
 Using Synthetic Data to Enhance the Accuracy of Fingerprint-based
Localization: A Deep Learning Approach

 Abstract—Data collection is costly and imposes privacy issues. Many solutions are proposed in the literature to reduce this
 cost, such as crowd-sourcing methods in data collection or using semi-supervised algorithms to enhance the positioning
 accuracy. However, semi-supervised algorithms need unlabeled data, and crowd-sourcing based methods need many
 participants. Fingerprint-based localization methods use received signal strength (RSS) or channel state information (CSI)
 in wireless sensor networks to localize the users in indoor or harsh outdoor environments. In this paper, we introduce a
 new method to reduce the data collection costs by using synthetic data in fingerprint-based localization. We use generative
 adversarial networks (GANs) to learn the distribution of a limited collected data and further, produce synthetic data and
 feed them to the system in addition to the real collected data in order to increase the positioning accuracy. Experimental
 results on a benchmark dataset show that by applying the proposed method and using a combination of 10% collected
 data and 90% synthetic data, we can get completely close to the accuracy as if we would use the whole collected data. It
 means that we can use 90% less real data and reduce the data collection costs while reaching the acceptable accuracy,
. using GAN generated synthetic data
.Index Terms—Synthetic Data, GAN, Deep Learning, Fingerprint, Localization, Wireless Sensor Networks

I. INTRODUCTION

The rapid development of smartphones has led to increasing the 
demands of location-based services (LBSs) based on wireless sensor 
networks (WSN) in different areas such as academic researches, 
industries, and commercial applications [1]–[3]. Localization services 
such as global positioning system (GPS) or global navigation satellite 
system (GNSS) are only available in outdoor environments, and 
these satellite-based methods do not provide acceptable accuracy in 
indoor or harsh outdoor environments due to non-line of sight error 
(NLOS), fading, and shadowing effects [4]. Ranging based methods 
such as time of arrival (TOA), angle of arrival (AOA) and receive 
signal strength (RSS) are employed to extract the distance between 
transmitters (or BSs) and receiver [2]. In these methods, the locations 
of BSs are known in advance. After obtaining the distance between 
the transmitter and receiver, triangulation methods are employed to 
estimate the location of the user [5]. Both TOA and AOA incur an 
enormous cost but do not provide the expected accuracy in indoor 
environments because of practical issues such as NLOS and fading 
effect [1]. On the other hand, all modern smartphones are equipped 
with energy detector hardware to extract the ranging information from 
the RSS. The accuracy of these techniques are highly impressed by
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the multi-path effect. The RSS also can be used for fingerprinting
based methods which is described in the following.

Fingerprinting methods are used in indoor environments to improve
the accuracy of RSS based localization [2]. They are a subset of
localization approaches in which the signal of multiple base stations
(BSs) such as WiFi, Bluetooth, ZigBee, light, and RFID is used
[4] to determine the location of a receiver, based on the received
strength of signal. Among the mentioned wireless systems, WiFi has
attracted much interest than others, because it is readily available in
modern smartphones and other communication devices [2]. In this
paper, we use the term APs to refer to WiFi BSs. Fingerprinting
methods have two-phases: offline (or training) and online (or test)
phase. The way of data collection in the offline phase depends on
localization purposes. Sometimes it is needed to find the area that
users are located on. In these problems, class labels are assigned
to each area, and fingerprints such as RSS or CSI are collected for
each class, separately (classification problem). On the other side,
when exact location estimation is required (regression problem), in
the training phase, fingerprints such as RSS or CSI are collected
in specific locations of the environment, known as reference points
(RPs). In the online phase, the target user receives RSS or CSI from
multiple BSs or APs. This information is further fed to the system
model that is already trained in the offline phase and finally, the
area or location of the user is estimated. In this paper, we focus on
classification problem and use RSS as the power of receiving signals
from multiple APs.

Machine learning methods and particularly deep learning ones
are recently used to recognize the statistical patterns of gathered
dataset to train the system model in the offline phase of fingerprint-
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based localization [3]. A deep model usually consists of several
layers of neural networks which are connected by links (weights)
and activation functions are used on the output of each layer. The
accuracy of fingerprint-based localization methods depends on the
number of samples in training phase. Therefore, it is crucial to work
on new methods that can reduce data collection costs, while reaching
an acceptable accuracy.

Many researchers have tried to increase the accuracy of fingerprint-
based localization methods. For the tracking of users, authors in [6]
have focused on using additional hardware besides the fingerprints
including magnetometer, gyroscope, accelerometer, and barometer
to measure the direction of the magnetic field, angular velocity, 3D
acceleration, and atmospheric pressure, respectively. Authors in [7]
propose a hybrid generative discriminative approach for handling
unlabeled data using a small number of labeled data. In [8] Authors
proposed a semi-supervised deep learning approach to reduce the cost
of collecting labeled data. This method uses all collected signals in
the smooth trajectory of a user, based on constructing a neighborhood
graph (similarity matrix) and minimizing introduced cost function.
The conventional methods to construct neighborhood matrix do not
consider the physical location of labeled data. Authors in [9] propose
GRASSMA approach for taking the location of labeled data into
account.

All the methods mentioned above need "real unlabeled" data to
reach an acceptable accuracy. Data gathering without losing the
privacy of users is a challenging issue. In this paper, we propose
a new method to improve the accuracy of localization while using
less real data. We use GANs to learn the distribution of collected
data which has a limited size because of cost considerations. This
trained GAN model further generates synthetic data with maximum
similarity to the real collected data that can be used as an extra
input to the localization system. GAN already have been used for
augmentation of data and classification problems in the other research
areas including palm-print recognition [10], eye contact detection
[11], remote sensing image scene [12], object classification [13], and
more generally in computer vision [14]. To the best of our knowledge,
this is the first time that synthetic data generated by GAN is used
to increase the fingerprint-based localization method.

The rest of this paper is organized as follows: in section II,
the conventional system model for fingerprint-based classification
problem is presented. In section III, the proposed deep learning-
based model to generate synthetic data is explained. experimental
results and conclusion are presented in sections IV and V, respectively.

II. SYSTEM MODEL

We use small letters (e.g. 0) for scalar numbers, boldface small
letters (e.g. a) for vectors, capital letters (e.g. �) for a function and
boldface capital letters (e.g. A) for showing matrices. The schematic
of an indoor environment for classification problem has depicted in
Fig. 1. In the first step, labels are assigned for each area or room.
Then, RSS values from multiple APs are gathered for each area and
after that system model should be trained from collected dataset to
complete the training phase. A deep neural network can extract the
patterns of a dataset for the desired task, and we use a deep structure,
� (x, \2) to train the system model for identifying the patterns of
each room from RSS values; where, x ∈ R1×M is the input vector
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Fig. 1: A schematic of the indoor environment for localization.

(RSS vector in our problem) and the � nodes are designed for each
class in the output side. Typically, the loss function in multi-class
classification problem is cross-entropy or log-likelihood which is
defined as follows [15]:

! (\2) = −
1

#

#∑
8=1

�∑
9=1

H8 9 log Ĥ8 9 (1)

where, H8 9 = {1 8 5 8 ∈ 2, 0 >.F} ,# is the number of all observations
for classification, � is the number of classes, H8 9 is real label value,
Ĥ8 9 is the predicted value from input values over � (x, \2) in training
phase, and \2 is the parameters of the deep model in the training
phase. Equation 1 can be written in vector form over the class
summation as follows:

! (\2) = −
1

#

#∑
8=1

y8 log ŷ)8 (2)

where, y8 ∈ B1×� and B ∈ {0, 1}. Therefore, y8 is one of
the [1, 0, 0, . . . , 0]1, [0, 1, 0, . . . , 0]2, ..., [0, 0, 0, . . . , 1]�
categories. Parameter Ĥ8 9 is a float number between 0 and 1 which is
predicted by the deep model. The log function has a straight effect on
! (\2) when Ĥ8 9 increases. It means that if H8 9 = 1 for any observation,
! (\2)will be declined when Ĥ8 9 tends to 1. Backpropagation algorithm
with Adam [16] optimizer is used for minimizing the log-likelihood
cost function. After optimization process in training phase, and
obtaining the weights of � (x, \2), it is ready to predict class labels
from input values in test phase. Maximum value from outputs of �
nodes, is the predicted class by the trained system model.

III. PROPOSED METHOD

Generative Adversarial Network (GAN), introduced by Goodfellow
et al. in 2014 [17], is a method to learn the features of given data,
and then generating synthetic data with maximum similarity to the
input. GAN generally consists of two different parts: the Generator
and the Discriminator. The generator is responsible for learning the
distribution of the training dataset and generating simulated data by
input noise, that matches the distribution of original data. Meanwhile,
discriminator takes these data as input, and by comparing with real
data, evaluates the authenticity of them. By continuously training
these two networks together, the generator is finally able to create
synthetic data that matches the distribution of real data and can fool the
discriminator. GANs are mainly used in computer vision applications,
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Fig. 2: The main structure of GAN in the training phase, where "
is the dimension of input vector, and & is the number of observation
for training phase of GAN. The parameter & is equal to the fraction
or entire number of class observations.

and here we have used them to reach high accuracy performance
in fingerprint-based localization when the real (collected) data is
limited. We use a benchmark dataset in a classification problem with
four classes. GAN produces synthetic data for each class; therefore,
we describe the process for one class that is similar to other classes.
RSS dataset for one class is as follows:

R2 =


A11 A12 · · · A1"

A21 A22 · · · A2"
.
.
.

.

.

.
. . .

.

.

.

A 1 A 2 · · · A "


(3)

where " is the number of APs in the environment and  is the
number of labeled data in the desired class. Each column of the above
matrix has a distribution over the desired class. Therefore, we define
x ∈ R1×M and the goal of the generator is to map the prior noise
z ∈ R1×L to R2 distribution. The main structure of GAN is depicted
in Fig. 2. The process of producing synthetic data commences with
using the bellow cost function:

min
�

max
�

! (�,�) = �G∼?30C0 (G) [log� (x)]+�I∼?I (I) [log(1−� (� (z)))
(4)

This cost function consists of two-parts and the goal of the
discriminator is to maximize the probability of correct assigning
labels to real and synthetic data. Both � and � are differentiable
functions represented by a multilayer perceptron (MLP). Generator
learns how to map the latent noise z ∼ ?I (I) to real data distribution by
using � (z, \6) structure, where, \6 shows the parameters of the MLP
in the generator. On the other side, discriminator learns how to distinct
between real and synthetic data which are shown by using � (x, \3)
structure, where \3 shows the parameters of the discriminator.
Discriminator has a binary classification structure in output side
which 0 and 1 show synthetic and real data, respectively. The cost
function can be represented for generative and discriminative model
separately when the other side is fixed. Therefore, the discriminator
loss defines as follows:

! (\3) = �G∼?30C0 (G) [log� (x,\3)] + �I∼?I (I) [log(1 − � (� (z,\6))]
(5)

Also, the loss function of generator defines as follows:

! (\6) = �I∼?I (I) [log(1 − � (� (z,\6))] (6)

The first term of Eq.(4) will vanish in gradient updating step because
it does not effect on the generator when it is fixed. The process
of updating \3 and \6 until convergence has depicted in algorithm
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2
and it means that the

discriminator is not able to distinguish between real and synthetic data.
After convergence, the generator side is ready to produce synthetic
samples for desired class from the same prior noise distribution
z ∼ ?I (I). In the next step, synthetic data are combined with real
data in each class, and the conventional classification with the deep
model is used for the training stage, as mentioned in the previous
section. Therefore, the whole RSS (WR) data which consists of real
RSS (R) and synthetic RSS (SR) data, can be defined for each class
as follows:

WS2 =
(

R2
SR2

)
(7)

where, R2 ∈ R ×" , SR2 ∈ R%×" , WR2 ∈ R( +%)×" .

IV. EXPERIMENT METHODOLOGY AND RESULTS

The dataset used in this paper is provided by Rajen Bhatt [18], and
consists of 2000 RSS samples collected from 7 APs into four different
rooms (4 classes). We randomly select half of the data for training
and the other half for the test phase. Both training and test datasets
contain 250 data samples of each class. All data (both train and test)
are standardized before giving them to the classification model. The
model used for classification is an MLP neural network that consists of
6 densely connected layers. The inputs are RSS samples, and outputs
are the probability of the presence of input data in each class. Both
classification and GAN models are implemented on Tensorflow 1.13
and accelerated by Geforce RTX 2060. To prove the validity of the
method introduced in this paper, we perform multiple experiments. In



Table 1: Effect of adding synthetic data samples to 10% and 100%
of real data on test accuracy and log-likelihood loss.

Synthetic Data
Real Data 10% (25 Samples) 100% (250 Samples)

Accuracy Log Loss Accuracy Log Loss
0 62.0% 1.03 95.3% 0.14

250 92.6% 0.24 97.1% 0.08
500 93.0% 0.28 97.4% 0.08
750 94.5% 0.24 97.3% 0.08
1000 94.4% 0.25 97.2% 0.08

0% 20% 40% 60% 80% 100%
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Fig. 3: Comparison of classification accuracy between purely real
data (blue line) and real data combined with synthetic data (red line).

the first experiment, 10% of training data in each class (25 samples) is
randomly selected, and is fed to the GAN model to generate synthetic
data. We sweep over the data generated by GAN and increase the
total number of data. The second experiment is similar to the first
one, with the exception that all of the training data (250 samples) are
selected. The results on the test accuracy and log-likelihood loss for
both experiments are presented in Table 1. The accuracy is defined as(
#CAD4�#C>C0;

)
× 100, where #CAD4 is the number of true predicted class

of test data and #C>C0; is the total number of test data which is equal
to 1000 in our expriments. Also the log-likelihood loss is defined in
Equation 1. In order to minimize the effects of randomness in the
final results, the process of randomly selecting data, measuring the
classification accuracy, generating synthetic data and then measuring
the final accuracy are done several times. Each neural network model
is trained and validated over 100 times with different model initial
seeds. Afterward, the average of the test accuracy and test loss of
these runs are reported as final results. In the final experiment, a
fraction of real data is randomly selected to generate synthetic data,
in a way that the total number of data after adding synthetic data
will be equal to the total number of original data in each class (e.g.
 =250). As depicted in Fig. 3, by sweeping over the fraction of real
data used from 5% to 100%, we measure the test accuracy and loss
to evaluate the effect of synthetic data in the classification’s accuracy.
As depicted in Fig. 3, the test accuracy of the model is around 50%
when only a small fraction of real data is used; however by adding
synthetic data, it will increase up to 80%. It can be concluded that
adding synthetic data to different fractions of real data will increase
the accuracy, significantly.

V. CONCLUSION

In this paper, we showed that how synthetic data can improve the
accuracy of a fingerprint-based localization, where data collection
process is time-consuming and costly. We proposed to use GAN in

order to generate synthetic data to provide high accuracy localization,
while only a limited amount of labeled data is used. Our experimental
results showed that the proposed method for classification by using
only 10% of real data combined with produced synthetic data can get
close to the accuracy of a similar system using 100% of real labeled
data. This reduces the expenses of data collection, significantly and
encourages us to apply the idea to other fields rather than fingerprint-
based localization.
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