.e. Verbal Fluency Task) (Metzeger et al., 2017). Specifically, 

increased oxygenation levels were observed in areas expanding from the inferior frontal 

gyrus to the middle temporal gyrus in both hemispheres, thus including both Broca’s and 

other areas. The authors suggested that the augmented cortical activations seemed not to 

be simply related to language production itself, but more broadly to the engagement of 

higher executive functions required to perform the two tasks simultaneously, in line with 

other previous findings (Mirelman et al., 2014). θ synchronization of prefrontal and 

medial-temporal lobe has been previously shown to positively correlate with successful 

recall of encoded words (Sederberg et al., 2003), with successful decision making 
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regardless of spatial learning (Guitart-Masip et al., 2013), and with orchestrating item 

distinction, verbal working memory and long-term memory (Meyer et al., 2015). 

Moreover, studies on speech detection, understanding and creation demonstrated the 

active involvement of right temporal θ activity (Giraud et al., 2007). A decrease of θ 

coherence between frontal and temporal areas was also reported in studies of 

schizophrenia and further linked to the misattribution of inner thoughts to the external 

voice (Ford et al., 2002). It is therefore suggested that, during the DT1 condition, it is 

likely that a collaboration between the left pre-frontal and the right temporo-parieto-

occipital clusters was developed by subjects as a top-down attentional mechanism to 

simultaneously orientate through space, identify and understand the question/cue (i.e. by 

the Anterior and Ventro-Lateral PFC), search for (i.e. by the Medio-Temporal Lobe) and 

verify (i.e. by the Dorso-Lateral PFC) the required memory, and finally use it for 

conscious thoughts through speech (Simons and Spiers, 2003; Giraud et al., 2007). 

Walking while texting with a smartphone 

Walking while texting over the phone is becoming more common even in the most 

complex situations, as crossing a crowded road or stepping on/off the train or bus. As 

previously mentioned (see paragraph 7.4.2), gait abnormalities and attention alterations 

arise from such a risky behaviour. Indeed, the healthy young population sample recruited 

in our study showed a velocity reduction and significant gait impairments (e.g. stride 

irregularity and changes in acceleration RMS) when walking and texting over the phone. 

From a neurophysiological perspective, different results were obtained which could be 

attributed to different roles of each frequency band of interest. When comparing the 

neural activations during DT2 with the ones obtained during ST and DT1, only the latter 

comparison led towards strong statistical significance. Previous studies reported a 

stronger electroencephalographic power activity during speech generation tasks in 

comparison to reading or listening (Galin et al., 1992), which were not due to artefactual 

components. Of great interest is the statistically significant decrease, in DT2 with respect 

to DT1, of β activity in a broad cluster of electrodes spreading from over the left 

motor/premotor regions, to the bilateral prefrontal and frontal cortex to the right 

sensorimotor and parietal cortex (see Figure 7-11). Recent fMRI findings reported a 

systematic decrease of hemodynamic activity during dual-tasks with respect to single-

task simulated gait in a broad cortical network including cingulate motor area, 

supplementary motor area, sensorimotor cortex and superior parietal lobule (Bürki et al., 

2017). The authors contextualized the results within the dual-task interference hypothesis, 

claiming that the neural activation patterns are determined by the amount of resource 
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overlap between the two simultaneously performed tasks (Nijboer et al., 2014). In the 

current study, decrease of activity in left motor, premotor and frontal (Broca) areas are 

likely related to the lack of speech detection and production in this second dual-task 

condition. Moreover, it has been previously shown that subjects engaged in a secondary 

highly challenging task generate a stronger β desynchronization over the bilateral 

posterior parietal cortex (Wagner et al., 2016) as well as over the midline electrodes 

(Beurskens et al., 2016). As previously mentioned, β desynchronization represent an 

“active state” of the brain during which sensorimotor integration is promoted to maintain 

the ongoing voluntary movement (Buneo and Andersen, 2006; Engel and Fries, 2010). 

More challenging motor or secondary tasks have been shown to induce an even stronger 

β desynchronization as a basis for stronger sensorimotor integration, performance 

maintenance and error monitoring (Bradford et al., 2016; Bulea et al., 2015; Sipp et al., 

2013). Moreover, the motor areas here were doubling their work, as not only the lower 

limb were generating a voluntary movement, but also the upper limb (i.e. fingers and 

hands) were engaged to voluntary type over the phone. Thus, the stronger β 

desynchronization could also be the results of activating both upper and lower limb as 

well as monitoring their performance through all the duration of the task. It is here 

therefore suggested that when walking while texting, subjects require a higher level of 

sensorimotor integration to monitor their walking behaviour while engaging hands in the 

secondary task of typing over the phone. This likely resulted in a stronger β 

desynchronization as a basis for a more “active state” to maintain the current status quo. 

Moreover, the most challenging dual-task paradigms for both healthy young adults and 

neurologically impaired populations are those in which visual scanning of the external 

environment is prevented or altered. All these elements lead to the conclusion that a 

stronger sensorimotor integration, as expressed in terms of stronger β desynchronization, 

is needed for maintaining gait stability and spatial navigation as well as performing the 

secondary cognitive and manual task. Comparisons between natural with multitasking 

walking then showed changes in bilateral frontal, motor and right posterior parietal areas, 

but interestingly not in the left PPC, which therefore appears to be constantly active across 

the three conditions. Bilateral PPC has been attributed a vast number of roles (Buneo and 

Andersen, 2006), and a link between the ability to spatially navigate through space and 

goal-directed ambulatory movement planning has been recently proposed (Calton and 

Taube, 2009). Among the two hemispheres, the right-PPC (together with the PFC) is also 

the main character of attentional networks (Dosenbach et al., 2007; Corbetta and 

Schulman, 2002) and visual spatial processing tasks (Yordanova et al., 2016), which 
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makes it more likely to be modulated across different conditions and frequency bands, as 

also this study has shown. On the other hand, left-PPC activation does not change across 

conditions, thus it seems to be constantly involved in online sensori-motor integration and 

control of voluntary movement (Lenka et al., 2016). Further analysis validating these 

evidences are reported in chapter 8. 

7.4.4 The role of the cortex in gait control 

As previously discussed (see paragraph 2.3.1), human gait control is suggested to be 

based on a complex hierarchical structure whereby both peripheral (i.e. CPGs) and central 

regions (i.e. neural cortex, deep brain structures and brainstem) have a role. Previous 

investigations on paraplegic patients found activations patterns similar to those of natural 

gait when electrically stimulating the injured spine (Dimitrijevic et al., 1998), suggesting 

the presence of muscle activators at peripheral level. Moreover, non-invasive brain 

imaging studies on both neurologically impaired patients (Bartels and Leenders, 2008) 

and healthy subjects (Jahn et al., 2008) also confirmed the activation of specific neural 

substrates during real and/or imagined walking. However, given the limited possibility to 

study humans invasively, the definite role of each of these elements is yet to be properly 

defined (Takakusaki, 2017). A recent study investigated how human gait is encoded at 

the level of the leg primary motor cortex invasively by means of ECoG in epileptic 

patients walking on a treadmill (McCrimmon et al., 2017). The study goal was to 

determine the role of the primary motor cortex during gait, whether of high-level (i.e. 

obstacle avoidance, speed determination), of low-level (i.e. muscle activations) or of 

integrative functions (i.e. integration with sensory drives). A strong γ band 

synchronization was recorded during walking, modulated along each stride periodically 

and consistently across different gait speeds. Interestingly, the γ activations observed 

during natural walking where of a different nature of those observed during single lower 

limb muscle contractions and did not correlate with lower limb trajectories. The authors 

suggested that the observed neural synchronization and modulation were a symbol of the 

high-level functions encoded within the primary motor cortex during walking, which was 

therefore proposed to control, for example, walking speed and movement duration. These 

new and outstanding results further validate the proposed theories that high-level 

functions of human gait control are executed centrally (i.e. by the neural cortex and deep 

brain structures), whereas low-level functions are administered by the peripheral 

component of the hierarchy (i.e. by the CPGs) (Takakusaki, 2013; Takakusaki, 2017). 

Previous whole-head fNIRS investigations suggested that the cortex has a central role in 

the control of gait, especially after a neural injury when restoring impaired pathways is 
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required. When investigating the neural correlates of three different gait training 

paradigms (i.e. stepping walking, treadmill walking and robot-assisted walking), 

increased sensorimotor, premotor and supplementary motor activities were always 

detected, with the robot-assisted protocol recruiting a broader and more global network 

(Kim et al., 2016). In another study, stroke survivors with severe hemiplegia were asked 

to walk on a treadmill with maximal assistance (BWS) while performing three different 

types of assisted training: simple BWS walking, BWS walking with assistance from the 

physiotherapist for the paralyzed leg control (CON), and BWS walking with assistance 

from the physiotherapist for facilitating pelvis control (FT) (Miyai et al., 2002). The FT 

intervention induced greater activations in the affected hemisphere than the other two 

conditions, and prominent effects were observed in the premotor regions of the affected 

hemisphere as well as in the sensorimotor, supplementary motor and pre-supplementary 

motor regions of the unaffected hemisphere. The authors suggested that the increased 

PMC activity could resemble engaged adaptive locomotion control as well as 

compensation and/or reorganization of cortical networks, whereas the increased pre-SMA 

activations could be related to novel motor learning and restoration of impaired gait after 

stroke. In general, these studies speculated that locomotion is mediated by both supra-

spinal and spinal structures, and that the observed increased cortical activations in the 

respective studies hint towards a central control of gait whereby proprioceptive feedback 

are employed to modulate input to the rhythm generators (i.e. CPGs) and to facilitate 

symmetric locomotor patterns adapting to the contextual environmental changes (Kim et 

al., 2016). Our results are in line with these arguments and further validate them: it is 

likely that the neural cortex detected and managed the increased cognitive demand during 

the dual-task conditions (especially when walking while texting with the smartphone) and 

adapted motor performance (i.e. reducing speed) so that the secondary task could be 

undertaken whilst maintaining safety over the execution. The lower limb muscular 

evidence reported in the current study further supports this theory: the observed reduction 

of muscular activities in the two dual-task conditions could likely be the result of the 

reduced focus of the brain only on gait control (in favour of dual-task performance) and 

subsequently of the reduced descending motor drives to spinal structures, which in turn 

activate muscles to a less extent (Artoni et al., 2017). According to this theory, 

determination of high-level gait features, such as speed and movement duration, would 

be the result of higher cortical functions integrating primary motor, sensory and pre-

frontal areas. In turn, peripheral elements as the CPGs would subsequently receive motor 
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commands from the centre and simply actuate them by activating lower limb muscles as 

required, periodically.  

7.4.5 Limitations 

The recruited participants were all healthy young adults (i.e. students), with no history of 

psychiatric, neuromuscular and/or orthopaedic problems, and all with a good level of 

physical fitness as all mentioned practicing a sport. Therefore, it is unlikely that the level 

of physical fitness and of neural executive functions caused different motor and cognitive 

performance. Nevertheless, it was evident that subjects had different levels of experience 

in walking with the mobile phone, which in turn allowed to have enough variety of skills 

and performance level within the recruited sample. Moreover, all subjects were right-

handed, which could have biased our results (Miyai et al., 2001). Future studies should 

consider a more complete cohort of subjects and eventually identify differences due to 

subject-specific handedness neural wiring.  The limited number of subjects recruited was 

dictated mostly by weather limitations as experiments could not be properly carried out 

during winter time in London. The strong analysis pipeline developed compensated for 

the limited number of available subjects by maximizing the single-subject physiological 

content and minimizing external artefacts. Indeed, only one subject out of fifteen in total 

showed statistically significant artefactual activations across the whole frequency 

spectrum exactly time-locked at the moment of heel strike, which proves that the pre-

processing pipeline built to clean the data from external noise and remove gait-related 

artefacts is considerably robust. However, further tests are needed to further validate the 

experimental framework. In terms of study design, during single-task walking subjects 

were left free to think about anything they wanted, thus it is unknown what they were 

actually “thinking” when walking. Subject-specific internal/personal factors as well as 

external distractions (e.g. weather, people passing by, etc) might have influenced the 

actual performance during the tasks, especially the recorded neural data. This goes far 

beyond the goal and purpose of the current study, which does not aim to identify real-

world activations of the human brain to each single external input and distractions, but 

instead to observe overall behaviour and gait performance when inserted in a partially-

controlled multi-stimuli environment. Mobile Brain/Body Imaging (Gramann et al., 2014; 

Gramann et al., 2017; Ladouce et al., 2017) is a very novel field of research investigating 

the human behaviour in its natural environment. The biggest challenge here consists of 

defining what is potentially measurable and inferable from such studies in comparison to 

controlled laboratory-based investigations. In addition, the level of attention and 

engagement subjects gave to each single task and/or to both tasks together was unknown. 
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The results presented here pave the way for future more specific studies in which 

attentional levels and their impact on behaviour and performance could be further 

investigated within the real-world scenario. 
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8 Brain and behaviour: investigating the relationships between brain 

activations and gait patterns during single- and dual-task walking in the real world 

8.1 Introduction 

The recent developments in mobile technologies allow scientists to design and implement 

experimental frameworks with ambulatory settings, both within and/or outside the 

laboratory environment. The advantage of such applications relies in testing the subject 

in an active state of performing natural tasks during which neural and behavioural 

correlates of the task are investigated in conjunction (Ladouce et al., 2017). Many 

different types of studies are currently under way investigating the neural correlates of 

gait intentions in neurological impaired patients (Choi et al., 2016), the neural correlates 

of different types of artistic performances, from dancing to music playing (Contreras-

Vidal et al., 2017), as well as the neural correlates of walking within different city areas, 

from traffic zone to green parks (Aspinall et al., 2013; Tilley et al., 2017). The most 

interesting aspect of these novel approaches based on simultaneous recordings is the 

possibility to correlate brain and behaviour, thus identifying specific bio-markers of an 

activity or task. In a rehabilitation or assistive perspective, such potentiality could turn 

out to be essential in determining which brain areas most relate to a specific ambulatory 

task, how the relationship is built and how supportive technologies could eventually 

contribute and compensate for any impairments that prevent the proper execution of such 

activities. 

Human walking behaviour has been extensively studied and very recently a novel marker 

of the quality and variability of this process has been successfully proposed. Acceleration 

Root Mean Square (RMS) is a measure of the intensity of walk, usually recorded at the 

level of the pelvis, in any 3D directions of movement, and its normalized values (allowing 

for comparison across different populations and tasks) has been shown to correlate with 

age (Iosa et al., 2014) as well as with neurological impairments (Sekine et al., 2013; 

Sekine et al., 2014). Acceleration RMS in the vertical and antero-posterior direction of 

walking have been shown to be negatively correlated with age, whereas RMS in the 

medio-lateral direction decrease with age until a certain point when it sharply increases, 

probably due to augmented lateral swinging because of reduced cognitive functions 

resulting in stiff upper body and impaired lower limbs. Neurological impairments also 

affect walking acceleration, with a systemic decrease of RMS in any directions in 

Parkinson’s disease patients regardless of the risk of falling (Latt et al., 2009), whereas 

stroke survivors usually show increased medio-lateral and antero-posterior trunk 

accelerations (Van Criekinge et al., 2017). However, the relationships established with 
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the measure of acceleration RMS (normalized or not) are so far limited to age and 

level/type of neurological impairment. No direct relationship between quality of walking 

and neural activations have been proposed yet to our knowledge. 

A preliminary investigation of the potential relationships between neural brain activity, 

as recorded through means of EEG, and walking accelerations RMS normalized (RMSR) 

across different conditions and level of secondary task difficulty was here explored. 

According to the recent literature and our previous results (see Study II, chapter 7, 

paragraph 7.3.1), potential relationships were expected to establish between acceleration 

RMSR and neural activity, expressed in terms of EEG spectral power, recorded from 

electrodes located over the (pre-) frontal cortex (PFC, anterior and dorso-lateral areas) 

and the bilateral posterior parietal cortices (PPC). The choice of these specific three ROIs 

was dictated by the current common interest towards the PFC as involved in multitasking, 

mostly in fNIRS studies (Al-Yahya et al., 2016; Holtzer et al., 2011; Maidan et al., 2016), 

and the recent evidence of an active engagement of bilateral PPC in secondary motor 

adaptation during walking (Sipp et al., 2013; Bradford et al., 2016; Wagner et al., 2016). 

These regions have been also showed to be jointly involved in different attentional 

(Dosenbach et al., 2007) and executive functions networks (Rosenberg-Katz et al., 2016), 

thus of major interest for the ambulatory tasks performed in this study. A Regions of 

Interest (ROIs)-based approach will be followed in this analysis, with the goal of 

identifying which brain areas most contribute to the quality of walking across different 

conditions in the real-world. 

8.2 Materials and methods 

8.2.1 Experimental setup and recording techniques 

The raw gait and EEG data were obtained in the experiments described in chapter 7 of 

Study II. For a detailed description of data collection and primary analysis see chapter 7, 

paragraphs 7.2.1, 7.2.2 and 7.2.3. 

8.2.2 Data analyses 

Gait measures 

Gait measures of fourteen subjects were analysed through the iGAIT free toolbox for 

MatLab (Yang et al., 2012) as fully described in chapter 7, paragraph 7.2.4. Of major 

interest for this chapter are the measures of acceleration RMS Ratio (RMSR) as calculated 

through the formula reported in chapter 7, paragraph 7.2.4, section Gait Measures. These 

measures are indeed representative of the quality and/or abnormality of a person gait 

(Sekine et al., 2013) and here therefore further used as such in relationship with central 
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neural activations. Previous studies have shown that gait behaviour and patterns are 

optimized when walking at the natural speed (Menz et al., 2003; Sekine et al., 2013), thus 

in this study subjects were specifically asked to walk at their preferred speed. However, 

it has been demonstrated that velocity influences gait behaviour (as described through 

measures of acceleration RMS, both normalized and not) both in healthy and neurological 

populations (Menz et al., 2003; Sekine et al., 2013; Iosa et al., 2014; Van Criekinge et al., 

2017). Consequently, velocity will be always included in the analysis of the relationship 

between neural activity and gait behaviour as it might influence the outcome. 

EEG pre-processing and ROI-based power spectrum 

EEG data of fourteen subjects were pre-processed through EEGLab open source toolbox 

for MatLab (Delorme and Makeig, 2004) as fully described in chapter 7, paragraph 7.2.4, 

sections EEG pre-processing. Power Spectral Density (PSD) content in the frequency 

domain of each channel, in each frequency for each subject were calculated as detailed in 

chapter 7, paragraph 7.2.4, section Power Spectral Density (PSD). Here analyses focused 

only on three Regions of Interest (ROIs), as per hypothesis changes in gait behaviour 

were expected to be related to changes in brain activities in those areas mostly employed 

during executive functions, spatial attention and navigation, sensorimotor integration and 

adaptation during multi-tasking. Previous findings have localized consistent brain 

activities during both single-task and dual task as well as adaptation in walking (Bradford 

et al., 2016; Lin and Lin, 2016; Wagner et al., 2016) in (pre-) frontal and bilateral posterior 

parietal clusters. 3 ROIs were therefore defined and identified the electrodes laying over 

such areas were identified, specifically: 

• Pre-Frontal/Frontal ROI = {FP1, FPZ, FP2, AF7, AF3, AF4, AF8}. This ROI 

covers Brodmann Areas 9, 10 and 46, namely Dorsolateral/Anterior Prefrontal Cortex 

(see https://www.trans-cranial.com/). Together with deeper structures as basal ganglia 

and hippocampus, the DLPFC plays a role in some of the highest cognitive functions 

as planning, organization and regulation, whereas the APFC participates in memory 

functions, specially working memory and memory retrieval; 

• Left/Right-Posterior Parietal ROIs = {P7, P5, P3, PO3, PO5, PO7}/ {P8, P6, P4, 

PO4, PO6, PO8}. This two ROIs include bilaterally the Associative Visual Cortex, 

which carries out some language related functions (e.g. confrontation naming); the 

Fusiform Gyrus, i.e. the occipital-temporal lobe mainly involved in processing of 

colours, face and body as well as words and numbers recognition; the Angular Gyrus, 

involved in high-cognitive functions (sensorimotor integration) as cross modal 
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association among somatosensory info, auditory and visual information (see 

https://www.trans-cranial.com/). 

Figure 8-1 shows the spatial location of the electrodes grouped in the three ROIs 

according to the 64-channel cap montage used during the recordings. The average PSD 

across each ROI-specific electrode was calculated for each subject, in each FOI and for 

each condition separately. 

Models of gait behaviour vs. EEG PSD activations 

Models of the relationships between brain activity and gait behaviour were run both with 

SPSS 23 software (IBM). Separate models for single- and each dual-task condition were 

created with accelerations RMSR in each direction as Dependent Variables (DVs), given 

their successful previous usage reported in literature (Menz et al., 2003; Sekine et al., 

2013).  PSD in each specific FOI (x3) and ROI (x3) were used as Independent Variables 

(IVs, i.e. predictors), for a total of 9 neurophysiological IVs. Additionally, Velocity was 

also included in the models as an IV given its potential effects on these gait patterns 

(Sekine et al., 2013). For each DV, three models were generated separately for each 

experimental condition (i.e. ST, DT1 and DT2). Multiple Regression models were created 

with the format: 

𝑅𝑀𝑆𝑅𝑥 =  𝛽0 +  𝛽1 ∙ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 +  𝛽𝑖𝑗 ∙ 𝑃𝑆𝐷_𝑅𝑂𝐼𝑖_𝐹𝑂𝐼𝑗 +  𝜀 

Equation 8-1: Multiple regression models for RMSR formula. 

where RMSRx is the acceleration RMSR in the direction x (i.e. vertical, antero-posterior, 

medio-lateral) during each walking condition separately, PSD_ROIi_FOIj is the PSD in 

the ROI i (i.e. frontal, right-parietal, left-parietal) and in the FOI j (θ, α, β) stepwise 

entered into the model, 𝛽𝑛 are the intercept and coefficient associated to each model 

predictor, and ε is the error. Data were first centred (i.e. the mean score was subtracted 

from each observation) and scaled (i.e. standard deviation was set equal to 1) in order to 

reduce the chance of multicollinearity. When working with multiple regression models, 

all the assumptions were tested and checked before reporting results. Measure of 

Goodness-of-Fit (B) and p-value associated to each significant predictor will be reported. 

8.3 Results 

8.3.1 Relationship between single-task walking acceleration and 

neurophysiological activity 

Multiple linear regression did not provide statistically significant models for ml-RMSR 

and ap-RMSR during single-task walking. However, a regression model was successfully 
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created for ver-RMSR (R-squared = 0.725, p = 0.001) for which all assumptions were 

met (no multicollinearity, no auto-correlation, no homoscedasticity). Specifically, only 

the IVs significantly contributing to the prediction of ver-RMSR were entered stepwise 

into the model. The final model predicts the DV based on Velocity (B = 0.355, p = 0.001) 

and left-parietal θ PSD (B = 0.009, p = 0.026), as shown in Figure 8-2. The final model 

equation can therefore be written as follow: 

𝑣𝑒𝑟𝑅𝑀𝑆𝑅 =  0.699 + 0.355 ∙ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 + 0.009 ∙ 𝑙𝑒𝑓𝑡 𝑃𝑎𝑟𝑖𝑒𝑡𝑎𝑙_𝜃_𝑃𝑆𝐷 

Equation 8-2: Multiple regression model for verRMSR during ST formula. 

8.3.2 Relationship between dual-task walking acceleration and neurophysiological 

activity: walking while conversing 

Multiple linear regression did not provide statistically significant models for ap-RMSR 

when walking while conversing. A significant model was created for ml-RMSR (R-

squared = 0.745, p = 0.003) but assumptions of multicollinearity were not met, thus the 

model couldn’t be considered as reliable. A regression model was successfully created 

for ver-RMSR (R-squared = 0.727, p = 0.001) for which all assumptions were met (no 

multicollinearity, no auto-correlation, no homoscedasticity). Specifically, only the IVs 

significantly contributing to the prediction of ver-RMSR were entered stepwise into the 

model. The final model predicts the DV based on Velocity (B = 0.029, p = 0.003) and 

left-parietal α PSD (B = 0.021, p = 0.020), as shown in Figure 8-3. The final model 

equation can therefore be written as follow: 

𝑣𝑒𝑟𝑅𝑀𝑆𝑅 =  0.704 + 0.029 ∙ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 + 0.021 ∙ 𝑙𝑒𝑓𝑡 𝑃𝑎𝑟𝑖𝑒𝑡𝑎𝑙_𝛼_𝑃𝑆𝐷 

Equation 8-3: Multiple regression model for verRMSR during DT1 formula. 

8.3.3 Relationship between dual-task walking acceleration and neurophysiological 

activity: walking while texting with a smartphone 

Multiple linear regression did not provide statistically significant models for ver-RMSR 

and ap-RMSR walking while texting over the phone. However, a regression model was 

successfully created for ml-RMSR (R-squared = 0.434, p = 0.010) for which all 

assumptions were met (no multicollinearity, no auto-correlation, no homoscedasticity). 

Specifically, only the IVs significantly contributing to the prediction of ver-RMSR were 

entered stepwise into the model. The final model predicts the DV based only on left-

parietal β PSD (B = -0.055, p = 0.010), as shown in Figure 8-4. The final model equation 

can therefore be written as follow: 

𝑚𝑙𝑅𝑀𝑆𝑅 =  0.414 − 0.055 ∙ 𝑙𝑒𝑓𝑡 𝑃𝑎𝑟𝑖𝑒𝑡𝑎𝑙_𝛽_𝑃𝑆𝐷 

Equation 8-4: Multiple regression model for mlRMSR during DT2 formula. 
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Figure 8-1: ROIs of interest. 

The electrodes topological layout of the 64-channel cap used during the recordings is here reported with 

electrodes names in their right location. Red rectangles highlight the electrodes included into the defined 

(pre-) frontal and left/right parietal Regions of Interest (ROIs). 
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Figure 8-2: Observed vs. Predicted ver-RMSR values according to the multiple regression model during 

ST. 

The model R-squared value associated to the line of fit of the model is printed on the graph. 
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Figure 8-3: Observed vs. Predicted ver-RMSR values according to the multiple regression model during 

DT1. 

The model R-squared value associated to the line of fit of the model is printed on the graph. 
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Figure 8-4: Observed vs. Predicted ml-RMSR values according to the multiple regression model during 

DT2. 

The model R-squared value associated to the line of fit of the model is printed on the graph. 
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8.4 Discussions 

8.4.1 Novel findings 

The current findings describe a direct linear relationship between gait behaviour and brain 

activations. Measures of gait variability and abnormality as conveyed via acceleration 

RMSR were correlated with brain activations as expressed in terms of Power Spectral 

Density.  Single-task walking and walking while conversing were characterised by a 

direct positive relationship between ver-RMSR, velocity and left parietal PSD in  and α 

frequency bands respectively. On the other hand, walking while texting with a 

smartphone featured a direct negative relationship between ml-RMSR and left parietal 

PSD in the β frequency band. Despite the change in frequency activity, the left posterior 

parietal cortex is here suggested to play a role in locomotion control in the real-world 

regardless of the secondary task simultaneously performed. 

8.4.2 Gait acceleration RMS as measure of gait stability and behaviour 

Acceleration RMS has been extensively used in studies of gait in both healthy and 

neurologically impaired populations (Menz et al., 2003; Latt et al., 2009). Previous 

investigations have shown that, in both healthy young and older adults, acceleration 

values tend to augment when walking on an insidious surface (i.e. more difficult) at the 

level of the pelvis (i.e. lower back) (Menz et al., 2002). Concurrent registration of 

accelerations at the head did not show such changes across surfaces: it can be said that 

the ultimate goal during walking consists in stabilizing the head (thanks also to the spine 

that attenuates walking steps vibrations). Therefore, the choice of placing the acceleration 

recording phone at the lower back level of our subjects was based on previous literature 

investigations (Kavanagh and Menz, 2008) and aimed to maximize the acceleration 

variability across subjects (as per physiological and anatomical differences) and across 

conditions (related to task difficulty). Then, in order to render the gait behaviour 

expressed through this measure comparable across different types of populations (healthy 

vs. elderly vs. neurologically impaired), across subjects and across different speeds, 

normalization procedures have been proposed (Terrier and Reynard, 2015; Iosa et al., 

2014). The normalized measure of acceleration RMS Ratio (RMSR) adopted in the 

current study has been previously shown to successfully correlate with gait variability 

and abnormality in both healthy adults and neurologically impaired (Sekine et al., 2013; 

Sekine et al., 2014). Moreover, other measures such as velocity have been shown to 

change across any type of conditions regardless of presence of gait instability, thus not 

proper for our aim. Indeed, reduced walking velocity and altered trunk movements are 
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two of most undertaken compensatory strategies for reduced executive functions 

capabilities in the elderly (Menz et al., 2003) and in stroke survivors with lower limb 

impairment (Iosa et al., 2014; Van Criekinge et al., 2017). Consequently, in elderly and 

neurological populations an increase in upper body acceleration values (as measures at 

the lower back level), might result from a combination of reduced cognitive capabilities, 

motor impairment and compensatory strategies. Therefore, measures of normalized 

acceleration RMSR were here employed to validate this hypothesis by testing healthy 

young adults in different difficulty-level walking conditions. 

8.4.3 Relationship between brain and behaviour 

It was here purposely tested whether (pre-) frontal and bilateral posterior parietal sensor-

level spectral activity could relate to gait behaviour as it has been shown that these are 

the most modulated cortical areas during dual-task walking (Lin and Lin, 2016; Al-Yahya 

et al., 2016; Wagner et al., 2016; Maidan et al., 2017) and in dual-task laboratory-based 

experiments (Wahn and König, 2017). Pre-frontal activity (specifically from the rostral 

prefrontal cortex) was shown to be graded as a function of cognitive demand during dual-

task walking whereby more challenging tasks recruited higher oxygenation levels, and 

subjects that performed better in the secondary cognitive task (i.e. subtracting 7 by a 

random starting 3-digit number) showed lower oxygenation levels (Mirelman et al., 

2014). The authors suggested that these subjects likely required less effort and 

oxygenation levels than those participants who performed worse and required more pre-

frontal activity in order to be able to perform the two tasks simultaneously together. 

Curiously, in our study left PPC (not the PFC) was related to gait behaviour regardless of 

the secondary task type undertaken. The left PPC has been extensively studied in 

laboratory-based experiments both on animals and humans (Calton and Jeffrey, 2009). 

Currently it is thought to act as the sensorimotor integrator and online rapid updater of 

movement planning (Fogassi and Luppino, 2005; Buneo and Andersen, 2006, Churchland 

et al., 2006), integrating spatial information of the surroundings and sensory feedback 

with motor planning and executive commands (Calton and Jeffrey, 2009). Indeed, the 

spatial navigation deficits seen after damages of bilateral PPC as the Balint’s syndrome 

(Balint, 1909) or neglect (Yordanova et al., 2016) arise because of the inability to 

integrate spatial orientation with current/future planning of the voluntary movement 

needed to accomplish the end goal. If the PPC is in general believed to play such a 

complicated role, each hemispheric area has been characterized with specific duties: on 

one hand, the right-PPC, in connection with frontal regions, is also involved in multiple 

types of attention (Tang et al., 2016; Dosenbach et al., 2007); on the other hand, the left 
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PPC has been recently shown to play a major role as sensorimotor integrator since 

Parkinson’s disease patients that exhibit Freezing of Gait (FoG) also display reduced 

connection between left PPC and multiple brain regions such as somatosensory and 

auditory areas (Lenka et al., 2016). Left PPC is therefore suggested to more consistently 

work as a sensorimotor integrator during online movement planning and monitoring, 

whereas right PPC in parallel more actively engages with different attentional networks. 

This hypothesis is confirmed by our previous results (see chapter 7, paragraph 7.3.4 for a 

detailed summary) in which no differences across conditions in any frequency band of 

interest were found within clusters of electrodes located over the left PPC. A recent fMRI 

investigation of the hemodynamic correlates of simulated walking under single- and dual-

task conditions reported a similar relationship between stepping variability and activity 

within the superior parietal lobule (SPL), principally in the left hemisphere, whereby 

higher SPL activations were associated to slower stepping speed in older adults (Bürki et 

al., 2017). SPL is known to be involved in multitasking and task switching performance 

(Al-Hashimi et al., 2015), and was shown to be sensitive to cognitive-motor dual tasking. 

Moreover, SPL appeared similarly activated across both single- and dual-task conditions, 

demonstrating its crucial role in motor coordination and control under both single- and 

dual-task locomotion, in line with the left PPC activations observed in the current study. 

Consequently, the left PPC is here suggested to play a primary active role in monitoring 

and planning the walking movement regardless of any secondary conditions in parallel 

undertaken. The relationships between this brain region and gait pattern though change 

across conditions in terms of the gait measure and the frequency bands that successfully 

correlates. 

Task-specific relationships between brain activation and gait behaviour 

When walking naturally, a positive linear predictive relationship could be identified 

between left PPC activity in the θ frequency band and ver-RMSR and velocity. Ver-

RMS(R) has been shown to depend linearly on gait speed and to represent the quality of 

gait, with higher values symbolic of a more stable and rapid walk (typical of healthy 

young adults) and lower values symbolic of reduced flexibility and bent postures (typical 

of older adults) (Iosa et al., 2014; Menz et al., 2003; Sekine et al., 2013). We confirmed 

the positive relationship between ver-RMSR and velocity but added a predictive neural 

component (left PPC). When walking naturally without engaging in any secondary tasks, 

left PPC has been shown to be active in the θ range (4 – 7 Hz) (Caplan et al., 2003; 

Ekstrom et al., 2005; Chiu et al., 2012) and is believed to be connected to deeper 
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structures such as the hippocampus actively engaged in the navigation process (Bohbot 

et al., 2017). 

When walking while conversing, a positive predictive relationship could be identified 

between left PPC activity in the α frequency band and ver-RMSR and again velocity. As 

θ neural oscillations likely engage in memory retrieval and organization of ‘thoughts’ 

when subjects are engaged in a conversation (Giraud et al., 2007; Simons and Spiers, 

2003), is it likely that higher frequency oscillations (i.e., α) took over the duty of 

sensorimotor integrator and monitor during walking in the present study. This hypothesis 

is further supported by recent studies showing involvement of α (8 – 12 Hz) oscillations 

in spatial navigation (Chiu et al., 2012; Lin et al., 2015) and sensorimotor integration 

during walking speed adaptation to an external pace cue (Wagner et al., 2016). 

A significant negative predictive relationship was found between left PPC spectral 

activity in the β frequency band (15 – 30 Hz) and ml-RMSR when walking while texting. 

ml-RMSR has been recently validated as a marker of gait abnormality and recovery, 

where abnormally high values of trunk acceleration decrease alongside recovery (Sekine 

et al., 2013; Sekine et al., 2014). Moreover, stronger β desynchronization is required in 

arduous conditions in order to maintain the ‘status quo’ and to promote the voluntary 

action in a more challenging dual-task context (Engel and Fries, 2010; Sipp et al., 2013; 

Bradford et al., 2016; Wagner et al., 2016). The negative relationship suggests that those 

subjects showing higher gait variability in the medio-lateral direction required stronger β 

desynchronization in order to accomplish the simultaneous tasks. This is in line with 

previous studies that showed that β PSD in the posterior parietal and occipital areas could 

be used to reliably classify and detect events such as FoG and GIF in Parkinson’s disease 

patients (Handojoseno et al., 2015; Ly et al., 2016), thus confirming the involvement of 

this brain region in postural and movement online control via sensorimotor integration. 

Of note, ml-RMSR did not correlate with velocity in this study as previously reported in 

the literature (Sekine et al., 2013). 

8.4.4 The potential role of the left posterior parietal cortex in gait rehabilitation 

As previously mentioned, non-invasive recordings in humans are still very limited, which 

in turn constrains the understanding of the role that each element within the gait control 

hierarchy has. The ground-breaking findings of McCrimmon and colleagues 

(McCrimmon et al., 2017) open the doors to more solid interpretations of the role of the 

primary motor cortex during gait, but much future work remains. The current 

investigation reported preliminary evidence of the relationship between neural activity in 
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the left posterior parietal cortex and measures of trunk acceleration during gait, 

hypothesising a role in motor behaviour and performance control for the left PPC. The 

PPC is believed to promote sensorimotor integration during different types of movements 

in humans (Buneo and Andersen, 2006), but invasive evidence during gait are still to be 

reported. Extensive observations on the PPC activity during walking were however 

presented by animal studies, whereby intra-cortical recordings allowed the monitoring of 

single neurons activations while cats performed walks with (Beloozerova and Sirota, 

2003) and without (Marigold and Drew, 2011) visual guidance. It was postulated that 

PPC is involved in high-level functions of both visuo-motor integration, for example 

allowing the detection of obstacles features, as well as of memory and storage, conserving 

information on the previously processed features to permit gait even in the 

absence/obstruction of visual guidance. Activity of the superior parietal lobule 

(prominently in the left hemisphere) was shown to correlate with stepping variability 

during simulated dual-task walking in older adults whereby higher SPL activations were 

associated to more variable behaviour, thus suggesting a fundamental role of the parietal 

structure in locomotion control (Bürki et al., 2017). Our results appear to be in line with 

the above-mentioned theories: PPC activity positively predicted trunk acceleration during 

single-task walking and during walking while talking, likely promoting sensorimotor 

integration between internal and external spatio-temporal features. At the same time, it 

negatively predicted trunk acceleration when walking while texting over the smartphone, 

a condition in which subjects had a partially limited vision of the path in front of them, 

likely promoting both sensorimotor integration and storage of information for the periods 

of prevented visual guidance. Indeed, those subjects with higher PPC activity showed 

higher trunk acceleration and better motor performance. These findings and 

interpretations seem therefore to give even more credit to the theories on the high-level 

functions performed by the neural cortex during gait control with respect to the peripheral 

structures (i.e. CPGs), entitled to simply generate rhythmic muscle activations in response 

to the sensorimotor integrated drives coming from central sources (Takakusaki, 2013; 

Takakusaki, 2017; McCrimmon et al., 2017). The predictive role of the left PPC could be 

exploited by novel rehabilitation paradigms. Recent interventions for both balance and 

gait training reported preliminary positive outcomes when providing intensive 

biofeedback training. Healthy elderly adults were trained to increase their sensori-motor 

rhythm (12-15 Hz) and decrease their theta waves (4-7 Hz) (registered from the O1 and 

O2 occipital electrodes, placed over structures involved in balance control such as 

occipital lobe, substantia nigra, basal ganglia and cerebellum) while playing video games 
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on a PC during neurofeedback training sessions (n = 15, five weeks in total, 30 min each); 

balance skills were assessed both before and after the training period (Azarpaikan and 

Torbati, 2017). Balance performance significantly improved after neurofeedback 

training, which surprisingly facilitated subjects’ control mostly on static postural sway. 

Positive neurofeedback training outcomes were also recently reported with a cohort of 

stroke survivors performing dual-task walking (Lee et al., 2015). Patients assigned to the 

neurofeedback group were trained to increase their sensori-motor rhythm (registered from 

the Cz electrodes located over the paracentral lobule including the lower limb motor 

areas) while playing video games on a PC; dual-task performance (both motor and 

cognitive) was tested before and after the training period as patients walked along a 

predefined path while counting backwards from 100 by steps of 7. Patients trained with 

the neurofeedback protocol showed both higher cognitive (i.e. less counting backwards 

errors) and motor (i.e. higher velocity, cadence, foot weight on the ground, stance phase 

index) performance in comparison to patients located in the control group, which did not 

receive any specific biofeedback training. In summary, employing neurofeedback 

training specific to the end goal (e.g. targeting occipital areas for balance training and 

central regions for gait performance) seems to be a promising tool to promote recovery 

and a reliable as well as entertaining (as participants always played videogames) way to 

teach how to self-regulate the neural mechanisms responsible for specific balance and 

gait performance. Given these preliminary positive findings and considering the potential 

role of the left PPC in the control of gait, future studies could define a biofeedback 

training based on the activity of this region (in a first instance likely testing different 

frequency ranges) in order to teach subjects how to self-modulate the rhythm eventually 

involved in the control of sensorimotor integration and postural control during gait. Such 

a protocol would have a strong impact on the rehabilitation of neurological patients such 

as stroke survivors and PD patients, as it would promote their ability to control posture 

by engaging appropriate neural mechanisms. 

8.4.5 Limitations 

As our healthy population sample was limited, it would be interesting to expand the study 

including more healthy young adults, as well as healthy older adults or neurological 

patients, in order to further test the hypothesis of the left PPC consistently involved in 

monitoring the walking process with different roles according to the task difficulty level 

expected. Moreover, future studies should determine guidelines to properly classify 

“good” and “bad” performers, especially in the dual-task conditions, to further 

disentangle the neurophysiological bases of dual-task walking within the sample 
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population. Ultimately, the correlation approach undertaken in this study looked for a 

very simple (linear) relationship between brain and behaviour, with brain spectral activity 

averaged across electrodes in a ROI-based approach thus to rule out any unwanted effects 

of multicollinearity. Future studies should employ a higher number of channels/ROIs in 

order to reliably reconstruct cortical sources from sensor recordings, and eventually use 

the numerous sensor-level data within a more complicated regression framework (e.g. 

Partial Least Square Regression, PLSR) able to tackle multicollinearity and describe more 

complicated relationships between brain and behaviour. 
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9 Final conclusions 

Novel insights on the neurophysiological correlates of human motor control (of both 

upper- and lower-limb) were reported in the current research programme. They shed new 

light on the different mechanisms involved in motor control of natural movements (such 

as reaching and walking) in both stable and unstable situations. The findings gathered in 

these two scenarios further strengthen the theories on the central role of the human brain 

in the control of both upper- and lower-limb and identify crucial cortical regions that 

could be target of future rehabilitative practice.  

9.1 The central role of the human brain in motor control of both upper- and 

lower-limb 

Several studies had already demonstrated that, during reaching, the human brain exerts 

prime management functions. The primary motor cortex was shown to be responsible for 

translating high-level sensorimotor information into low-level motor commands through 

directional tuning (Fabbri et al., 2010; Toxopeus et al., 2011). Most interestingly, not only 

the primary motor cortex but also other cortical areas such as premotor cortex, parietal 

cortex, anterior and medial inter-parietal sulcus showed directional tuning effects due to 

different reaching directions, suggesting that a broader network is potentially involved in 

the programming of the movement (Fabbri et al., 2010). The findings reported in the 

current work confirm these theories, specifically through evidence of cortico-muscular 

coherence whereby changes in the neural-muscular synchronization due to the adaptation 

process were observed in a global network including supplementary motor, premotor, 

primary motor and parietal regions. The planning and adaptation of the movement to the 

external environmental changes is therefore confirmed to be promoted by a broad cortical 

network, whereby the medial supplementary motor areas seem to play a major role in the 

modulation of the exerted force.  

In contrast, there is still much debate on the function of each of the structures involved in 

the control of gait, specifically on the role of the brain and of the spinal rhythm generators 

(CPGs) as well as on their relationship. Animals studies have hinted on the potential high-

level control of the brain on the spinal centres (Beloozerova and Sirota, 2003; Lajoie et 

al., 2010; Marigold and Drew, 2001), but human evidence is still limited due to technical 

and ethical restrictions. Early suggestions on the central role of the human brain in gait 

control were reported during treadmill walking with both healthy adults and 

neurologically impaired patients undertaking different types of gait training (Miyai et al., 

2002; Kim et al., 2016). Increased oxygenation levels in a broad cortical network 
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encompassing sensorimotor, premotor and supplementary motor areas were reported, 

suggesting that high-level control and adaptation of gait to external environmental 

changes are mediated by the brain, which in turn modulates inputs to the spinal rhythm 

generators for the generation of the required lower limb muscles activations. Further 

validation of this hypothesis has been recently provided by the first intra-cortical 

investigation with epileptic patients walking on a treadmill (McCrimmon et al., 2017), 

whereby high-frequency neural oscillations recorded from the primary motor cortex were 

postulated to encode high-level functions of gait control (for example, determination of 

gait speed and movement duration). The evidence reported in the current research appear 

to further validate these theories. As postulated, during dual-task walking the brain 

recruited both gait control mechanisms as well as secondary-task specific strategies as 

observed through changes in average spectral power with respect to natural single-task 

walking. Neural resources previously associated only to gait control were thus eventually 

divided between gait control and simultaneous secondary task performance, consequently 

reducing the actual work exerted by the central main motor control mechanisms (Nijboer 

et al., 2014). Considering the brain as the main actor in the gait control hierarchy, the 

systematic decrease in muscular activation profiles observed across the monitored lower 

limb muscles in both dual-task conditions could be interpreted as the result of the reduced 

gait control due to the simultaneous engagement of secondary mechanisms. Changes in 

central management were indeed hypothesised to result in less descending motor cortical 

drives to the spinal rhythm generators. The current work did not provide any evidence of 

direct cortico-muscular couplings during the real-life ambulatory activities, but very 

recent findings have reliably demonstrated that cortical activations are directly 

responsible for locomotion control, and specifically that unidirectional descending drives 

from the contralateral primary motor cortex exert fine control of leg in the swing phase 

(Artoni et al., 2017). The relationship between the spectral power within the left posterior 

parietal cortex and trunk acceleration during walking conditions again suggest that the 

cortical region appears to be directly involved in the control of gait stability and posture 

(Pizzamiglio et al., 2018), in line with previous findings (Bürki et al., 2017).  

To summarise, the investigations carried out in this research programme support the 

hypothesis that the human brain is the principal manager of motor control of both upper- 

and lower-limbs, and that spinal structures are directly depending on its inputs to 

autonomously trigger the requested muscular activations (Fabbri et al., 2010; Takakusaki 

et al., 2013; McCrimmon et al., 2017; Takakusaki et al., 2017).  As previously reported 

and here further demonstrated, the brain always recruits a global network including 
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frontal (anterior and dorsolateral), premotor, supplementary motor, primary motor and 

posterior parietal regions in order to promote sensorimotor integration and adaptation to 

the external environment (Shadmehr and Holcomb, 1997; Krebs et al., 1998; Miyai et al., 

2002; Kim et al., 2016), and the primary motor cortex is responsible for translating high-

level movement programme information into descending low-level motor commands 

(Toxopeus et al., 2010; McCrimmon et al., 2017). The current findings pave the way for 

further research required to more strongly validate the proposed theory. 

9.2 Novel indicators of human motor control of both upper- and lower-limb 

Besides providing further evidence on the central role of the brain in motor control of 

both upper- and lower-limb, the current research identified plural markers of the analysed 

motor acts thanks to thorough and diversified analyses. 

In the first study, muscles-specific (co-contraction, IMC), brain-specific (ERN) and 

cortico-muscular (CMC) indicators of adaptation to changes in the external environment 

during reaching have been identified. All these signatures of the implemented motor 

process have a high potential for being exploited into different neurorehabilitation 

practices. Co-contraction and IMC profiles could, for example, be employed as paradigm-

specific targets to train neurologically impaired patients to self-modulate abnormal 

muscular co-activations. As the re-acquisition of range of movement and flexibility after 

neural injury is accompanied by the development of unnatural muscular patterns (Dipietro 

et al., 2007; Huang and Krakauer, 2009), providing training paradigms tailored to the 

specific needs of each patient would surely boost effective recovery. For example, the 

setup and protocol exploited in the current research could be further employed to train 

patients through either a clockwise either a counter-clockwise velocity dependent force-

field according to which muscles need to be trained most, and both co-contraction and 

IMC profiles could be employed as measures of the quality of the performed movements 

(Wright et al., 2014). The two physiological markers could be even exploited as reference 

for brain-machine interface training, whereby a certain level of co-contraction and/or 

IMC between a priori defined muscles pairs could trigger robot-mediated movements in 

line with previous evidence (Ang et al., 2015), thus effectively exploiting the Hebbian 

principles of intentional motor acts paired with peripheral feedback. Care would be 

needed to be taken as muscular activations in neurologically impaired patients are 

frequently variable and unstructured, thus such trainings would likely be an option only 

for a limited cohort of eligible patients. In contrast, the negative spontaneous neural 

oscillations (event-related negativity, ERN) detected over the medial frontal cortex (and 
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likely originating from the anterior cingulate cortex) was hypothesised to be an indicator 

of the trial-by-trial error processing functions exerted by these brain regions during 

adaptation and interestingly shown to be independent of the type of the applied external 

perturbation (Falkenstein et al., 2000; Desowska, Pizzamiglio and Turner, 2018, under 

review). As similar correlates were observed during reaching adaptation to both clockwise 

and counter-clockwise force-field, it results as a reliable indicator of error processing 

despite the difference in the performed protocol. Moreover, ageing and neurological 

injuries were shown to systematically reduce the spontaneous component amplitude 

(Hogan et al., 2006; Colino et al., 2017). Therefore, ERN could be employed during motor 

adaptation and learning trainings as a marker of the abilities to detect and predict 

movement errors and as classifier of the level of impairment in error-based protocols. In 

contrast to the muscle-specific indicators, ERN would be used to promote comprehensive 

re-acquisition of high-level adaptive skills. Receiving visual feedback and trying to 

modulate the level of produced ERN while reaching in an unstable situation on a trial-by-

trial basis could indeed promote the re-acquisition or simply the improvement of 

lost/impaired predictive and adaptive functionalities. Moreover, previous neurofeedback 

investigations have demonstrated that medial frontal regions, such as SMA and ventral 

PMC, are better targets than the primary motor cortex during motor control training with 

motor imagery (Marins et al., 2014; Linden and Turner, 2016), thus strengthening the 

potentials of the medial-frontal ERN as a valid target for neurorehabilitation practices. 

Lastly, the current research identified a significant moderate relationship between the 

level of SMA-ECR cortico-muscular coupling and the amount of force exerted to 

counteract the external perturbation. ECR is one of the most recruited muscles in the 

counter-clockwise protocol, and the corresponding neuro-muscular coupling with the 

supplementary motor area likely influences and regulates the amount of force required to 

counteract the applied perturbation. Further research is needed to identify stronger 

relationships between cortico-muscular evidence and behaviour, but these preliminary 

insights already suggest a potential applicability of CMC in self-training rehabilitative 

practices. Promising evidence on the employment of cortico-muscular evidence in 

neurofeedback training has been recently provided by an EEG study in which healthy 

young adults managed to self-regulate their level of CMC without changing the amount 

of produced force (von Carlowitz-Ghori et al., 2015). Targeting CMC during motor 

adaptation could therefore promote the re-storage of impaired neurophysiological 

mechanisms at the brain and at the spinal level, either jointly either separately according 

to the training hypotheses. 
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In the second real-world scenario, a potential predictor of gait stability has been found 

within the left posterior parietal cortex. Spectral power in the low frequency spectrum (θ 

and α) positively correlated with trunk acceleration along the vertical direction when 

walking naturally (ST) and while conversing (DT) respectively; in contrast, spectral 

power within the medium frequencies (β) negatively correlated with trunk acceleration 

along the medio-lateral direction. Previous investigations have proposed a direct 

relationship between cortical activations and measures of motor and/or cognitive 

performance during ambulatory activities, but results are often in contrast. For example, 

higher oxygenation levels averaged from all optodes located over pre-frontal cortex (thus 

including anterior, dorsolateral prefrontal cortex and inferior frontal gyrus) positively 

correlated with the rate of correct alphabet letters recited aloud while walking in both 

young and healthy elderly adults (Holtzer et al., 2015). These findings suggested that both 

populations could allocate attentional resources to both the motor and the cognitive task 

simultaneously to maintain a good performance (Cabeza et al., 2002). The level of 

executive functions (evaluated through Stroop interference) exhibited when walking was 

also negatively correlated with the hemodynamic activity registered from the left inferior 

frontal gyrus in elderly with MCI, proving that those subjects with higher impairments 

show, as a result, less activations (Doi et al., 2013). On the other hand, in another study, 

levels of oxygenation detected from the rostral prefrontal cortex (BA 10) negatively 

correlated with measures of gait variability as well as with rate of corrected subtractions 

made while walking in a cohort of young adults (Mirelman et al., 2014). In this case, the 

authors claimed that subjects that performed better in both tasks are those that require less 

effort and activations, whereas subjects struggling in simultaneously performing the two 

tasks require more prefrontal activations. In an fMRI study of simulated gait analyses 

whilst performing a cognitive task (Verbal Fluency Task), activity in the superior parietal 

lobule (SPL) correlated with measure of gait variability as well as with executive control 

performance (Bürki et al., 2017). Specifically, subjects that stepped slower activated the 

SPL area more, and those subjects performing worse in the cognitive task activated the 

SPL to a larger extent. The evidence of the current work of research are in line with the 

above-reported findings as the left posterior parietal cortex appears to be directly involved 

in the control of gait stability. It could be suggested that subjects that were naturally more 

prone to have good motor control exhibited high spectral activations in the left PPC 

during natural ambulatory activities; in turn, they exhibited less increased activations in 

situations requiring high cognitive effort and divided attentional resources, as walking 

while texting with the smartphone, than subjects struggling in performing more tasks 
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simultaneously. Interestingly, recent evidence on the relationship between neural and 

kinematic variability also reported a principal role of the posterior parietal cortex (Haar 

et al., 2017). This study focused on the inter-trial variability across subjects and upper-

limb reaching directions as it has been demonstrated that differences between individuals 

likely determine the level of exhibited motor capabilities (Braun et al., 2009; Herzfeld 

and Shadmehr, 2014, Wu et al., 2014). A significant relationship between neural 

variability of the inter-parietal sulcus significantly correlated with kinematic variability 

during movements, whereby almost one-quarter of the between-subjects motor 

differences were explained by subject-specific neural variability in the posterior parietal 

cortex. It therefore seems that high variability in neural activity in the posterior parietal 

cortex is predictive of high motor variability during movement of the upper-limb, in line 

with the findings reported in the current research on the prime role of left PPC in control 

of locomotion. Therefore, the left PPC could be a valid target for rehabilitation practice 

to improve gait as well as upper-limb motor control skills and boost recovery after neural 

injuries. In contrast, the study reported poor variability in the primary motor cortex, in 

line with previous considerations on M1 not being a good target for specific rehabilitative 

practices (Linden and Turner, 2016). Recent preliminary investigations of the effects of 

neurofeedback training of gait control reported positive and promising results: during a 

period of few weeks participants regularly trained to self-regulated the sensorimotor 

rhythm recorded from the leg motor area (Lee et al., 2015) and the occipital area 

(Azarpaikan and Torbati, 2017), after which their gait and balance control abilities 

significantly improved, respectively. Tailored neurofeedback training could therefore be 

designed so that activity of the left posterior parietal cortex is targeted, and subjects could 

learn how to self-control body stability when walking exploiting any mental strategy that 

better suits them, thus without restricting their potentials. 

9.3 Future considerations 

This research programme explored the neurophysiological correlates of human motor 

control through different analyses in order to provide a comprehensive overview of the 

investigated real-world scenarios, and both positive outcomes and limitations were 

observed. 

In the first study, it was hypothesised that subjects would adapt on a trial-basis so that, by 

the end of the adaptation condition, movements would not show significant differences 

with natural reaching (see chapter 1, paragraph 1.2.1). Partially in line with what was 

expected, subjects did adapt to the external perturbation and significantly reduced the 
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movement error from early to late adaptation (see figure 4-5) but did not return to a natural 

motor behaviour by the end of the condition. The designed protocol could therefore be 

defined as of short-term motor adaptation: this is further supported by the 

neurophysiological findings whereby no shift from the cortico-striatal to the cortico-

cerebellar network were observed from any of the reported correlates. Indeed, measures 

of ERP, ERSP and source-level CMC revealed a significant activity during adaptation 

always located over the medial frontal, premotor and supplementary motor areas (see 

chapter 5, paragraph 5.3, and chapter 6, paragraph 6.3) which are known to be involved 

in the early stages of adaptation (Shadmehr and Holcomb, 1997; Krebs et al., 1998), but 

did not report any significant activation of posterior parietal regions towards the end 

adaptation. The behavioural and neurophysiological results all together confirm the 

nature of the implemented protocol as of short-term motor adaptation and suggest that 

longer conditions (i.e. more trials) are needed in order to observe the effects of long-term 

motor adaptation. However, the designed paradigm allowed the detection of several 

indicators of early adaptation since all the reported neural correlates confirmed the 

constant involvement of medial frontal, premotor and supplementary motor areas. 

Moreover, the amount of force exerted to counteract the external perturbation was 

significantly predicted by the level of spectral synchronization between SMA and the 

forearm extensor, confirming the direct involvement of the frontal medial areas in force 

modulation and control of the motor output. It is therefore not surprising that preliminary 

investigation on the potentials of neurofeedback training revealed poor self-modulating 

performance when targeting M1 but good outcomes when controlling PMC and SMA 

(Linden and Turner, 2016). Our results therefore, in line with previous findings, suggest 

that the frontal medial and premotor regions 1) play an important role in adaptive control 

of the upper-limb when changes in the environment are detected and 2) are eligible 

candidates for future neurorehabilitative practice whereby the level of motor control 

could be boosted by self-regulation training. Interestingly, also the posterior parietal 

cortex could be another potential target of novel rehabilitative paradigms as very recently 

demonstrated to be directly involved in the determination of kinematic variability and in 

the prediction of individual-specific motor abilities in the control of both the upper- and 

lower-limb (Haar et al., 2017; Bürki et al., 2017). 

In the second scenario it was postulated that motor performance would worsen from 

single- to dual-task conditions, and that walking while texting with the smartphone would 

reveal greatest motor impairments due to the lack of constant visual scanning of the 

surroundings as well as to the high cognitive demand of the secondary task (see chapter 
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1, paragraph 1.2.2). In line with what was expected, participants showed the highest level 

of motor impairment as expressed through lower gait speed and higher trunk acceleration 

when walking while texting with the smartphone with respect to the other two conditions 

(see figure 7-6 and 7-7). However, the specific reason why these effects were observed 

could only be hypothesised: indeed, no dual-task costs and/or difficulty level in each 

condition were assessed. Priority in fact was given to the investigation of the 

neurophysiological correlates of locomotion control during stable and unstable real-life 

situations and, given the complexity of the designed secondary task, it was decided not to 

investigate cognitive performance and its direct effects on motor outcomes. Future studies 

should therefore aim to evaluate the level of cognitive effort and dual-task difficulty in 

order to more reliably speculate on the origins of the observed changes in motor 

performance. Interestingly though, neural correlates of single- and dual-task performance 

revealed whole-brain and condition-specific changes. The reported whole-brain changes 

further strengthen recent comments on the nature of latest dual-task investigations, as 

many studies a priori focus only on the activity of the pre-frontal regions of the human 

brain, when other cortical areas would likely show related changes (Metzeger et al., 2017; 

Bürki et al., 2017). In contrast with previous studies speculating that only the pre-frontal 

cortex would show a systematic increase of activity when performing dual-task exercises 

(Holtzer et al., 2011; Doi et al., 2013; Mirelman et al., 2014; Holtzer et al., 2015; Al-

Yahya et al., 2016; Holtzer et al., 2016), the current research reported changes specific to 

the type of secondary task undertaken involving the pre-frontal regions as well as other 

cortical areas, in line with previous findings (Nijboer et al., 2014; Lin and Lin, 2016; 

Metzeger et al., 2017; Bürki et al., 2017). Future studies should therefore consider a 

whole-brain approach in order to obtain a more comprehensive overview of the effects of 

the requested dual-task on cortical activations instead of making a priori decisions that 

could prevent the identification of significant contributors to motor and cognitive 

performance. The whole-brain comprehensive approach followed in the current research 

allowed the observation of dual-task specific changes in neurophysiological activity and 

the identification of a potential neural predictor of gait stability within the posterior 

parietal cortex. In summary, it appears that the posterior parietal region could be a valid 

target for neurorehabilitation of both the upper- and lower-limb (Bürki et al., 2017; Haar 

et al., 2017), thus further sustaining the claims that the human brain is directly involved 

in the control of both motor systems despite the different structures and complexity 

(Takakusaki et al., 2013; Kim et al., 2016; Artoni et al., 2017; McCrimmon et al., 2017; 

Takakusaki et al., 2017). 
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9.4 Methodological considerations 

This research focused on the investigation of behavioural and neuro-muscular correlates 

of human motor control in two different real-world contexts: a neuro-rehabilitation 

scenario and a real-world ambulatory scenario, based on real-life situations in the urban 

environment. The biggest challenge was developing an experimental framework 

(composed by study design, setup and analytical pipeline) that could be successfully 

translated from a lab-based, controlled yet noisy domain, to a real-world, partially-

controlled and noisier environment. From a technical point of view, the key elements 

shared by the two studies are: 

• The study design, based on a within-subject format, and the consequent statistical 

approaches; 

• The experimental skeleton, based on the investigation of behavioural, muscular and 

neural features of human motor control. Instrumental synchronization and time-axes 

correspondence was crucial for an accurate and correct inspection of human 

physiological evidence; 

• The body of the analytical pipeline developed in MatLab programming environment, 

based on the same signal processing principles but customizable according to the 

study specifics. 

The implemented robust technical frame allowed the demonstration of novel findings on 

human motor control of both upper- and lower limb which may contribute to the 

development of different real-world applications in the field of neuro-rehabilitation and 

computer science. Indeed, research is currently pushing towards promoting free-living 

and home-based applications: human physiological evidence obtained in lab-settings is 

often misguiding as subjects and patients strive to do well knowing that they are observed, 

but their daily-life performance and behaviour can be slightly different (usually worse) 

when inserted in a less controlled and multiple-stimulated environment (Del Din et al., 

2016; Ladouce et al., 2017). The proposed experimental framework successfully explored 

both behavioural and neuro-muscular correlates of human motor control in two different 

real-world scenarios, thus it would be a useful and valid working approach for future 

studies. From a methodological perspective, the most innovative contribution of this 

research is the developed Mobile Brain/Body Imaging (MoBI) setup, which would be a 

useful experimental approach to study performance and difficulties in everyday life 

activities in the neurologically impaired. A potential application of the designed mobile 
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setup is described in chapter 10, where it was employed within hospital settings for a one-

patient test to verify reliability and applicability in real clinical scenarios. 
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10 Future perspectives: a case study 

The clinical relevance of this thesis is demonstrated by a case study carried out in 

collaboration with the Queen’s Hospital (Romford, London, UK), where the designed 

mobile setup was given a chance to be clinically tested during a standard clinical 

evaluation session of a Parkinson’s disease patient.  

Parkinson’s disease is characterized by a degeneration and death of the dopaminergic 

nigrostriatal projections to the striatum of the basal ganglia. According to the Rate Model 

of basal ganglia dysfunction (see Figure 9-1), this causes 1) an enhanced activity of 

striatal neurons within the indirect basal-ganglia loop as well as 2) an increased activity 

of the subthalamic nucleus that excessively inhibits the neurons of the thalamus. The 

result is a net inhibition of the output from the basal ganglia and a subsequent reduced 

activation of the cortical motor areas (Peterson and Horak, 2016). Typical PD symptoms 

include hypokinesia (i.e. reduction of voluntary movements), rigidity and elevated 

muscles tone, as well as limb tremor at 4-6 Hz when at rest (Baehr and Frotscher, 1998). 

Human locomotion is mediated by different brain areas such as premotor and motor 

cortex, basal ganglia, cerebellum and brain stem (Takakusaki, 2013), all impaired in PD 

patients. Therefore, gait of PD patients is characterized by impaired behaviours such as 

excessive slowness, abnormal step variability and difficult postural control. These 

dysfunctions are thought to originate from the degeneration of different mechanisms 

within a PD patient brain (Peterson and Horak, 2016), which is further confirmed by the 

efficacy of medications and Deep-Brain Stimulation (DBS) not on all of them 

simultaneously. Moreover, due to the impaired basal ganglia, PD patients show reduced 

capacity to adapt and learning rate abilities (Krebs et al., 2001), as well as reduced 

retention skills (Nelson et al., 2017). Attention is another critical aspect for PD patients, 

mostly for those suffering of Freezing of Gait (FoG) (Tard et al., 2016): the performance 

of simultaneous tasks, that divides attentional sources, prevent them from being able to 

adapt to sudden changes in the environment and promote the necessary motor commands 

(Latt et al., 2009; Nieuwhof et al., 2016). It was indeed recently shown that alterations in 

the beta frequency band in parietal and occipital areas correlated with the advent of FoG 

events (Handojoseno 2015) and Gait Initiation Failure (GIF) (Ly et al., 2016). Moreover, 

controlled lab-based and free-living home-based recordings have shown substantial 

differences in performance, indeed worsening in real-world situations (Del Din et al., 

2016): there is the need for novel technologies able to assess the performance decay of 

PD patients in their free-living situation which could serve as more reliable evidences for 
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optimizing therapies. The mobile-setup was therefore utilized within hospital settings to 

test the ability of a DBS-implanted PD patient to walk naturally during a routine clinical 

evaluation appointment with the neurosurgeon in charge. The study was the first pilot of 

our mobile setup in a clinical environment and the goal was 1) to test whether the patient 

accepted it in terms of weight and encumbrance, and 2) to observe which type of analyses 

could be actually performed. 

The patient (female) suffered of PD for ten years, had a DBS implant (bipolar stimulation, 

frequency of stimulation 130 Hz) and was on Levodopa medication. When tested, the 

stimulator was on (DBS ON) as well as the medications (Med ON). The patient was asked 

to walk along a 9 m hallway within the hospital forth and back for a total of 18 m; the 

walk was repeated twice and the best trial was chosen for further analysis (see Figure 9-

2). Part of the full mobile setup designed for Study II was employed: electrocortical 

activity was recorded through the 64-channel Waveguard cap connected to the EEGoPro 

amplifier (ANT Neuro, Entschede, Netherlands). Sampling frequency was set at 1 kHz, 

activity was recorded with reference set in FCz and all electrodes impedances were kept 

below 5 k. The Samsung Galaxy S4 mini smartphone was fixed at the patient’s lower 

back with an elastic belt and data from its internal accelerometers and gyroscope were 

recorded through the AndroSensor app. Due to not having proper clothing, EMG activity 

from lower limb muscles and times of heel strikes through contact switches sensors 

couldn’t be recorded. Overall, the patient was comfortable with the wearable instruments 

and gave positive feedback on the experience. 

At the moment, the analyses of EEG data is delayed by the definition of an optimal filter 

able to remove the major source of noise due to the DBS stimulator. However, the linear 

acceleration data recorded in the best trial with the smartphone were uploaded into the 

free software iGAIT (Yang et al., 2012) and all the measures used in Study II were 

extracted (see Table 9-1). Of major interest were the measure of ver-RMSR and ml-

RMSR as previously shown as potential markers of gait stability and abnormalities 

respectively (see Study II, chapter 8, paragraph 8.4.2). To inspect the patient behaviour 

with respect to the healthy sample recruited in Study II, a regression between the two 

RMS ratio variables (Dependent Variables, DVs) and Velocity (Independent Variable) 

was performed. Figure 9-3 shows the result of the regression analysis: ver-RMSR was 

positively predicted by Velocity as previously shown (R2 = 0.646, p < 0.001, all 

assumptions met) according to the formula: 



219 

 

𝑣𝑒𝑟𝑅𝑀𝑆𝑅 =   0.32 + 0.418 ∗ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

Equation 10-1: Multiple regression model for verRMSR with PD patient’s data when simply walking. 

whereas ml-RMSR was negatively predicted by Velocity (R2 = 0.294, p = 0.037) 

according to the formula: 

𝑚𝑙𝑅𝑀𝑆𝑅 = 0.721 − 0.359 ∗ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

Equation 10-2: Multiple regression model for mlRMSR with PD patient’s data when simply walking. 

Figure 9-3 shows the PD patient behaviour as a red circle. As expected, she walked more 

slowly than any other healthy subject, showed the lowest ver-RMSR value (symbolic of 

rigidity) and one of the biggest ml-RMSR values (symbolic of poor postural control in 

the medio-lateral direction), in line with values previously reported in literature (Del Din 

et al., 2016). One previous study employed the measure of ml-RMSR to study 

abnormalities of gait in PD patients on and off medications (Sekine et al., 2014). The 

validity and reliability of such a measure was here further confirmed. 

This case study is the first testimony of the reliability and effectiveness of our mobile 

setup for the study of clinical populations, in this case of Parkinson’s disease patients but 

definitely extendable to other neurological populations. Future work is needed to improve 

the mobile setup, in order to make it even more comfortable for patients, as well as the 

analytical pipeline, in order to be able to remove potential case-specific big source of 

noise (e.g. DBS stimulator). Moreover, not only could the setup be actively used in 

clinical practice as a gait-monitoring tool, but could be eventually used to monitor patient 

behaviour in free-living conditions. This would provide further knowledge on the 

neurophysiology of clinical populations when inserted in a familiar and natural 

environment and give the possibility to study specific motor mechanisms in more natural 

settings: for example, instead of performing robot-mediated reaching movements, 

patients could be actually reaching towards and grasping a kitchen tool, which would 

likely highlight similar but different motor control strategies. 
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Figure 10-1: The direct and indirect basal ganglia pathways according to the Rate Model. 

The diagram on the left represents the basal ganglia connections in healthy subject, whereas the diagram 

on the right shows the pathological circuits in Parkinsonian patient. Green arrows = excitatory pathways, 

red arrows + inhibitory pathways. SNpc = Substantia Nigra, GPe = Globus Pallidus External, GPi = Globus 

Pallidus Internal, STN = Subthalamic Nucleus (adapted from Peterson and Horak, 2016). 
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Figure 10-2: Pilot study with one Parkinson’s disease patient. 

The patient walked along a 9 m hallway forth and back for a total of 18 m distance, starting at the centre of 

a Start white square (left), turning when at the centre of a second Turn white square (right) and then 

returning to the starting point. The patient carried all the setup on herself: brain activity was recorded by a 

64 channel EEG Waveguard cap connected to the EEGoPro amplifier. The Samsung Galaxy S4 mini was 

firmly placed at the subject’s lower back through the elastic belt. 
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Table 10-1: Natural walking gait measures of one Parkinson’s disease patient. 

The table reports all the values of all the gait measures evaluated through iGAIT toolbox from the linear 

acceleration data recorded at the level of the pelvis of the PD patient 

 Natural Walking (18 m distance) 

Cadence (step/min) 101.93 

Mean Step Length (m) 0.50 

Velocity (m/s) 0.71 

ver-RMS 1.61 

ml-RMS 1.35 

ap-RMS 1.82 

ver-RMSR 0.58 

ml-RMSR 0.49 

ap-RMSR 0.65 

ver-Step Regularity 0.71 

ver-Stride Regularity 0.62 

ver-Symmetry 0.09 

ap-Step Regularity 0.73 

ap-Stride Regularity 0.77 

ap-Symmetry 0.04 

ml-Stride Regularity 0.14 
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Figure 10-3: Example of one Parkinson’s disease patient’s natural walking performance with respect to the 

healthy subjects sample recruited in Study II. 

The values of ver-RMSR and ml-RMSR of a DBS implanted Parkinson’s disease (PD) patient have been 

added to the regression models with the independent variable Velocity to observe potential differences 

between healthy and impaired behaviour. As previously reported, ver-RMSR highly depends on Velocity 

(R2 = 0.646, p = 0.001) and the PD patient (red empty dot) shows the lowest velocity and smallest ver-

RMSR values. A significant moderate-to-weak regression was also successfully created for the dependent 

variable ml-RMSR as predicted by values of Velocity (R2 = 0.294, p = 0.037), whereby the PD patient 

shows one of the higher values of ml-RMSR. 
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Appendix II Confidential volunteer medical questionnaire 

 

 

CONFIDENTIAL VOLUNTEER MEDICAL EXCLUSION QUESTIONNAIRE 

 

Programme Title: NEUROMOTION: Mobilizing non-invasive neuroimaging for assisting the 
neurologically impaired to navigate the real world. 

Subject Number:   Age:   Gender:  Date: 

Please give details to help us in assessing your possible participation in the project. 
Please answer the following questions: 

Do you have Current Medication:  

…………………………………………………………………………………………………… 

Do you use Drugs or Alcohol: 

…………………………………………………………………………………………………… 

Have you had Surgery or Chronic Illnesses: 

…………………………………………………………………………………………………… 

Do you have a History of Head or Spinal Injury (e.g concussion, car crash whiplash): 

…………………………………………………………………………………………………… 

Do you have any Neurological Disorders (e.g. stroke, spinal cord injury, colour blindness, 
dyslexia, Parkinson’s or Alzheimer’s disease, epilepsy/seizures, family history of these): 

…………………………………………………………………………………………………… 

Do you have a Psychiatric History (e.g. schizophrenia, bipolar disorder, depression, 
obsessive compulsive disorders, panic disorder, Family History of these):  

.…………………………………………………………………………………………………… 

Do you have a CardioRespiratory Disease (asthma, angina, high blood pressure, 
respiratory distress):  

.…………………………………………………………………………………………………… 

Do you have a Musculoskeletal Condition: (bone fracture, muscle tear, ligament): 

..…………………………………………………………………………………………………… 

Do you have Metal Implantable Devices outside of mouth (e.g. pacemakers, intracranial 
plates, skeletal pins, vascular clips): 

.…………………………………………………………………………………………………… 

If you are a woman are you pregnant or experiencing altered menstrual cycles? 

.…………………………………………………………………………………………………… 

Handedness: Upper Body – Writing Hand   Lower Body – Kicking Foot 

..…………………………………………………………………………………………………… 
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Appendix III Written volunteer consent form 

 

 

INFORMATION SHEET 

We invite you to participate in an investigation. In order to help you to understand what the 

investigation is about, we are providing you with the following information. Please be sure 

you understand it before you formally agree to participate. Please ask any questions you 

have about the information that follows. We will explain and provide any further information 

you require. 

THE TITLE OF THE PROPOSED INVESTIGATION: 

NEUROMOTION: Mobilizing non-invasive neuroimaging for assisting the neurologically 

impaired to navigate the real world. 

WHY YOU ARE CHOSEN AS A POSSIBLE PARTICIPANT: 

As a subject you have confirmed that you are not excluded on physical or mental 
health grounds and that you are able to undertake exercise such as arm reaching, 
bicycling and walking (see CONFIDENTIAL VOLUNTEER MEDICAL EXCLUSION 
QUESTIONNAIRE) 

THE GOAL OF THE PROPOSED INVESTIGATION: 

We wish to measure how your reflexes and voluntary brain control over movement may 

interact. 

THE METHODS WHICH WILL BE EMPLOYED IN THE INVESTIGATION TO ACHIEVE THESE GOALS: 

• We will use purpose built exercising machines or treadmills upon which you will 
exercise. 

• We can use video analysis and non-invasive measures of muscle and brain activity 
to show us how you control and co-ordinate your muscles during exercise. 

• We will use several types of sensory cues to activate reflexes (such as 
tendon/muscle vibration or electrical nerve stimulation). Vibration or electrical 
stimulation of nerves or muscles can help measure the strength of reflexes during 
exercise. 

• We can test the amount of voluntary control you have over the way in which you are 
exercising by using transcranial magnetic stimulation (TMS), which test the strength 
of neural signals from the cerebral cortex of the brain using painless magnetic pulses, 
which activate nerve cells.  

• We can assess the cortical connectivity patterns that are generated inside your brain 
during movement (reaching/cycling/walking) by using electroencephalography 
(EEG), which detects the signals generated by your brain non-invasively through 
scalp electrodes. 

WHAT DOES PARTICIPATION IN THE INVESTIGATION PRACTICALLY INVOLVE FOR YOU? 

• Involvement will require you to attend the research laboratories a number of times in 
order to become familiar with routine measurements and equipment. Each visit will be 
approximately 3 hours long. 

• To undertake mild to moderate exercise (we may wish to ascertain your maximal 
exercise performance 

  on a separate occasion). 
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• To exercise whilst we measure reflex and voluntary muscle control using the methods 
described. 

• To abstain from caffeine and alcohol for 12 hours before testing (unless we explicitly 
state otherwise) and refrain from heavy exercise for 24 hours before testing. 

SPECIFIC BENEFITS ACCRUED FROM THE STUDIES TO YOU:  

There are no direct health benefits to you from the testing, but you will have a better 

knowledge of how your nervous system controls complex movement and if tested, 

knowledge of your aerobic fitness.  

POTENTIAL DISCOMFORTS AND HAZARDS OF THE INVESTIGATION: 

• The tests may lead to some muscular fatigue following assessment of aerobic 
fitness. You will be asked to indicate strenuous activity or unexpected levels of 
fatigue between sessions and maximal aerobic fitness tests will be symptom limited 
at your instruction. 

• Exercise with reflex and voluntary control measurements will have minimal discomfort 
or hazard. 

• Tests of reflexes and TMS are non-invasive procedures with minimal risks associated 
with them. 

• TMS is associated with a ‘click’ sound, the loudness of which we can lessen with you 
wearing earplugs if necessary. 

WHO YOU CAN CONTACT IF YOU ARE WORRIED ABOUT ANY FACTORS INVOLVED IN THE STUDIES: 

The studies will take part in the School of Health, Sport and Biosciences at UEL Stratford 

Campus. 

You are free to seek advice or further description of methods from the principle investigator 

or the named investigator: 

• Sara Pizzamiglio (0747 8295468; Email: u1433999@uel.ac.uk) 

• Prof Hassan Abdalla (0208 223 2963 Email: h.s.abdalla@uel.ac.uk). 
In addition, you are welcome to contact the Dean of School of Health, Sport and Bioscience 

for independent advice on the project goals and methods: 

Prof Neville Punchard (020 8223 4477; Email: n.punchard@uel.ac.uk). 

If you have any concerns about the conduct of the investigator, researcher(s) or any 

other aspect of this research project, you can contact: 

researchethics@uel.ac.uk. 

CONFIDENTIALITY: 

Your files and data held about you will be stored (and anonymously coded) in secure 
cabinets under a number rather than your name. You will not be individually identifiable 
in accordance with the Data Protection Act.  

Confidentiality of information provided is subject to legal limitations. 

The data generated in the course of the research will be retained in accordance with 
the University’s Data Protection Policy. 

THE UNIVERSITY OF EAST LONDON UNIVERSITY RESEARCH ETHICS 

COMMITTEE (UREC) HAS APPROVED THE STUDY. 

THE UNIVERSITY OF EAST LONDON IS THE SPONSOR OF THE STUDY. 

 

mailto:n.punchard@uel.ac.uk
mailto:researchethics@uel.ac.uk
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YOU ARE FREE NOT TO PARTICIPATE AND MAY WITHDRAW FROM THE STUDY AT 

ANY TIME AND WITHDRAW ANY UNPROCESSED DATA PREVIOUSLY SUPPLIED. 

THIS WILL NOT JEOPARDISE YOUR COURSE OF STUDY, IF YOU ARE A STUDENT 

VOLUNTEER. 

 

 

Consent to Participate in an Experimental Research Programme Involving 

Human Participants. 

Project Title: NEUROMOTION: Mobilizing non-invasive neuroimaging for assisting the 

neurologically impaired to navigate the real world. 

Principle Investigator: Professor Hassan Abdalla 

I have the read the information leaflet relating to the above programme of research in 

which I have been asked to participate and have been given a copy to keep. The nature 

and purposes of the research have been explained to me, and I have had the opportunity 

to discuss the details and ask questions about this information. I understand what is 

being proposed and the procedures in which I will be involved have been explained to 

me. 

I understand that my involvement in this study, and particular data from this research, 

will remain strictly confidential. Only the researchers involved in the study will have 

access to the data. It has been explained to me what will happen once the experimental 

programme has been completed. 

I hereby freely and fully consent to participate in the study which has been fully explained 

to me and for the information obtained to be used in relevant research publications.  

Having given this consent I understand that I have the right to withdraw from the study 

at any time without disadvantage to myself and without being obliged to give any reason. 

Participant’s Name (BLOCK CAPITALS) 

……………………………………………………………………. 

Participant’s Signature 

……………………………………………………………………………………….. 

Investigator’s Name (BLOCK CAPITALS) 

………………………………………………………………….. 

Investigator’s Signature 

……………………………………………………………………………………… 

Date: ………………………….  
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