A Scalable Malware Classification based on
Integrated Static and Dynamic Features

Tewfik Bounouh', Zakaria Brahimi!, Ameer Al-Nemrat?, and Chafika Benzaid?

! Dept. of Computer Science, USTHB, Algérie,
2 Architecture, Computing, and Engineering School, UEL, UK
ameerQuel.ac.uk
3 Division Sécurité Informatique, CERIST, Algérie
cbenzaid@usthb.dz

Abstract. This paper presents a malware classification approach which
aims to improve precision and support scalability. To this end, an hy-
brid approach combining both static and dynamic features is adopted.
The hybrid approach has the advantage of being a complete and robust
solution to evasion techniques used by malware writers.

The proposed methodology allowed achieving a very promising accuracy
0f 99.41% in classifying malware into families while considerably reducing
the feature space compared to competing approaches in the literature.

Keywords: Malware classification, Static features, Dynamic features,
Coarse-grained modeling

1 Introduction

With millions of malicious programs in the wild, and more encountered every
day, malware analysis is critical for anyone who responds to computer security
incidents [23].

Over the past few years, an increased interest has emerged in developing au-
tomated malware classification systems [21,28,14,19,25,5,6,18,27,9,20]. The
existing classification systems basically rely on two analysis techniques: static
and dynamic. The static analysis refers to examining the malware code without
executing it, whereas the dynamic analysis consists in observing and monitoring
actions performed by the malware during its execution. While static analysis pro-
vides important insights into the detection and classification of malware, its main
weakness lies in coping with packing and obfuscation [17]. As a result, dynamic
analysis has recently received remarkable attention as it is significantly less vul-
nerable to code obfuscating transformations. However, dynamic analysis has its
own weaknesses. Indeed, dynamic analysis techniques monitor the malware exe-
cution in a controlled environment (e.g., a sandbox). Hence, environment-aware
malware may detect the controlled environment and then prevent themselves
from performing malicious behavior. Furthermore, dynamic analysis is not de-
signed to explore all possible execution paths [17] which leads to an inaccurate
picture of the malware behavior. Due to the limitations of static and dynamic

analysis, relying only on one of them is insufficient to correctly classify malware.
Consequently, researchers [13, 10, 20] have most recently adopted an hybrid tech-
nique which combines both static and dynamic features for better malware de-
tection and classification. The major issues of these approaches is the size of
the feature space which grows in proportion with the number of samples under
examination. This might induce a scalability issue and incur high performance
penalties for the classification process.

In this study, a malware classification system is developed which aims to im-
prove precision and support scalability. With this in mind, an hybrid approach
combining both static and dynamic techniques is adopted. The hybrid approach
has the advantage of being a complete and robust solution to evasion techniques
used by malware writers. Indeed, the static analysis overcomes the shortcomings
of dynamic analysis by extracting relevant features even if the malicious soft-
ware does not execute its payload during the dynamic inspection. Meanwhile,
the dynamic analysis allows to collect the malicious behavior of a malware even
if its code is distorted by obfuscation and protection techniques. The proposed
classification framework exploits two static features; that are: printable string in-
formation due to its precision in malware detection and function length frequen-
cies for their contribution in dissimilarity between malware families. Moreover,
the dynamic features used consists in the set of actions on the system resources
modeled in coarse-grained manner which allows to bound the feature space.

The rest of the paper is organized as follows. Section 2 summarizes related
work in the literature. Section 3 presents the proposed malware classification
framework. Section 4 discusses the experimental results. Finally, Section 5 con-
cludes the paper.

2 Related Work

Over the past few years, an increased interest has emerged in developing auto-
mated malware detection and classification systems. To this end, various data
mining and machine learning approaches [21, 28, 14,19, 25, 5, 6, 18, 27,9, 20] have
been applied to categorize malware into families based on different features de-
rived from the analysis of the malware. Indeed, malware analysis involves two
fundamental techniques: static and dynamic. The static analysis refers to ex-
amining the malware code without executing it, whereas the dynamic analysis
consists in observing and monitoring actions performed by the malware during
its execution. In this section, we review some relevant work.

Features that are commonly gleaned from a static analysis of malware in-
clude Portable Executable (PE) header metadata such as Dynamic Link Library
(DLL) [21] and APT calls [28], bytes sequences (or n-grams) [21, 14,29], Opera-
tional Codes (OpCodes) [19, 22, 24], strings [21,25,12], and function length and
function length frequency [26]. Strings-based techniques were shown to achieve
high detection and classification accuracy compared to PE and n-grams based
techniques [21, 25]. Moreover, function length frequency features is significant in
identifying the malware’s family [13]. While static analysis provides important

insights into the detection and classification of malware, its main weakness lies
in coping with packing and obfuscation. In fact, Moser et al. [17] proposed an
obfuscation scheme that is provably NP-hard to analyze statically.

As a result, dynamic analysis has recently received remarkable attention as it
is significantly less vulnerable to code obfuscating transformations. The promi-
nent techniques tailored to extract dynamic features are n-gram analysis [16],
non-transient state changes [5], taint analysis [6,30], system call trace analy-
sis [18,7,9], and API calls [27,8]. Dynamic approaches can further be catego-
rized into fine-grained (e.g., [6,30,15]) and coarse-grained (e.g., [9]) behavior
modeling approaches. The fine-grained behavior modeling approach yields pre-
cise information for executed codes, though comes with the cost of a huge feature
space which might incur high performance penalties. In the other hand, coarse-
grained analysis has proven its effectiveness in accurately capturing the malicious
characteristics while reducing the feature space as well as the amount of noise
in the extracted features [9]. In dynamic analysis techniques, malware samples
typically require to be executed in a controlled environment (e.g., a sandbox).
Hence, environment-aware malware may detect the controlled environment and
then prevent themselves from performing malicious behavior. Furthermore, dy-
namic analysis is not designed to explore all possible execution paths [17] which
leads to an inaccurate picture of the malware behavior.

Due to the limitations of static and dynamic analysis, relying on only one of
them is insufficient to correctly classify malware. Most recently, the researchers’
interest has turned to combine both static and dynamic features in the detec-
tion and classification approaches. Santos et al. [20] combine the frequency of
occurrence of OpCodes sequences with the information of the execution trace
of an executable. Islam et al. [13] classify binaries into malicious and benign
files using function length frequency, printable string information, and API calls
along with their parameters. The approach proposed in [10] distinguishes mal-
ware from cleanware based on suspicious section count, function call frequency
and network and file activities along with their parameters. The major issues of
these approaches is the size of the feature space which grows in proportion with
the number of samples under examination. This might induce a scalability issue
and incur high performance penalties for the classification process.

In this work, we adopt a hybrid approach which uses both static and dynamic
characteristics. But unlike existing solutions, the proposed approach focuses on
classifying malware into families rather than distinguishing between malware
and cleanware. We aim to develop a classification system with a significant pre-
cision and scalability that allows the processing of large samples of malware in
reduced delays. To this end, we exploit printable string information due to its
precision in malware detection, function length frequencies for their contribution
in dissimilarity between malware families, and the set of actions on the system
resources modeled in coarse-grained manner which allows to bound the feature
space.

3 Malware Classification Process

Our study focuses on implementing a malware classification framework. The
classification system requires the succession of three distinct stages, namely:
Feature extraction, feature abstraction, and then classification using a machine
learning algorithm.

Firstly, static and dynamic features of each executable are collected during
the extraction process. Afterward, the extracted data, which are presented in
linguistic form (e.g., “Creation of file A”), will be transformed into vectors of
integers during the abstraction process. These vectors represent the Cartesian
coordinates of each executable in a space of n-dimensions. Finally, the feature
vectors are passed to machine learning algorithms for malware classification.

In what follows, the different stages of the proposed system will be presented.

3.1 Feature Extraction

The data extraction process is the starting point of our malware classification
framework. To this end, we adopt an hybrid approach which combines the ex-
traction of static and dynamic features.

Static Feature Extraction From each disassembled binary code, the printable
strings and the function length frequency information are collected.

Strings

A string is defined as a consecutive sequence of printable characters. In this
work, the strings are extracted using Hexdive tool [3]. It is worth to men-
tion that much of strings included in malware are irrelevant. Indeed, they are
deliberately maintained in the code in order to confuse malware detection
process. In order to remove noises (i.e., impertinent strings) without biasing
the analysis, the Hexdive filter was configured to keep only strings whose
the minimal length is 4 characters. Moreover, only strings related to system’s
actions and objects (e.g., recv, ReadFile, GetProcAddress) are selected. For
the sake of optimizing the system’s response time, the strings selected are
the most dominant. That is, the strings with an apparition frequency of at
least 80% in each malware family are maintained. For instance, if we have
50 malware belonging to family A, we will select strings whose apparition
frequency is higher than 40. By applying the aforementioned selection rec-
ommendations, a global list is constructed, containing all printable strings
extracted from the malware dataset.

The strings feature consists in identifying for each malware sample the total
number of distinct strings found within its code and a binary report on the
presence of each string in the global list, where a ‘1’ represents the fact that
the string is present and a ‘0’ that it is not.

Function Length Frequency
The length of a function is defined as the number of bytes in the function’s

code. To construct the function length frequency feature, a set of length
ranges are defined in order to obtain a satisfactory precision while keeping
a suitable computation time. Indeed, more the number of ranges increases,
more the classification precision will be increased but at the cost of an in-
creased computation time. The function length frequency feature consists in
counting the number of functions in different length ranges. The IDA Pro
disassembler [2] was used to extract the length of functions. IDA Pro stands
out from other disassembling tools by being programmable and by its abil-
ity to execute scripts (IDC, Python, - -- etc.) from Command Line Interface
(CLI). In our case, this contributes greatly in automating the extraction pro-
cess of function lengths. To this end, an IDC script was developed to retrieve
lengths of all functions identified in a given malware code.

From a practical point of view, upon completion of extraction, the extracted
strings and their occurrence frequencies as well as the extracted function names
and their lengths are saved in a MySQL database. Once the database is filled, its
content is carefully studied in order to select relevant strings and define function
length ranges to be used in the abstraction phase. The selected strings and the
identified function length ranges are saved in two separated files. Those files
represent the constitutional dimensions of static vectors to generate during the
abstraction phase.

Dynamic Feature Extraction Secondly, behavioral features are extracted
from the reports generated after executing malicious software in a confined envi-
ronment. This process is done by submitting the malware samples to Anubis [1]
sandbox. Behavioral reports generated from Anubis sandbox are presented in
XML format, which is by default structurally readable and platform indepen-
dent suitable for a fast-paced and automated investigation.

Each report contains the execution trace of a program represented by system
calls invoked to perform the program’s tasks (file and registry manipulation,
processes, and network communication). Recall that we adopted the approach
proposed by Chandramohan et al. [9] to extract dynamic features from XML
reports. The approach has the advantage of fixing the number of features while
keeping a high accuracy rate. It is based on the assumption that the identifica-
tion of malware families requires analyzing the types of security-sensitive actions
performed on system resources. Thereby, the system resources and the actions
performed on those resources are extracted. We limited our study to four system
resources, namely file, registry, process, and network. Those resources are iden-
tified as the most security-critical system resources that are widely attacked by
malware [9]. The dynamic features are based on the set of actions performed on
the system resources. For sake of scalability, only non-identical set of features are
kept. For instance, a set of identical actions performed on two different resource
objects (e.g., files A and C) are considered as a single malware feature. Such
behavior modeling reduces the amount of noise in the malware’s features space
while accurately capturing the underlying malicious characteristics [9].

File Features
The possible actions performed by a malware on a file resource are: (1)
Create action which creates a new file/directory or opens an existing file;
(2) Modify action which modifies the file’s content; (3) Read action which
reads the file’s content; (4) Delete action which deletes the file/directorys;
and (5) Memory-mapped action which maps the file into a virtual memory
that can be shared by several processes. Thus, a malware has a maximum of
(25 —1); that is 31 possible combinations of actions that could be performed
on a file resource. Each of these combinations is modeled as a “file” feature.
Consequently, There are 31 possible file features of a malware.

Registry Features
The six potential actions that a malware can perform on registry are as
follows: (1) Create a key which creates a new registry key/sub-key; (2) Delete
a key which deletes an existing registry key/sub-key; (3) Monitor a key which
monitors the parameters of registry key/sub-key; (4) Modify a value which
modifies the value of a registry key/sub-key; (5) Read a value which reads
the value of a registry key/sub-key; and (6) Delete a value which deletes the
value of a registry key/sub-key. This makes a total of (26 — 1); that is 63
possible registry features of a malware.

Process Features
The potential combinations of actions on a process are formed of: (1) Cre-
ate_a_ process which creates a process to execute a program; (2) Delete_a_process
which terminates the process and kills all its threads; (3) Create_a_thread
which creates a new thread to run within an executing process; (4) Read_shared_memory
which allows the process to read the shared memory; and (5) Write_shared_memory
which allows the process to write to the shared memory. This yields a total
of (2° — 1); that is 31 possible process features of a malware.

Network Features
To identify the potential actions that a malware can perform on a network,
both XML reports and the packet capture (pcap) files are analyzed. For
network resource, we identified 9 possible actions that are as follows: (1)
TCP_Conversation which establishes a TCP conversation with the desti-
nation; (2) SMTP_Conversation which initiates a conversation with a mail
server; (3) UDP_Traffic which allows to exchange an UDP traffic; (4) HTTP_Traffic
which allows to exchange an HTTP traffic; (5) FTP_Traffic which allows to
exchange an FTP traffic; (6) Ping-Requests which checks whether a remote
target is available over the network; (7) DNS_Query and (8) socket which
allow to modify the target machine’s information in order to compromise
its integrity; and (9) DATA which indicates the potential transmission and
reception of data. Hence, a malware has a maximum of (2% — 1); that is 511
possible combinations of network actions that could be performed on net-
work resources. Consequently, There are 511 possible network features of a
malware.

Unlike syntactic features, the extraction of behavioral features does not re-
quire a prior study. We just need to compare the extracted features with the

set of possible combinations of each behavioral feature type. The possible com-
binations of actions performed on the four resources are saved in four separated
files. The total size of the four files represents the constitutional dimension of
dynamic vector to generate during the abstraction phase.

The result of the extraction process for each binary is a set of data including
the function length distribution according to defined ranges, the strings present
in code and their total number, as well as the combinations of actions performed
on files, registry, processes, and network resources.

3.2 Data Abstraction

Data abstraction is the formalization process of the features collected during the
extraction process. The choice of the formalism is closely related to the type
of data supported by the classification algorithm. In our case, the classification
algorithms used support Cartesian data. Hence, we chose to abstract the features
as integer vectors. The vector encoding is used to represent the extracted features
of a given malware as a point in an n—dimension space.

Firstly, dynamic features are represented with a vector of length 636 = 31 +
63 + 31 + 511 for each malware. The first 31 bits are used for file features; the
following 63 bits are used for registry features, the following 31 bits are used for
process features and the last 511 bits represent the network features.

Formally, let F', R, P, and N be the set of file features, registry features,
process features and network features respectively. Let Z'73! = {r1]1 < 21 <
31,z € Z+}, 732-94 — {$2|32 < a9 <94, 25 € Z+}, 795125 — {1‘3|95 <z3 <
125,73 € Z*} and 21267636 = {21126 < x4 < 636,74 € ZT}. Let f, r, p and
n be the mapping F — Z'73!, R — 732794 p 79-125 N _, 7126-636
to assign a file, registry, process and network features respectively to a positive
integer in the respective range that serves as the bit position in the feature vector
to represent the feature. For a malware M, the dynamic feature vector Vp is
defined as follows:

1if 1 <k <31and M has the feature x € F, such as flx] =k
1if 32 <k <94 and M has the feature x € R, such as r[x] =k
Vplk] =< 1if 94 <k <125 and M has the feature x € P, such as p[x] =k
1if 126 < k <636 and M has the feature x € N, such as n[x] =k
0 Otherwise
1)

In the same way, static features form two vectors. The first vector is for
strings and the second one is for function length intervals. Let S and I be the
set of strings and the set of function length intervals, respectively. Let Z'~I5I =
{z|2 <z < |S|,z € ZT}. Let s be the mapping S — Z2~5I. For a malware M,
the string feature vector Vs, is defined as follows:

Vss[1] = number of strings found
Vsslk] = ¢ 1 if 2 <k <|S|and M has the string x € S, such as S[z] =k
0 Otherwise
(2)
Let Z'=Ml = {2]1 <x < |I|,z € Z*}. Let i be the mapping I — Z'~1|. For
a malware M, the function length frequencies feature vector Vg is defined as
follows:

Vis[H] = number of | function| € interval z,V1 < k < |I|;and x € I, such as i[z] =k
ST 0 Otherwise
3)

Finally, the obtained vectors Vp, Vs, and Vg are concatenated (Vp||Vss||Vsy)
to form the V' vector, which represents, in an n-dimension space, the Cartesian
data of the considered malware.

4 Classifcation Process and Evaluation

4.1 Malware Dataset

The test is conducted on a set of 1515 malware, previously classified and labeled
by VXheaven [4]. The malware samples span a period of 8 years (from 2007 to
2015) and belong to 26 families with more then 30 individuals per family. All
malware have been designed for Windows 32 bits platform. Table 1 lists the
different families and number of samples per family.

Malware Family |# of Samples| Malware Family # of Samples
Bakdoors 130 Trojan-DNSChanger-Win32|31
DoS-Win32 87 Trojan-Banker-Win32 43
Email-Worm 42 Trojan-Clicker-Win32 90
Exploit-Win32 39 Trojan-DDoS-Win32 48
Flooder-Win32 45 Trojan-Downloader-Win32 |50
HackTool-Win32 117 Trojan-Dropper-Win32 37
Net-Worm-Win32 |40 Trojan-Proxy-Win32 44
Packed 55 Trojan-Ransomware-Win32 |42
P2P-Worm-Win32 |49 Trojan-Spy-Win32 56
Rootkit-Win32 40 Trojan-Spy-KeyLogger 37
SpamTool-Win32 38 Trojan-Spy-BotNet 48
Trojan-Win32 94 Virus-Win32 59
Trojan-Dialer-Win32 |52 Worm-Win32 102

Table 1: Experimental Dataset

4.2 Classification Process

We assessed the efficiency of the integrated approach using different classification
algorithms from the Machine Learning toolbox WEKA [11]. The classification
algorithms are: Support Vector Machine (SVM), Nearest Neighbor (NN), De-
cision Tree (DT), and Random Forest (RF). After the feature extraction and
abstraction steps, the feature vectors are stored as ARFF (Attribute-Relation
File Format) files and passed to WEKA for classification. It should be noted
that all classifiers were evaluated by utilizing 10 fold cross-validation as it is a
well accepted and the standard method of classification.

4.3 Evaluation Metrics

To evaluate the proposed system, True Positive Rate (TPR), False Positive Rate
(FPR), Precision, Recall and Accuracy are measured. TPR is the rate of mal-
ware samples correctly classified. FPR is the rate of malware samples falsely
classified. Precision is the percentage of predicted malware classes that are ac-
tually the correct malware classes. Recall is the percentage of actual malware
classes predicted correctly by the model. The formulas of Precision and Recall
are given by equations 4 and 5, respectively:

TP
Precision = ———— 4
recision = oo s (4)
TP
Recall = 757N (5)

Where TP is the number of malware samples correctly classified in their class,
FP is the number of malware samples incorrectly classified in another class, FN
is the number of malware samples incorrectly classified in their class, and TN is
the number of malware samples correctly classified in other classes.

4.4 Experimental Results and Discussion

Table 2 shows the weighted average results when only static features are used.
It is worth to note that the weighted average is used in order to deal with the
imbalance in the number of samples per malware family. Meanwhile, Table 3
presents the weighted average results when both static and dynamic features are
used.

The obtained results show that the hybrid method, where both static and
dynamic features are used, achieves the best results with DT and SVM classifiers.
Indeed, an average accuracy of above 99% is reached using DT classifier, with an
improvement of 1.52% compared to using only static features. A gain of 1.52%
may appear insignificant for a dataset of 1515 samples as it represents only 23
malware. However, considering a malware corpus of 1000000 samples, this gain
will enhance the classification of 15200 malware samples.

10

Classifier TPR FPR Precision Recall

NN 0.691 0.014 0.695 0.691
DT 0.979 0.001 0.979 0.979
RF 0.964 0.002 0.964 0.964
SVM 0.674 0.015 0.689 0.674

Table 2: Weighted average classification results on the data set using the static
method.

Classifier TPR FPR Precision Recall

NN 0.631 0.017 0.636 0.631
DT 0.994 0.001 0.994 0.994
RF 0.957 0.002 0.958 0.957
SVM 0.747 0.011 0.751 0.747

Table 3: Weighted average classification results on the data set using the hybrid
method.

Apart from accuracy, the main advantage of the proposed hybrid approach
consists in the considerable reduction of the feature space thanks to the rules
used to select the most dominant static features and the coarse-grained modeling
of dynamic features. To confirm this claim, we compared the number of features
generated by our approach against the one proposed by islam et al. [13]. Table 4
reports the comparison results.

F#of samples # of features Accuracy Features used
Islam et al. [13] 2939 498 97.05% Static: Printable Strings + Function Length Frequency
72259 Dynamic: API Calls and Parameters
Total = 72757
Ours 1515 289 99.41% Static: Printable Strings + Function Length Frequency
636 Dynamic: Actions on System Resources
Total = 925

Table 4: Weighted average classification results on the data set using the hybrid
method.

From Table 4, we notice that the proposed approach achieves a better classi-
fication accuracy compared to [13] while considerably reducing the feature space.
In fact, the feature space is reduced by 98.73% which shows the effectiveness of
the coarse-grained modeling of features.

5 Conclusion

In this paper, we have proposed a malware classification system which aims to
improve classification accuracy while supporting scalability. The accuracy goal

11

was achieved by adopting an hybrid approach where both static and dynamic
features are combined. In the other hand, the scalability objective was achieved
by reducing the feature space thanks to the rules used to select the most domi-
nant static features and the coarse-grained modeling of dynamic features..

An experimental study was conducted on a dataset of 1515 malware samples.

The obtained results showed that the proposed approach reaches an average
accuracy of above 99%. Moreover, the feature space was reduced by 98.73%
compared to a competing approach.

References

O W=

10.

11.

12.

13.

14.

Anubis. http://anubis.seclab.tuwien.ac.at.

Hex-rays. ida pro. https://www.hex-rays.com/products/ida,.

Hexcorn ltd. hexdive. www.hexacorn.com.

Vxheaven. www.vxheaven.org.

M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario.
Automated classification and analysis of internet malware. In In Proc. of the 10th
Int. Conf. on Recent Advances in Intrusion Detection (RAID’07), pages 178-197.
Springer-Verlag, Sep. 2007.

U. Bayer, P. M. Comparetti, C. Hlauscheck, C. Kruegel, and E. Kirda. Scalable,
behavior-based malware clustering. In In Proc. of the 16th Symposium on Network
and Distributed System Security (NDSS’09), Feb. 2009.

R. Canzanese, S. Mancoridis, and M. Kam. Run-time classification of malicious
processes using system call analysis. In In Proc. of the 10th International Confer-
ence on Malicious and Unwanted Software (MALWARE’15), pages 21-28. IEEE,
Oct. 2015.

S. Cesare, Y. Xiang, and W. Zhou. Malwise-an effective and efficient classification
system for packed and polymorphic malware. IEEE Trans. Comput., 62(6):1193—
1206, 2013.

M. Chandramohan, H. B. K. Tan, and L. K. Shar. Scalable malware clustering
through coarse-grained behavior modeling. In In Proc. of the ACM SIGSOFT
20th Int. Symposium on the Foundations of Software Engineering (FSE’12), pages
27:1-27:4. ACM, Nov. 2012.

E. Gandotra, D. Bansal, and S. Sofat. Integrated framework for classification of
malwares. In In Proc. of the 7th Int. Conf. on Security of Information Networks
(SIN’14), pages 417:417-417:422. ACM, 2014.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The weka data mining software: an update. SIGKDD Ezplor. Newsl., 11(1):10-18,
Nov. 2009.

R. Islam, R. Tian, L. Batten, and S. Versteeg. Classification of malware based on
string and function feature selection. In In Proc. of 2nd Cybercrime and Trustwor-
thy Computing Workshop (CTC’10), pages 9-17. IEEE, Jul. 2010.

R. Islam, R. Tian, L. M. Batten, and S. Versteeg. Classification of malware based
on intergrated static and dynamic features. Journal of Network and Computer
Applications, 36:646—656, 2013.

J. Kolter and M. Maloof. Learning to detect malicious executables in the wild. In
In Proc. of the 10th ACM Int. Conf. on Knowledge Discovery and Data Mining
(SIGKDD’04), pages 470-478. ACM, Aug. 2004.

12

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

T. Lee and J. J. Mody. Behavioral classification. In In Proc. of the 15th Annual
Conf. of the European Institute for Computer Antivirus Research (EICAR’06),
Apr. 2006.

H. Mekky, A. Mohaisen, and Z.-L. Zhang. Separation of benign and malicious
network events for accurate malware family classification. In In Proc. of the IEEE
Conference on Communications and Network Security (CNS’15), pages 125-133.
IEEE, Sep. 2015.

A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection.
In In Proc. of the 23rd Annual Computer Security Applications Conf. (ACSAC’07),
pages 421-430. IEEE, Dec. 2007.

K. Rieck, T. Holz, C. Willems, P. Dussel, and P. Laskov. Learning and classification
of malware behavior. In In Proc. of the 5th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA’08), pages 108
125. Springer-Verlag, Jul. 2008.

I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C. Laorden, and P. G. Bringas.
Idea: Opcode-sequence-based malware detection. In In Proc. of the 2nd int. Conf.
on Engineering Secure Software and Systems (ESS0S’10), pages 35-43. Springer-
Verlag, Feb. 2010.

I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G. Bringas. Opem: A static-
dynamic approach for machine learning based malware detection. In In Proc. of the
Int. Joint Conf. CISIS’12-ICEUTE’12-SOC0’12, pages 271-280. Springer-Verlag,
2013.

M. Schultz, M. Eskin, E. Zadok, and F. Stolfo. Data mining methods for detection
of new malicious executables. In In Proc. of the 22nd IEEE Symposium on Security
and Privacy (S&P’01), pages 38-49. IEEE, May 2001.

M. Siddiqui, M. C. Wang, and J. Lee. Data mining methods for malware detection
using instruction sequences. In In Proc. of the 26th IASTED Int. Conf. on Artificial
Intelligence and Applications (AIA’08), pages 358-368, Feb. 2008.

M. Sikorski and A. Honig. Practical Malware Analysis: The Hands-On Guide to
Dissecting Malicious Software. No Starch Press, San Francisco, CA, USA, 1st
edition, 2012.

S. Stolfo, K. Wang, and W.-J. Li. Towards stealthy malware detection. In Malware
Detection, pages 231-249. Springer, 2007.

R. Tian, L. Batten, R. Islam, and S. Versteeg. An automated classification system
based on the strings of trojan and virus families. In In Proc. of jth Int. Conf.
on Malicious and Unwanted Software (MALWARE’09), pages 23-30. IEEE, Oct.
20009.

R. Tian, L. M. Batten, and S. C. Versteeg. Function length as a tool for malware
classification. In In Proc. of the 3rd Int. Conf. on Malicious and Unwanted Software
(MALWARE’08), pages 69-76. IEEE, Oct. 2008.

R. Tian, R. Islam, L. Batten, and S. Versteeg. Differentiating malware from clean-
ware using behavioural analysis. In In Proc. of the 5th Int. Conf. on Malicious
and Unwanted Software (MALWARE’10), pages 23-30. IEEE, Oct. 2010.

C. Wang, J. Pang, R. Zhao, and X. Liu. Using api sequence and bayes algorithm
to detect suspicious behavior. In In Proc. of the Int. Conf. on Communication
Software and Networks (ICCSN’09), pages 544-548. IEEE, Feb. 2009.

Y. Ye, T. Li, Y. Chen, and Q. Jiang. Automatic malware categorization using
cluster ensemble. In In Proc. of the 16th ACM Int. Conf. on Knowledge Discovery
and Data Mining (SIGKDD’16), pages 95-104. ACM, July 2010.

13

30. H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: Capturing system-
wide information flow for malware detection and analysis. In In Proc. of the 14th
ACM Conf. on Computer and Communications Security (CCS’07), pages 116-127.
ACM, 2007.

