roar e

research open access repository

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Jian, Yu; Falcarin, Paolo; Rego, S.; Ordas, I.; Martins, E. ; Quan,
Sun; Trapero, R.; Sheng, Q.Z.

Title: XDM-Compatible Service Repository for User-Centric Service Creation and
Discovery

Year of publication: 2009

Citation: Jian, Y. et al. (2009) ‘XDM-Comepatible Service Repository for User-
Centric Service Creation and Discovery’ IEEE International Conference on Web
Services, (ICWS 2009), Los Angeles, CA, 6-10 July 2009, IEEE, pp. 992-999
Link to published version: http://dx.doi.org/10.1109/ICWS.2009.155

http://roar.uel.ac.uk/
http://dx.doi.org/10.1109/ICWS.2009.155

2009 IEEE International Conference on Web Services

XDM-Compatible Service Repository for
User-Centric Service Creation and Discovery

Jian Yu', Paolo Falcarin®, Sancho Rego3 , Isabel Ordas’, Eduardo Martins’, Quan Sun’,
Ruben Trapero® and Quan Z. Sheng'
'School of Computer Science, The University of Adelaide, Adelaide, Australia
{jian.yu01,qsheng} @adelaide.edu.au
2Dip di Automatica e Informatica, Politecnico di Torino, Torino, Italy
{paolo.falcarin, quan.sun}@polito.it
3Por“[ugal Telecom Inovacédo, Aveiro, Portual

sancho-c-rego@ptinovacao.pt
“Téléfonica I+D, Madrid, Spain

ioa@tid.es

’RedHat-Jboss
emartins@redhat.com
DIT, Universidad Politécnica de Madrid, Madrid, Spain
rubentb@dit.upm.es

Abstract—The key objective of OPUCE system is to enable
the participation of end-users in the management of their
own services, by providing them with innovative tools which
allow an easy creation and delivery of personalized
communication and information services. This paper
describes the OPUCE service and component repository,
which extends the OMA OSPE service model storage
approach XDM. By integrating an ebXML Registry using
the native notification mechanisms of XDM, the search
capability of the repository is dramatically improved.
Moreover, this repository also exploits semantic Web
technology to provide an intuitive visualized browser for
convenient service exploring.

Keywords-service repository; XDM;
semantic services; visual discovery

user-centricity;

I. INTRODUCTION

In recent years the needs of the users concerning
telecommunications services, especially mobile ones,
have evolved rapidly, requiring the collaboration of an
increasing number of network resources of various
technologies and user data. On the other hand, users have
been excluded from current service provisioning models,
also not having any way to personalize their services
according to their needs.

But now, a new horizon awaits users. It is time for the
Telco world to follow the Web 2.0 paradigm, where
participants actively create and share contents among
themselves, going for its own Telco 2.0, in which users
become prosumers (producers + consumers) of services.

In this context, the challenge is a converged Web of
information technologies and communications services
where users could design their own highly personalized
integrated services, relieving operators from the pressure
of service development and publishing. The European

978-0-7695-3709-2/09 $25.00 © 2009 IEEE
DOI 10.1109/ICWS.2009.155

992

Union sponsored IST-FP6 integrated research project

OPUCE ! (Open Platform for User-Centric Service

Creation and Execution) was conceived to achieve this

goal.

Focusing on the promising notion of prosumer,
OPUCE aims at developing a full-fledged platform that
enables end-users, even technically non-experienced ones,
to create, manage, deliver, and share their personalized
services covering both information technology and
telecommunications features, regardless of the
infrastructure or technology that lies beneath.

The service repository is an indispensible part of a
service platform such as OPUCE. It should accomplish
several requirements so that the platform can work
smoothly: an effective way to manage the different parts
which compose the service description, a notification
system to get informed when changes happen and an
structured classification of services to ease the search
functionalities. General-purposed service registries such
as UDDI [1] and ebXML Registry [2] are not suitable to
fulfill those requirements. In OPUCE, we propose another
approach which tries to solve the drawbacks of existing
solutions:

e the repository supports a faceted approach to access
OPUCE service descriptions, which means we can
manage (retrieve, delete etc.) one aspect of the
service description without affecting the other parts
in a fine-grained manner (Section 2 describes the
OPUCE service description language in detail);

e Open Mobile Alliance (OMA)2 specification XML
Document Management (XDM) [3] based server is
used as the remote interface for the service repository

! http://www.opuce.eu/
2 http://www.openmobilealliance.org/

(ﬁcm‘%EE ter
(u
e psouety

to enable data management on mobile devices and
automatic XML validation;

o an ebXML Registry server is used as the service
query and discovery interface to provide advanced
search capabilities

e the semantic Web technology is leveraged to provide
a visualized service browser to facilitate end users
exploring services.

The rest of the paper is organized as follows: Section 2
introduces the OPUCE service description language.
Section 3 describes the general architecture of OPUCE
service repository, including its interfaces, the integration
between XDM server and ebXML Registry interfaces and
how to map the faceted service descriptions to the
repository. Section 4 presents the semantically enhanced
visual service browser. Section 5 discusses related work
and finally we conclude the paper in Section 6.

II. OPUCE SERVICE DESCRIPTION LANGUAGE

A proper execution and management of user-created
services requires a way to describe all the aspects that
characterize a service. It is not only required the typical
description of the most common aspects of a service
(What is the name of the service? Who is the creator?
What is this service for?), but also specific ones (Which
components does this service use? How does it use them?
What tasks are required at deployment time?).
Furthermore, the platform also needs to know all the
aspects that completely describe the available
components. It is useful (and mandatory) to be able to
answer the questions “How can this component be
combined with other ones?” “What operations can be
done with this component?” or “How to configure this
component to do what I expect it to do?”

In OPUCE we have created a complete service
description language [4] that describes all the required
aspects of a service, to be used both for composed
services (in the following simply called “services”) and
for base services (called “components”).

One component provides some functionality which
can be considered atomic from the point of view of the
user. One service is composed of at least one component

When a service specification is mapped to a specific
composed service, it is generated a set of service
description documents which represent the service in all
its aspects.This service description is represented in a set
of XML documents linked together. These files are called
facets, each addressing a different aspect of the service.

A facet is an abstraction over one or more service
properties that provide a partial description of a service.
Each facet addresses a focused task of a service
consumer, describing functional, non-functional, or
management properties.

The main advantages of the faceted approach are the
modularity and the flexibility [5]. New facets can be
added as long as it is necessary. Furthermore, each facet

993

can be described by using a different language, either
standard or customized.

Figure 1 depicts a graphical representation of the
OPUCE service specification.

The figure on the left represents the master description
of the service, which includes general purpose
information of the service, such as the service name (in
different natural languages), the version, the creator’s
name, or the unique identifier for the service. This master
document also contains a list of the facets included in the
service description. Each facet contains its type and a link
to the document where the complete facet description is.

The right side of the figure represents the structure of
a facet description document. Facet description
documents are saved in separate files, so they need an
identifier that must be the same as that of the service they
belong to. The facet specification language contains the
format of the language used in the facet specification data.
For instance, the facet representing the logic of the
composition is described by using the BPEL language [6],
thus the facet specification language contains a reference
to the BPEL language and the facet specification data
contains the BPEL script, which can be executed in the
OPUCE service execution environment [7].

SERVICE SPECIFICATION

SERVICE ID

SERVICE NAME
(Languages)
(Languages)
SERVICE VERSION /
SERVICE CREATOR

FACET SPECIFICATION

———
SERVICE ID .

FACET TYPE

ICONS

FACET SPECIFICATION LANGUAGE

FACET SET

FACET SPECIFICATION DATA

FACET*

FACET TYPE

FACET REFERENCE
g

FACET *

XML REPRESENTING
SPECIFICATION

FACET*

Figure 1. Service Specification with Facets

Apart from the Logic Facet, additional facets have
been used in OPUCE, such as a Deployment Facet, a
Semantic Facet, an Interface Facet or an Accounting Facet.
The usage of all the facets defined in OPUCE is not
mandatory for both types of services (services and
components). For instance, the logic facet is mandatory for
a composed service but not for a component (since we
don’t care which the internals of a component are). For
sake of completion these other facets have been defined:
the Provisioning Facet, SLA Facet, Graphical Facet, Logic
Facet, Behavior Facet, Context Awareness Facet,
Requirements Facet, Deployment Facet, Scheduling Facet
and Lifecycle Facet.

III. SERVICE REPOSITORY ARCHITECTURE

The OPUCE service and component repository is a
storage/repository for all the descriptor facets of the
OPUCE services and components. It should provide both
basic keyword-based and advanced semantics-aware
search functionality to other modules of the OPUCE
platform like Service Creation Environment (used by the
user to create and compose the own services) and Service
Advertising (used to notify user about updates on services
of interest).

This crucial requirement drives towards the
subdivision of the service repository module into two
parts: the Service Storage to manage the push/pull
functionalities of the services and Service Registry to
define the metadata and built the service taxonomy.

Figure 2 shows an external view of the architecture of
the OPUCE Service Repository, with more details on the
interfaces and the OPUCE modules that use them. As we
can see, a Registry module and a Repository module (the
aforementioned Service Storage) compose the overall
repository, which provides four groups of interfaces:

e Store interfaces: provide basic database-like
functionalities including Create /Retrieve/ Update/
Delete of services and components.

e Search interfaces: provide basic keyword-based and
advanced semantics-aware search for stored services
and components.

o Notification: provide notification to interested parties

when some parts of the service/component
specification are changed.
e Management: provide metadata, especially

classification and version management functions.
The Store interfaces are divided into Service Store and
Component Store. The Service Store provides basic
database functionality to the services; the user can
create/retrieve/update/delete a service and its various
facets. With the exception of the notification mechanism
which is provided by a SIP event framework, all the
interfaces are collectively presented as Web Services to
other modules.
g SCe ‘ gs:rviul\dver!ising

[Deployment Provisioning
O

Metadata Management

Figure 2. Service Repository: External View

994

Component Store provides basic database functionality
to components; much like the Service Store does to
services. Likewise, it also provides interfaces to change
the status of a component with respect to the service
lifecycle (created, deployed, active, inactive, etc)

The Search interface provides keyword-based and tag-
based service and component search functions, and it also
provides various search functions which are required by
Service Lifecycle Management, and Service Creation
Environment and other modules: examples are search by
event, by owner, by deployment status or by underlying
technology of a component.

The Notification interface provides basic change
subscription/notification ~ functionality. = Users can
subscribe to a specific change of components and
services.

The Metadata Management interface deals with the
metadata, specially the classification metadata, of services
and components. Users can build/modify a classification
scheme, which is a tree of classification nodes. Every
node on the scheme tree represents a concept, which may
be associated to a service or component. These
associations are created based on the semantic facet of a
service or component. An apparent application of the
scheme would be the service and component portal
interface: a classified directory can be obtained directly
from a classification scheme.

The Service Storage acts as a common database, taking
care of the storage, retrieval, updating and deletion of
services. The Service Registry, on the other hand,
manages the metadata of the services in storage; this
metadata could be keywords, tags, classifications,
relations, and formal ontologies.

Concerning the implementation platform for the
repository, common database management systems were
found not to satisfy the requirements for their weak
metadata management capability.

The ebXML Registry standard fulfils the main
requirement of the OPUCE platform: it is a registry as
well as a repository. The ebXML Registry has a powerful
Registry Information Model (RIM), which provides an
upper ontology for defining the service metadata. The
most important information models in RIM include:

o Classification Information Model to define classes
that enable classification;

o Association Information Model
associations between concepts;

o Service Information Model to define classes that
enable service description.

The strength of this RIM is the reason why this
technology has been chosen for the Registry part of the
OPUCE Service & Component Repository, allowing a
versatile, generic and easily expandable semantic
taxonomy to be built. The repository functions of ebXML
Registry are delegated to a database management system,
which works as a plug-in of the registry. However, the

to define the

Repository part of the ebXML Registry was found not to
be the best solution for the Service & Component
Repository because of its slow performance as pertains
the requirement parameters of OPUCE.

The Service Storage was achieved through the use of
an XML Document Management (XDM) server, as
defined in OMA specification [3]. This server is
responsible for handling the management of user XML
documents stored on the network side, such as presence
authorization rules, contact and group lists (also known as
resource lists) and static presence information. Since the
storing of a component in the repository is, in essence,
storing the XML documents of the facets, XDM is an
ideal match, in particular because it also offers strong
XML schema validation of all stored XML documents.

Furthermore, the inherent subscription/notification
mechanisms of this technology provide the natural
implementation of this capability in the Service
Repository.

A. Service storage: XDM Server

Figure 3 depicts the XDM Server arquitecture. In a
short summary, the XDM Server is an XCAP Server that
also provides a SIP [8] Event framework interface to
subscribe changes in documents managed by the server.

XCAP SIP Event Notifier

Data Source manage subscription to document changes
A, niotify document update

get/set document

#DM Event
Subscription
Control

Request
Processor

i L

getfput/delets request

Aaggregation
Proxy.

A XDM Server

notiFy dogument changes

’ mﬁnage subscription to document changes

getjput)’ae\ete request
! Yo

RCAP Client. Document SIP

Event Watcher

Figure 3. XDM Server Architecture

In OPUCE architecture the XDM Server is used to
store and manage the Service Repository XML facets.
Each of those facets is associated with an application. In
order for an application to use those resources, application
specific conventions must be specified. Those
conventions include the XML schema that defines the
structure and constraints of the data, well-known URIs to
bootstrap access to the data, and so on. Each of those
application-specific conventions for an XML document

995

type, in this case OPUCE XML facet, is an XCAP

Application Usage. Specifically, an XCAP Application

usage defines:

e Application Unique ID (AUID) - the ID used in
XCAP URIs to point to a specific XCAP Application
Usage.

e Default Document Namespace — an XCAP URI may
have a section, using an XPath expression, which
selects a specific element/attribute in a XML
document stored in the server. In those XPath
expressions the namespace of elements/attributes is
defined using prefixes, the default document
namespace defines the XML Namespace of
elements/attributes without prefix in those URIs.

e MIME Type — the MIME Type used when
exchanging XML content XML Schema and Data
Constraints - the XML Schema to validate
documents; Data constraints, which are impossible to
validate with XML Schema, e.g. one element value
must be a ISO country name that belongs to Europe

e Data Semantics - semantic definition on documents
content, used by applications filling data, not
validated by servers

e Naming Conventions - what is the document name
for each user? Are there global documents under a
specific name?

e Resource Interdependencies - one request may update
other documents as well, e.g. global/index document
in rls-services, a composition of all users/*/index
<service/> elements

e Authorization Policies - what each user can read or
write? If not specified the default policy is
considered, on which a user is allowed to read and
modify its own documents, and read global
documents.

The XDM Server has a notification mechanism that
follows OMA standard XDM. The simplified interface
offers operations to
o subscribeDocument. add a new subscription to

changes in the specified XML document, returning a
Response code that indicate failure or success
(including subscription id);

o subscribeAppUsage : add a new subscription to
changes in all XML documents for the XCAP
Application Usage with the specified AUID;

Related unsubscribe operations are obviously
available.

B. Mapping Faceted Descriptions into Repository

When a service or component facet is introduced in the
repository, there are two internal steps undertaken. The
first is the actual storing of the facet; the second is parsing
it for the needed metadata. As a facet is an XML
document, it is stored in the XDM server via the available
XCAP interface.

The URI of the document, which is the first parameter
in the above interface function, is composed by three
parameters:

e Application Unique ID - it refers essentially to the
type of facet being introduced. The concept was
explained before, but suffice it to say that each facet
allowed in the repository must have an associated
Application Unique ID so that proper XML schema
validation may occur;

e DocumentParent — it can be considered as a “folder”
inside a certain application usage. It will either be
“component” or “service”.

e DocumentName — the name of the component or
service for which we are storing a facet.

These three parameters uniquely identify a facet inside the

repository. Upon submission to the XDM server, the facet

will be validated against its application usage. This
ensures that only facets that fulfil a previously, well
defined XML-schema will be accepted into the
repository; in this manner, the service repository becomes
protected from invalid and erroneous descriptors which
could later compromise its capabilities. Once a facet is

validated and correctly inserted, it will be passed to a

parser which deals with introducing the metadata in the

ebXML Registry.

Building the service’s taxonomy follows a similar
process in all facets. Each Service or Component is
represented inside the ebXML Registry by an object
which is an “instance” of a certain “Concept”, namely that
of “Service”.

The parser will search for the relevant elements in the
introduced document, according to facet type. Each
element, for example a keyword in the semantic facet,
corresponds to an object instance of the “Keyword”
concept. The particular instance related to this element
will then be obtained from the repository if it already
exists or created if it doesn’t. Afterwards, all that is left is
to create a specific type of Association between this
concept object and the service object that represents the
component/service.

Using this process, the OPUCE Registry is populated
with an internal taxonomy which is essentially composed
of objects, each an instance of a certain abstract concept
such as Keyword or Service or Person, connected to each
other in a network of associations. This powerful and
flexible metadata structure easily allows one to perform
various searches and associations.

Iv.

In such a service platform like OPUCE in which users
need to seek for the components that are available to build
their services, a semantically enhanced service browser is
extremely useful. It should provide to the user the
taxonomy of services as it has been built in the Service
Registry. The present section explains how the metadata
structure has been provided in OPUCE.

SEMANTICALLY ENHANCED SERVICE BROWSER

996

Using ontology to represent semantic information of
services, a rich and considerable accurate meta-
information about services can be used to locate desired
services from a large bunch with high precision. Using
some advanced semantics visualization techniques [9], we
can enable the end-user to search services in a graphically
browsing manner without using any complex query
language (e.g. SPARQL [10]) for writing a query
statement. The implementation of this feature highly
pronounces the user-centric theme of OPUCE.

In the case of applying semantic web technologies to
discovering/searching services, it is necessary to
distinguish descriptions about individual services from
general knowledge of the domain that services reside in.
Using the terms of Description Logics (DLs), the
theoretical foundation of semantic Web technology,
descriptions on individual services are the ABox
(assertion box), and general domain knowledge belongs to
the TBox (Terminology box).

While TBox contains sentences describing concept
hierarchies and relations, ABox contains "ground"
sentences stating where in the hierarchy individuals
belong (i.e., relations between individuals and concepts).
The OPUCE Ontology stores the TBox of the general
domain knowledge and service semantic facet is the
ABox about individual services.

Following reasons make us separate TBox and
individual service assertions in the context of OPUCE:

e Improved performance on reasoning. To check
whether a service belongs to a class, we only need to
reason on TBox and the assertions of this service,
without reasoning on other individual service
assertions.

e Modeling, managing, and changing to TBox and
service assertions can be made independently.

Based on above statements, in OPUCE, we created a
single knowledge base, i.e. TBox. The assertions about a
specific service, with references to the knowledge base,
are kept in the semantic facet of this service.

As for the technologies employed, OWL-DL [11] is
the language to describe the knowledge base. For
semantic reasoners, Pellet [12], an open source DL
Reasoner in Java implementing the common DIG
Interface [13] is used, in order to allow interoperability
with other reasoners sharing this interface specification
based on a concept language and a minimal set of
operations.

Figure 4 describes the architecture of the service
browser. The OWL Manager module, which is built on
top of OWL API [14], loads the general domain
knowledge from OPUCE Ontology and a hierarchical
structure in ClusterMap format to display and query.
After a new OWL ontology is added, only one location in
the hierarchical structure is instantiated. The DL Reasoner
reasons through the “OPUCE Ontology” and finds all the
possible locations the service can reside in the structure

(mostly the ancestor node) and updates the corresponding
nodes which represent the added service to the structure.

Service Facets

OPUCE
OWL Ontology
transformer
OWL |description
A

Add/Re 1ove/Updali

OowL
l Manager

(OWL API)

ClusterMap
Input Generator

DL Reasoner (Pellet,
FACT++, Racer...)

Figure 4. Architecture of the visual semantic ervice browser

ClusterMap GUI

The browser uses the OWL Manager to manipulate
OWL elements, which has an interface for integration
with the reasoners. The DL reasoner provides standard
and cutting-edge reasoning services for OWL ontologies.

The ClusterMap GUI contains information
visualization technology developed at Aduna ° for
visualizing sets of classified objects. Its main purpose is
to show if and how these sets overlap (see Figure 5).

It can create visualizations of collections of
hierarchically classified objects and uses XML file as
input. Therefore Cluster Map is very suitable and well

designed to display the hierarchical structure as
mentioned above.
2 hasFunctionality 150 - Pharmacy (1)
2 ObjectUnion0f(Cal CanvertTextToSpesch) 1 [
- Calculate:
o GetPresence
2 ObjectUnionOf(Fiter Poling Read) =
~J GetContext 3
J Translte ¥y & \
J Search | % \)
- Sendilessage | J k
o Call M
21 hasCategory Y | \J‘J
- Business
J Sacialletwarks J
2 Photography.
- Tool
o Telecom
el | BaseService (15)
J Encyclopaeda J
1 hasParameter
=+ hasOutput
J Company
o Text
+J Iage
J HeatiCentre JJJ
J Pharmacy JIIJ
- UsernameFacebook ‘ ‘
o Location
(- hashnput
=+ hasTechnology
o JSLEE
o JZE
=4 Thing
£ Service
J BaseService

Figure 5. Browsing Services with Aduna ClusterMap Viewer

? http://www.aduna-software.com/

997

The left area of Figure 5 is the hierarchical structure of
the general domain knowledge (only those which have
nodes are displayed). The number following the name is
the number of the services with the property.

On the right area, the service with combined properties
can be easily identified by the balls that are surrounded
with different colors. For example, there are three services
which are both “BaseService” denoted by cyan color and
“hasFunctionality Search” denoted by blue color and
otherwise do not belong to a semantic category. From the
user’s point of view, instead of writing query commands,
only some clicks in the check boxes are needed to retrieve
the information.

A. The OPUCE Services Ontology

The semantic facet is the part of the service
description most directly accessed by the end-users as it is
a descriptive representation of the service mainly
designed to ease service search and discovery specially
aimed at service composition.

However this part of semantic facet does not always
exist in service descriptions, thus a transformer which
extracts, analyzes and generates the semantic facets is
presented in the architecture. We use OWL language as
semantic description instead of plain XML, and thus an
OPUCE service ontology (see Figure 6 for detail) has
been created to define some OWL classes used to manage
the meta-data. This meta-data allows the categorization of
OPUCE services in order to semantically model the
hierarchy of all the services.

L | functionaliy
isCategoryOf o T

| hasFunctionaliy ™\

= (ObjactProperty)
inverse of N - inverse of ”
\ —imerse of Vo isFunctionalityOf
=S
R L T
TN "7 hasParameter
hasTechnology «__ P\ et
(ObjectProperty) nverse of \ /
s / " ‘yelseu’ R
- ‘ / isParameterQf L
| mvevssnl_ \sTechno\ogyOf (OtePropey ; inverse of
(ObjactProparty) =777 .
R [‘ arOf
technology |- -~ ~{ io_parameter | includes P
? e kel

inverse uf/ -

Figure 6. OWL Classes in OPUCE ontology

These OWL classes are:

e service class, which is the parent class of all the
OPUCE services;

e category class, which defines the domain of the
offered service (e.g. telecom, sports, tourism, etc);

e functionality class, which gives information about
what the service does (e.g. send message, call,
polling, etc);

e technology class, which specifies the technology
being used to implement the service;

e JO Parameter class, which contains the set of
parameters that can be input and/or output of a
service;

The service class has two sub-classes, base _service class
and composite_service class, which represent components
and services respectively.

The OPUCE services are subclasses of either
base_service or composite_service classes and have
several object properties associated, which are instances
of category, functionality, technology and 10 parameter
classes, to define the semantic description of the service.

B. Semantic Facet Mapping

Since a facet is a projection over one or more service
aspects that provide a specific description of a service,
hopefully we can retrieve semantic information from the
provided service facets files automatically. The OPUCE
Service description must be converted in OWL to include
the following information of a service: category,
technology, functionality, and /O parameters. As this
ontology file does not exist when a service is created, we
need a transformer to extract, analyze and generate it from
service facets. In fact, not all ontology information can be
extracted from current service facets so we need users to
input the information during service creation.

The most important and difficult part is how to map
the information given in several different service facets
files to the field in the OPUCE ontology:

e io parameter: 1/0 information can be found in
Interface facets of services. Actions describe the set
of operations the component offers, which is
composed of synchronous and asynchronous actions.
Actions may have input properties that have to be set
before the invocation and may also fire events.

In the following example of SendSMS component:
<In>to</In>
<In>content</In>
<Out>SMSSentEvent</Out>
<Out>SMSNotSentEvent</Out>

Two inputs and two outputs are shown. Their contents

are defined in the previous part of this interface facet

file. If the input or output io parameter cannot be
found in the OPUCE Ontology, we have to delete it in
our generated OWL files. For example, we don’t care
about the SMSSentEvent and SMSNotSentEvent and
they are not in the TBox, so no output part of

SendSMS is presented in the OWL file. Meanwhile

we may have to modify the OPUCE ontology files to

give a better match result in order not to miss some
semantic information.

e technology: the Component Provisioning facets
contain the information for service components (Base
Services). We can find the technology information
from the “componentType” element.

998

e Category: in the plain XML file of semantic facet
description, there is a “Keywords” field which is
assigned by the creator to help to classify the service
into a predefined category tree. In the case SendSMS
it is “messaging”.

e Functionality: it's not easy to get the functionalities
of a service from service facets for the notion
“functionality” is abstract and difficult to be
automatically interpreted by machines. We can get
this information from the service descriptions in
master facet, or set it manually, especially for Base
Services.

The Cluster Map Viewer operates on XML-structured
data files, describing the visualized objects, the class tree
and the sets of objects contained by the classes.

An XML data file is rooted by a Classification Tree
element containing the following two information types:

1. The ObjectSet: a part describing all information
objects displayed in the visualization. Every Object has an
ID attribute that will be needed later on for the definition
of the Classifications. In our case each newly added
service is modeled as an object in this object set with its
name and ID.

2. The ClassificationSet: a part describing the class
hierarchy or taxonomy. The classes in the taxonomy are
defined inside the ClassificationSet element, using a list
of Classification elements.

Every Classification has an ID that is used to register
parent-child relationships between other classes. In our
case “Calculate” has a parent which is “hasFunctionality”
and named as c0. In the displayed graph, the “Calculate”
will be shown as the child class of “hasFunctionality”
class. The aim of the OWL reasoner in our case is to find
all the possible parent classes of a specified class given
the whole hierarchy of the ontology knowledge denoted in
the OPUCE Ontology files. After finding all the parent
classes, the OWL API adds the ID of the service in the
ObjectIDs of the corresponding classification.

V. DISCUSSION AND CONCLUSION

With the rising and prevalent of service-oriented
computing, providing suitable service repositories for the
convenient retrieving, discovery, and management of
service descriptions also gains a momentum. UDDI [1]
and ebXML Registry [2] are the two main specifications
for managing and discovering e-service descriptions. To
support flexible service description management, we
extend ebXML Registry with new facet-based
functionalities. As we discussed in the first Section, the
main application area of UDDI and ebXML Registry is
Web information systems and lack the support to
telecommunication protocols such as SIP. To enable
description management on mobile devices, a XDM
server [3] is used to integrate with ebXML Registry.

Extending service repositories with semantic features
to enhance the discovery capability has been a hot topic.

In [15], the authors enrich ebXML Registry with OWL
ontologies. In [16-18], various approaches are used to
enhance UDDI with semantics. In our approach, service
semantic descriptions are used to visualize the
classification information of services, resulting in an
intuitive service browser facilitating service exploration.

In this paper, we describe the technical details of a
novel service repository used in the user-centric service
platform OPUCE. Technologies from the mobile
computing, Web information systems and semantic Web
fields are integrated to fulfill the complex requirements
aroused in the platform. Currently, the OPUCE platform
has been integrated into the mobile open source
community Open movilforum®, and a usability testing
plan is underway.

VI

The work presented in this paper was performed as
part of the OPUCE project and partly funded by the
European Union under contract IST-034101, as an
Integrated Project of the 6th Framework Programme,
Priority IST. The authors want to thank all project partners
for their valuable contributions, and in particular Alvaro
Martinez Reol and Albeto Leon (Téléfonica).

ACKNOWLEDGMENT

REFERENCES

[1] L. Clement, A. Hately, C. von Riegen, T. Rogers (eds.), UDDI
Version 3.0.2 Specification, UDDI Specification Committee Oct.
2004.

[2] K. Breininger, F. Najmi, and N. Stojanovic (eds.), The ebXML
Registry Repository Version 3.0.1, OASIS, Feb. 2007.

[3] OMA (Open Mobile Alliance) standard XDM, RFC 3265(Session
Initiation Protocol (SIP)-Specific Event Notification) and IETF
draft ,An Extensible Markup Language (XML) Configuration
Access Protocol (XCAP) Diff Event Package, June 2006.

[4] J.C. Yelmo, R. Trapero, J. M. del Alamo, J. Sienel, M. Drewniok,
I. Ordéas, and K. McCallum, “User-Driven Service Lifecycle
Management — Adopting Internet Paradigms in Telecom Services”,
Sth International Conference on Service-Oriented Computing
(ICSOC’07), Springer, Sept. 2007, pp. 342-352.

[51 J. Walkerdine, J. Hutchinson, P. Sawyer, G. Dobson, and V.
Onditi, “A Faceted approach to Service Specification”, 2nd IEEE
International Conference on Internet and Web Applications and
Services (ICIW'07), May 2007, pp. 20-20.

[6] A. Alves, et al (Ed.), Web Services Business Process Execution
Language Version 2.0, OASIS WSBPEL TC, Jan 2007, available
online at http://docs.oasis-open.org/ wsbpel/2.0/.

[7] C. Baladron, J. Aguiar, B. Carro, J. Sienel, R. Trapero, J.C. Yelmo,
JM. Del Alamo, J. Yu., P. Falcarin, “Service Discovery Suite for

User-Centric Service Creation”, Service Oriented Computing: a
look at the Inside (SOC@]Inside’07) workshop, Vienna, Sept 2007,

pp. 46-51.

[8] SIP, Session Initiation Protocol. On-line at
http://www.ietf.org/rfc/rfc3261 .txt

[91 Aduna Cluster Map Viewer Autofocus, On-line at

http://www.aduna-software.com/technologies/autofocus

SPARQL (SPARQL Protocol and RDF Query Language). On-line
at http://www.w3.org/TR/rdf-sparql-query/

* http://opuceportal. movilforum.com/

999

[11]

[12]

[13]

(14
[15]

[}

[16]

[17]

(18]

M.K. Simith, C. Welty, and D.L. McGuiness (eds.), OWL Web
Ontology Language Guide, W3C Recommendation. Online at
http://www.w3.org/TR/owl-guide/

Pellet, the open source OWL Reasoner.
http://clarkparsia.com/pellet

On-line at

The DIG Interface (Description logic Implementation Group). On-
line at http://dLkr.org/dig/

OWL API. On-line at http:// owlapi.sourceforge.net/

A. Dogac, Y. Kabak, Gokce B. Laleci. “Enriching ebXML
Registries with OWL Ontologies for Efficient Service Discovery”,
14th International Workshop on Research Issues on Data
Engineering: Web Services for E-Commerce and E-Government
Applications (RIDE'04) , pp. 69-76.

M. Paolucci, T. Kawamura, T.R. Payne, K. Sycara, “Semantic
Matching of Web Service Capabilities”, Horrocks, 1., Hendler, J.
(eds.) ISWC 2002. LNCS, vol. 2342, Springer, Heidelberg, 2002,
pp. 485-511.

R. Akkiraju, R. Goodwin, P. Doshi, S. Roeder, “A method for
semantically enhancing the service discovery capabilities of
UDDI”, Workshop on Information Integration on the Web (IIWeb
2003), Acapulco, Mexico, August 2003.

D. Kourtesis and 1. Paraskakis, “Combining SAWSDL, OWL-DL
and UDDI for Semantically Enhanced Web Service Discovery”, S.
Bechhofer et al.(eds.): ESWC2008, LNCS 5021, 2008, pp.614-
628.

	ICWS Ieee 2009 cs
	ICWS09

