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Abstract  

Current localization techniques in outdoors cannot work well in indoors. Wi-Fi fingerprinting technique 

is an emerging localization technique for indoor environments. However in this technique, the dynamic 

nature of WiFi signals affects the accuracy of the measurements. In this paper, we use affinity propagation 

clustering method to decrease the computation complexity in location estimation. Then, we use the least 

variance of Received Signal Strength (RSS) measured among Access Points (APs) in each cluster. Also 

we assign lower weights to altering APs for each point in a cluster, to represent the level of similarity to 

Test Point (TP) by considering the dynamic nature of signals in indoor environments. A method for 

updating the radio map and improving the results is then proposed to decrease the cost of constructing 

the radio map. Simulation results show that the proposed method has 22.5% improvement in average in 

localization results, considering one altering AP in the layout, compared to the case when only RSS subset 

sampling is considered for localization because of altering APs.  

 

Key words: fingerprinting; indoor localization; Received Signal Strength (RSS); altering Access Point 

(AP); clustering. 
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1. INTRODUCTION 

Nowadays, Indoor location based services (LBSs) have attracted serious attention among 

researchers [1,2]. Indoor LBSs significantly improve and expand the network management and security 

[3,4], including personal navigation for increasing safety in emergency operations, healthcare monitoring 

on visiting patients, locating resources, for instance medical records, or consulting with other specialists, 

delivery in personal information [5], context awareness in providing personalized services for mobile 

users over the internet with applications on a meeting in another company or a business trip [3]. 

Generating a responsive model for big areas such as shopping malls, airports, universities needs a lot of 

cost in time and energy to overcome the details of these areas for accurate localization [4].   

Global Positioning Systems (GPS) cannot operate well especially in indoor areas [6,7] because of 

reflection and scattering issues caused by obstacles [7]. The visibility of satellite signals in indoor 

environments is considerably lower than in outdoors. This challenge limits the accuracy of LBSs in 

indoor environments, where people spend nearly up to 89% of their time. This in turn affects the user 

experience, especially for the small screens of smart-phones [1]. Therefore, range based localization 

techniques are used that employ measurement techniques such as time of arrival (TOA), time difference 

of arrival (TDOA), and angle of arrival (AOA) to estimate the distance between two nodes. This 

techniques give accurate information only when line-of-sight (LOS) connection is available [8]. The 

time-based raging techniques require synchronization and AOA needs high cost hardware for 

implementation [8]. Usually, some non-satellite-based signal sources such as Wi-Fi are preferred for 

indoor localization [9] that need only Access Points (APs) as low cost hardware infrastructures already 

available in the area. However, other signals such as Bluetooth, FM radio [10], radio-frequency identifi-

cation (RFID) and magnetic field are also used in indoor localization. 
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Smartphones are everywhere and known as a promising infrastructure for all the existing and future 

services. Smartphones are also used for indoor location services where Wi-Fi is used as a localization 

source [11]. The requirement of Wi-Fi networks is widely spread in public and private buildings [1]. In 

this paper we use Wi-Fi as signal sources for indoor localization. Extracting range measurements using 

RSS is easy and cheap to implement and therefore, RSS- based location fingerprinting is very popular in 

indoor localization [1,12]. In RSS fingerprinting, normally, a set of measured RSS that are unique for 

location spots, serve as a fingerprint.  

Wireless Local Area Network (WLAN) fingerprinting consists of two phases: offline and location 

estimation. In the offline phase, multiple RSS at each Reference Point (RP), from each AP are measured 

throughout a time interval and these fingerprint vectors are stored along with their location coordinates 

in a radio map. In location estimation phase, Test Point (TP) measures the RSS vector at specified 

location and applies pattern recognition algorithms to associate these measurements to the radio map by 

finding similar fingerprints [1,12]. This technique has some challenges that should be addressed by 

network designers. In [13] a survey on these challenges and some methods to deal with them are 

examined. For example, environmental variations such as altering AP signals with time (generally in 

weeks or months) [14,15] may decrease the accuracy of localization. Altering APs is the effect of 

changing AP signals and it caused by AP movement, wall partitioning and variations on AP signals by 

obstacles in indoors. Also diverse devices in both phases of fingerprinting method can reduce the 

accuracy of localization. Therefore, methods based on using cosine similarity and considering the least 

variance among APs between RSS of RPs and TP can reduce the localization error significantly [16,17], 

as various smartphones have differences on their hardware. However, constructing the radio map has a 

high cost in time and energy. 
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Using all measured RSS values at RPs increases the complexity of computation, therefore pre-

processing techniques are employed to reduce the search space of the TP location into a smaller region 

and delete outlier data for higher accuracy in location estimation phase [13]. Therefore, we can arrange 

the features of RSS measured by clustering method. K-means clustering algorithm [13] is a popular 

method between various clustering techniques, however this method is sensitive to the initial selection 

of cluster heads (CHs). These CHs are chosen randomly at the first time. Therefore we must rerun this 

algorithm to find a good solution. One of the clustering method that has solved this problem is affinity 

propagation clustering algorithm [18].  

Measured RSS by different smartphones has different value, which affects the accuracy of 

localization. Therefore, device diversity in both phases of fingerprinting technique is a challenging issue 

that needs to be addressed [15,16]. Authors in [17] proposed a method that estimates the cluster where 

TP belongs to, by a method that considers the least variance of RSS fingerprint vectors among APs as a 

candidate CH for TP in room level localization and can improve the results of localization by using 

diverse devices in the location estimation phase. However, this method did not consider altering APs and 

did not use radio map updating algorithm in order to improve the results of localization. Authors in [19] 

proposed an algorithm that use a weighting factor for some closer points to TP in terms of signal distance. 

Then, they use a method to delete the outlier data. Therefore in this method, despite considering the 

unequal trend of signal distance and physical distance in indoors, it did not consider altering APs and 

radio map updating. 

The Simultaneous Localization and Mapping (SLAM)-based approach utilized inertial smartphone 

sensors in order to improve the signal map. These approaches have errors in measuring signal and they 

must be calibrated at any time with high cost [20,21]. Methods based on using Gaussian process latent 
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variable models can relate the RSS fingerprints and simulate human movements (displacement, direction, 

etc.) as hidden variables [22]. However, these methods often consider a relatively stable radio map 

without altering APs. Authors in [23] learned the functional relationship between the initial radio map 

and real time readings by using nonlinear regression analysis and using the nearest neighbor method to 

find locations. However, this method assumed a certain trend in AP signals, therefore, these algorithms 

may not increase the accuracy by AP altering assumptions. Authors in [24] have applied a regression 

algorithm on RSS received at RPs in order to construct the radio map. This method had worked with the 

same APs in the radio map. However, it is difficult to estimate the accurate regression model when we 

have altering APs. Authors in [25] proposed a radio map generation method that could improve the results 

of localization by polishing the input RSS data in radio map by a semi-supervised algorithm, and they 

used a method for updating the radio map. However, they did not use any algorithm for improving the 

results of localization by considering the trend of altering AP signals. Authors in [15] used RSS subset 

sampling because of altering APs and their variations on time. However, this method did not consider 

the least variance of RSS measured among APs. This method did not consider a weight for each point in 

each cluster in signal space because of obstructions and alterations in indoors.  

The proposed method in this paper can improve the indoor localization results by handling altering 

APs and signal changes. This method localizes a TP by considering the lowest variance of RSS value 

among APs, analyses the existence of obstacles in indoors by assigning a lower weight to altering AP 

that represents the signal distance is not similar to physical distance and combines with RSS subset 

sampling method that is mentioned in [15]. Our proposed method is compared with KNN [26] as a 

deterministic algorithm and Gaussian kernel algorithm [27] as a probabilistic algorithm. Also we 

compare this method with RSS subset sampling method [15]. Our proposed method also handles the 
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device diversity problem and does not need any calibrated sensor device. Furthermore, we use an 

updating radio map algorithm in order to improve the results. The results of our measured RSS data are 

analyzed with and without considering altering AP. Also, the results of three simulated radio maps with 

various number of APs are analyzed.   

The organization of the paper is as follows. Section 2 determines the fingerprinting system model, 

formulations and algorithms that are used in this paper. In section 3 the proposed method is explained. 

Section 4 examines the considered layout area and the simulation parameters. In section 5, we simulate 

all mentioned methods and our proposed method. Section 6 concludes the paper. 

2. System Model and Formulation 

In this section, we explain two phases of fingerprinting localization method. We express the 

algorithms used in this paper for comparison with our proposed method. Then we examine the path-loss 

formula for our simulations purposes. 

2.1. Offline Phase 

The first phase in fingerprinting localization method is offline phase. In this phase, we consider L 

RPs as {𝐥𝐥1, 𝐥𝐥2, … , 𝐥𝐥𝑗𝑗 , … , 𝐥𝐥𝐿𝐿}  in two dimensions with known values such as 𝐥𝐥𝑗𝑗 = (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗) . There are T 

measured RSS values from each AP by each RP. The RSS fingerprint vector for the 𝑗𝑗𝑡𝑡ℎ  RP is 

[𝑠𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃1(𝑡𝑡), 𝑠𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃2(𝑡𝑡), … , 𝑠𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖(𝑡𝑡), … , 𝑠𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴(𝑡𝑡)]  that is stored along with his location in radio map. 

𝑠𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖(𝑡𝑡) is the measured RSS value from the 𝑖𝑖𝑡𝑡ℎ AP in the 𝑗𝑗𝑡𝑡ℎ RP in the 𝑡𝑡𝑡𝑡ℎ unit time. The variable 

for unit time is  𝑡𝑡 = 1,2, … ,𝑇𝑇 . The time averaged RSS vector at location 𝐥𝐥𝑗𝑗  is defined by  𝐒𝐒𝐥𝐥𝑗𝑗 =

[�̅�𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃1; �̅�𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃2; … ; �̅�𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖; … ; �̅�𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴].  

�̅�𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖 = 1
𝑇𝑇
∑ 𝑠𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖(𝑡𝑡)
𝑇𝑇
𝑡𝑡=1                            (1) 
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Therefore, by these vectors, the RSS values in the radio map can be shown as (2).   

       𝐒𝐒𝐥𝐥 = �
�̅�𝑠𝐥𝐥1,𝐴𝐴𝑃𝑃1

⋯ �̅�𝑠𝐥𝐥1,𝐴𝐴𝑃𝑃𝑛𝑛
⋮ ⋱ ⋮

�̅�𝑠𝐥𝐥𝐿𝐿,𝐴𝐴𝑃𝑃1
⋯ �̅�𝑠𝐥𝐥𝐿𝐿,𝐴𝐴𝑃𝑃𝑛𝑛

�                            (2) 

2.2. Location Estimation Phase 

The second phase of the fingerprinting localization method is location estimation phase. The 

unknown location of TP is  𝑙𝑙 = (𝑥𝑥,𝑦𝑦) . For estimating the location of TP in the second phase of the 

fingerprinting method, first we measure the RSS vector from all APs at the specified location of TP. The 

objective is to estimate the location of TP that is denoted by 𝑙𝑙. 𝐒𝐒𝑙𝑙′ = [�̅�𝑠𝑙𝑙,𝐴𝐴𝑃𝑃1; �̅�𝑠𝑙𝑙,𝐴𝐴𝑃𝑃2; … ; �̅�𝑠𝑙𝑙,𝐴𝐴𝑃𝑃𝑖𝑖; … ; �̅�𝑠𝑙𝑙,𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴] 

is the RSS vector received by TP, then by pattern recognition techniques the location of TP can be 

estimated [13]. 

2.2.1. KNN and KWNN Algorithms 

The KNN and KWNN methods are deterministic methods which can estimate the location of TP 

by calculating respectively the average and weighted average of the coordinates of K nearest points [26]. 

The weighting values in KWNN method are the inverse of the Euclidean distance that are multiplied by 

the coordinates of K nearest points. The Euclidean distance from RSS of TP and the 𝑗𝑗𝑡𝑡ℎ RP is shown in 

(3). If we assume 𝐒𝐒𝑙𝑙′ = [�̅�𝑠𝑙𝑙,𝐴𝐴𝑃𝑃1; �̅�𝑠𝑙𝑙,𝐴𝐴𝑃𝑃2; … ; �̅�𝑠𝑙𝑙,𝐴𝐴𝑃𝑃𝑖𝑖; … ; �̅�𝑠𝑙𝑙,𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴]  is the RSS vector measured by TP, the 

estimated location of TP for KWNN method is as below. 

𝐃𝐃𝑗𝑗 =∥ �̅�𝑠𝑙𝑙,𝐴𝐴𝑃𝑃𝑖𝑖 − �̅�𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖 ∥                              (3) 

𝑙𝑙𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =
∑ 1

𝐃𝐃𝑘𝑘
𝐥𝐥𝑘𝑘𝐾𝐾

𝑘𝑘=1

∑ 1
𝐃𝐃𝑘𝑘

𝐾𝐾
𝑘𝑘=1

                                  (4) 

𝐥𝐥𝑘𝑘 is the known location of K nearest RPs and 𝐃𝐃𝑘𝑘 is the Euclidean distance between the RSS of TP and 

each of K RPs .  

2.2.2. A Localization method with considering Altering APs 

The existence of altering APs can lead to a low accuracy, since by changing the signals of APs 
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even at the same space, the measured RSS value differs from the previous one in the radio map. AP 

signals may change with time and make a great influence on localization results. Methods presented in 

[14,15] are two methods that can improve the results by considering altering APs in indoors. 

In these methods, the size of the RSS vector of RPs and TPs must be the same, so when a signal is 

not sensed from an AP because of variations on signals of APs, a very low value is set for it in the signal 

vector. The fingerprint vectors of RPs and TPs are divided into several subsets. KWNN algorithm is used 

to estimate the location of TP in each subset. The k-means algorithm is used to cluster the total estimated 

locations into the several CHs. Some points of RPs that are closer to each CH are considered. For the test 

of the similarity of RSS fingerprint vectors in each cluster, cosine similarity is used [16]. The cosine 

similarity criterion represents the cosine of the angle between the two vectors, which means that when 

the two angles are very close, their cosine value is higher. The cosine similarity between the fingerprints 

of the TP and the nearest RPs to each CH in each cluster is performed, and the CH with the highest 

average of cosine similarity is considered as the estimated location of TP. 

cos(𝜃𝜃) =
𝐒𝐒�𝐥𝐥𝑗𝑗 .𝐒𝐒𝑙𝑙

′�

|𝐒𝐒�𝐥𝐥𝑗𝑗|.|𝐒𝐒𝑙𝑙
′�|

=
∑ (�̂�𝑠�̅�𝐥𝑗𝑗,𝐴𝐴𝐴𝐴𝑖𝑖 .�̂�𝑠�̅�𝑙,𝐴𝐴𝐴𝐴𝑖𝑖)
𝐴𝐴𝐴𝐴′
𝑖𝑖=1

�∑ ��̂�𝑠�̅�𝐥𝑗𝑗,𝐴𝐴𝐴𝐴𝑖𝑖�
2

.∑ ��̂�𝑠�̅�𝑙,𝐴𝐴𝐴𝐴𝑖𝑖�
2𝐴𝐴𝐴𝐴′

𝑖𝑖=1
𝐴𝐴𝐴𝐴′
𝑖𝑖=1

                  (5) 

where 𝐒𝐒�𝐥𝐥𝑗𝑗 is the RSS vector of the 𝑗𝑗𝑡𝑡ℎ RP for one of the assumed subsets of APs and 𝐒𝐒′� 𝑙𝑙 is the RSS 

vector of TP for the same assumed subset of APs. |𝐒𝐒�𝐥𝐥𝑗𝑗|. |𝐒𝐒′� 𝑙𝑙| is the inner product of two RSS vectors of 

𝐒𝐒�𝐥𝐥𝑗𝑗 and 𝐒𝐒′� 𝑙𝑙. The number of APs in each subset is equal to 𝐴𝐴𝑃𝑃′. 

Algorithm in [15] considers the size of the cluster in order to estimate the appropriate cluster of 

TP, because when the size of the TP cluster becomes large, the estimated location of TP is more accurate. 

The reason is the issue of increasing the size of the cluster is equal to the presence of none time variant 

of APs as unchangeable APs. Hence, when there are clusters with lower size, it means that we have 

outliers that are identified by altering APs. The criteria for each cluster is 𝐈𝐈𝐶𝐶 as below, that is between 0 
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and 1. 

𝐈𝐈𝐶𝐶 = � 1
|𝐂𝐂𝑐𝑐|𝑄𝑄

�∑ ∑ cos (𝐒𝐒�𝑞𝑞,𝑐𝑐 , 𝐒𝐒�𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑐𝑐)𝑄𝑄
𝑞𝑞=1𝑐𝑐                     (6) 

where 𝑄𝑄 is the number of the nearest neighbors to each CH that are selected from RPs and |𝐂𝐂𝑐𝑐| is the 

number of RPs in the 𝑐𝑐𝑡𝑡ℎ cluster before adding the 𝑄𝑄 nearest neighbor RPs to CH of the 𝑐𝑐𝑡𝑡ℎ cluster. 

𝐒𝐒�𝑞𝑞,𝑐𝑐 is the fingerprint vector of q RPs that are selected as the nearest neighbors to the 𝑐𝑐𝑡𝑡ℎ CH.  𝐒𝐒�𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑐𝑐 

is the RSS vector of TP that is in cluster c. In this method, when we say that the fingerprint vectors are 

in the 𝑐𝑐𝑡𝑡ℎ cluster, we assume the same APs for it that has been considered in RSS subset samples.   

If |𝐶𝐶min| is the smallest cluster size, we can calculate the size of each cluster by 𝐯𝐯𝐶𝐶, 

𝐯𝐯𝐶𝐶 = 𝑒𝑒
−�

�|𝐂𝐂𝑐𝑐|−|𝐶𝐶min|�
2

2𝑏𝑏2
�
                                (7) 

𝐯𝐯𝐶𝐶  is a number between 0 and 1 and b is a parameter for controlling the adjustment of the kernel 

sensitivity. Next time the score of each cluster is calculated as 𝛏𝛏𝐶𝐶. 

𝛏𝛏𝐶𝐶 = 𝐈𝐈𝐶𝐶 − 𝐯𝐯𝐶𝐶                                       (8) 

The estimated location of TP, is the CH with the highest value of 𝛏𝛏𝐶𝐶. Fig 1 shows an example of 

methods in [14,15]. The location of a TP is shown by a grey circle. We consider one AP with altering 

value. The prime estimated locations are clustered to various number of clusters, several RPs adjacent to 

each of the CHs in terms of the physical Euclidean distance are considered, then we compute the cosine 

similarity between the RSS of these members of each cluster and the RSS of TP. The CH with the highest 

average cosine similarity and the biggest size of cluster is the estimated location of TP that is shown in 

Fig 1 as "True Location" that is marked as a cross mark. The clusters are shown in black circle, black 

triangle and black pentagram. As shown in Fig 1, the cluster shown by a triangle has unchangeable APs, 
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so the estimated location may be with higher probability at the CH of this cluster. 

 

Fig 2 An example of the represented method in section (2.2.2) 

2.2.3. Gaussian Kernel Algorithm 

It is one of the probabilistic algorithm as a pattern recognition technique that can be used in the 

location estimation phase. This method uses the Gaussian function 𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠(. ; 𝑠𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖(𝑡𝑡)) to calculate the 

level of similarity between the RSS samples in the radio map and the RSS value of TP as (9). The 

distribution of 𝑠𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖(𝑡𝑡) at location 𝐥𝐥𝑗𝑗 for T seconds can be expressed by a Gaussian kernel model as 

(10): 

𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠 �𝑠𝑠𝑙𝑙,𝐴𝐴𝑃𝑃𝑖𝑖(𝑡𝑡) ; 𝑠𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖(𝑡𝑡)� = 1
√2𝜋𝜋𝛿𝛿

𝑒𝑒−
�𝑡𝑡𝑙𝑙,𝐴𝐴𝐴𝐴𝑖𝑖

(𝑡𝑡)−𝑡𝑡𝐥𝐥𝑗𝑗,𝐴𝐴𝐴𝐴𝑖𝑖
(𝑡𝑡)�

2

2𝛿𝛿2               

(9) 

𝑃𝑃�𝐒𝐒𝑙𝑙′�𝐥𝐥𝑗𝑗� = 1
𝑇𝑇
∑ 𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠(𝑠𝑠𝑙𝑙,𝐴𝐴𝑃𝑃𝑖𝑖(𝑡𝑡) ; 𝑠𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖(𝑡𝑡))𝑇𝑇
𝑡𝑡=1                  

(10) 

𝛿𝛿 is the kernel width, that needs to be regulated based on the experiment [28]. 

2.3. Path-loss Model 

We use path-loss model as (11) for simulated radio map [12]. The parameters of the simulated 

radio map are estimated by measured RSS values. The path-loss formula in our simulations is as below. 
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𝐏𝐏 �𝑑𝑑𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖� [𝑑𝑑𝑑𝑑𝑑𝑑] = 𝑃𝑃�𝑑𝑑0,𝐴𝐴𝑃𝑃𝑖𝑖�[𝑑𝑑𝑑𝑑𝑑𝑑] − 10𝑛𝑛𝑖𝑖 log10 �
𝑑𝑑𝐥𝐥𝑗𝑗,𝐴𝐴𝐴𝐴𝑖𝑖

𝑑𝑑0,𝐴𝐴𝐴𝐴𝑖𝑖
� + 𝑋𝑋𝜎𝜎𝑖𝑖[𝑑𝑑𝑑𝑑] − ∑ 𝑊𝑊𝐴𝐴𝐹𝐹𝑗𝑗𝑤𝑤

𝑗𝑗=1 − ∑ 𝐹𝐹𝐴𝐴𝐹𝐹𝑗𝑗
𝑓𝑓
𝑗𝑗=1                                                            

(11) 

The 𝑗𝑗𝑡𝑡ℎ RP in distance 𝑑𝑑𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖 from the 𝑖𝑖𝑡𝑡ℎ AP can measure 𝐏𝐏�𝑑𝑑𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖� as the received power. The 

received power at 1-meter from the 𝑖𝑖𝑡𝑡ℎ AP is 𝑃𝑃�𝑑𝑑0,𝐴𝐴𝑃𝑃𝑖𝑖�. 𝑋𝑋𝜎𝜎𝑖𝑖 is a zero mean normal distribution with 

standard deviation 𝜎𝜎𝑖𝑖 in dB for each AP for shadowing phenomenon. There are two constant values in 

(11) as wall attenuation factors (WAFs) and floor attenuation factor (FAF) in dB that depend on the 

material and the number of walls (w) and floors (f) between an AP and the point. We used the Minimum 

Mean Square Error (MMSE) fit to the RSS measured data for calculating the path-loss exponent value. 

Then, 𝜎𝜎𝑖𝑖 as sigma deviation for each AP is calculated based on the measured signals 𝑠𝑠�𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖 and the 

simulated ones as below 

𝜎𝜎𝑖𝑖 = �1
𝐿𝐿
∑ (�̅�𝑠𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖 − 𝐏𝐏(𝑑𝑑𝐥𝐥𝑗𝑗,𝐴𝐴𝑃𝑃𝑖𝑖))𝐿𝐿
𝑗𝑗=1                               (12) 

3. Proposed Method 

In our proposed method, affinity propagation clustering as a clustering algorithm on signal space 

in offline phase is used and in location estimation phase, we use a metric that represents the relationship 

of variance and weight between RSS fingerprint vector of RPs and TP in the cluster where TP belongs 

to. By these methods we improved the method in section (2.2.2). Also we use a radio map updating 

algorithm for improving the results of localization by considering altering APs. Our proposed method is 

shown in Algorithm1. 

Algorithm 1  
Inputs: 
RSS vector of RPs, 𝜆𝜆, RSS vector of TP, α, z, 𝑡𝑡𝐺𝐺 
Output: 
updated radio map, estimated location of TP 
 
Offline phase: 
1) Affinity Propagation Clustering Algorithm on RSS of all RPs (section 3.1.1) 
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3.1. Offline Phase 

In this phase we cluster the RSS of RPs by the affinity propagation clustering method. 

3.1.1. Affinity Propagation Clustering  

Different from k-means clustering algorithm, the idea of affinity propagation algorithm is using 

the RSS of all RPs and some of them are chosen as CHs [18]. This method chooses CHs better than k-

means algorithm. In this method, the time averaged RSS samples of RPs are used. The pairwise similarity 

between RSS vector of each two RPs is 𝐬𝐬(𝑖𝑖, 𝑗𝑗). 𝐬𝐬(𝑖𝑖, 𝑗𝑗) is defined as the squared Euclidean distance as 

shown in (13): 

𝐬𝐬(𝑖𝑖, 𝑗𝑗) = −∥ 𝐒𝐒𝐥𝐥𝑗𝑗 − 𝐒𝐒𝐥𝐥𝑖𝑖 ∥      𝑖𝑖, 𝑗𝑗 = 1, … , 𝐿𝐿                      

(13) 

There are two types of message transmitted among RPs: 1) responsibility message 𝐫𝐫(𝑖𝑖, 𝑗𝑗) 

transmitted from RPs that are not CH to CH RPs. This message has information about the CHs and 2) 

availability message 𝐚𝐚(𝑖𝑖, 𝑗𝑗) that transmitted from CH RPs to RPs that are not CH. This message is about 

the attachment relations between RPs and clusters. The 𝑖𝑖𝑡𝑡ℎ RP sends the responsibility message to each 

candidate CH (the 𝑗𝑗𝑡𝑡ℎ RP). By this message we can specify the fitness of the 𝑗𝑗𝑡𝑡ℎ RP as CH for the 𝑖𝑖𝑡𝑡ℎ 

RP as (14): 

Location estimation phase: 
1) Cluster positioning of TP by its RSS vector (section 3.2.1) 
2) Analysis on variances of RSSs at each cluster (section 3.2.2) 
3) Assigning weight to each point at each cluster (section 3.2.3) 
4) Do (section 2.2.2)  
5) Estimate the location of TP (section 3.2.4) 
Updating the radio map: 
Estimate d (section 3.3) 
If ( 𝑑𝑑 ≤ 𝑡𝑡𝐺𝐺) 
     Update the radio map (section 3.3) 
else   
     Do not update the radio map  
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𝐫𝐫(𝑖𝑖, 𝑗𝑗) ← 𝐬𝐬(𝑖𝑖, 𝑗𝑗) − max
𝑗𝑗′≠𝑗𝑗

{𝐚𝐚(𝑖𝑖, 𝑗𝑗′) + 𝐬𝐬(𝑖𝑖, 𝑗𝑗′)}                    (14) 

In the first iteration, 𝐚𝐚(𝑖𝑖, 𝑗𝑗′) is set to zero. The responsibilities are computed by (14), therefore 𝐫𝐫(𝑖𝑖, 𝑗𝑗) 

is set to the similarity between RPs with index i and j minus the largest similarities between the 𝑖𝑖𝑡𝑡ℎ RP 

and RPs with index 𝑗𝑗′ that are candidate CHs.  

The availability message 𝐚𝐚(𝑖𝑖, 𝑗𝑗) is sent from each candidate CH to each RP to select RPs in each 

cluster. This message describes the fitness that the 𝑖𝑖𝑡𝑡ℎ RP can be in cluster that the 𝑗𝑗𝑡𝑡ℎ RP is its CH: 

𝐚𝐚(𝑖𝑖, 𝑗𝑗) ← min {0, 𝐫𝐫(𝑗𝑗, 𝑗𝑗) + ∑ max {0, 𝐫𝐫(𝑖𝑖′, 𝑗𝑗)}𝑖𝑖′≠𝑖𝑖,𝑗𝑗 }                (15) 

where 𝐫𝐫(𝑖𝑖, 𝑖𝑖) is the self-responsibility that known as the median of input similarities. 

𝐫𝐫(𝑖𝑖, 𝑖𝑖) = median{𝐬𝐬(𝑖𝑖, 𝑗𝑗)}                          (16) 

Self-availability 𝐚𝐚(𝑖𝑖, 𝑖𝑖) reflects that the 𝑖𝑖𝑡𝑡ℎ RP is a CH based on the positive responsibilities sent from 

other RPs to the 𝑖𝑖𝑡𝑡ℎ RP as a candidate CH: 

𝐚𝐚(𝑖𝑖, 𝑖𝑖) ← ∑ max {0, 𝐫𝐫(𝑗𝑗′, 𝑖𝑖)}𝑗𝑗′≠𝑖𝑖                       (17) 

These two messages are between pairs of RPs with known similarity values. At any RP during 

affinity propagation method, availabilities and responsibilities are combined to identify the CHs. For the 

𝑖𝑖𝑡𝑡ℎ RP the value of the 𝑘𝑘𝑡𝑡ℎ RP that maximizes 𝐚𝐚(𝑖𝑖, 𝑘𝑘) + 𝐫𝐫(𝑖𝑖, 𝑘𝑘) defined that the 𝑘𝑘𝑡𝑡ℎ RP is CH for the 

𝑖𝑖𝑡𝑡ℎ RP. The messages are transmitted for a number of iterations. 

When the messages are updated for each RP, we must damp them to avoid numerical oscillations 

that arise in some trends in neighbor RPs. Each message is set to 𝜆𝜆 times of its value from the previous 

iteration plus 1-𝜆𝜆 times of its updated values. The damping factor 𝜆𝜆 is between 0 and 1. 

3.2. Location Estimation Phase 

In this phase, the cluster and the location of TP are estimated. 

3.2.1. Cluster Positioning of TP  
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The signal distances between RSS of CHs and RSS of TP are calculated by NN method [26]. In 

this deterministic method, by using Euclidean distance between RSS of CHs and TP, we can estimate the 

cluster of TP: 

𝐝𝐝𝑐𝑐 =∥ �̅�𝑠𝑙𝑙,𝐴𝐴𝑃𝑃𝑖𝑖 − 𝐂𝐂𝑐𝑐,𝐴𝐴𝑃𝑃𝑖𝑖 ∥                            (18) 

In (18) i is the index of APs. �̅�𝑠𝑙𝑙,𝐴𝐴𝑃𝑃𝑖𝑖 is the average RSS measured by TP from the 𝑖𝑖𝑡𝑡ℎ AP. 𝐂𝐂𝑐𝑐,𝐴𝐴𝑃𝑃𝑖𝑖 

is the RSS vector of the 𝑐𝑐𝑡𝑡ℎ CH from the 𝑖𝑖𝑡𝑡ℎ AP. 𝐝𝐝𝑐𝑐 is the Euclidean distance that has been calculated 

between signals 𝑠𝑠�𝑙𝑙,𝐴𝐴𝑃𝑃𝑖𝑖 and 𝐂𝐂𝑐𝑐,𝐴𝐴𝑃𝑃𝑖𝑖. If we assume that we have C number of CHs, the cluster of TP belongs 

to, is calculated by (19): 

𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥𝑒𝑒𝑠𝑠𝑡𝑡𝑖𝑖𝑒𝑒𝐺𝐺𝑡𝑡𝑒𝑒𝑑𝑑 = arg min
𝑐𝑐

1≤𝑐𝑐≤𝐶𝐶

𝐝𝐝𝑐𝑐                          (19) 

where 𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥𝑒𝑒𝑠𝑠𝑡𝑡𝑖𝑖𝑒𝑒𝐺𝐺𝑡𝑡𝑒𝑒𝑑𝑑 is the estimated index of CH where TP belongs to. 

3.2.2. Analysis of Variances of RSS at Each Cluster  

RSS measurements from different smartphones have different values. However, for better 

evaluating the location of TP by these alterations in signals, we can detect the trend of RSS of TP. RSS 

differences between different smart-phones among APs in the same location are more stable than other 

locations. Therefore, TP can be positioned in a cluster with least variance of RSS differences among APs 

[17]. 

TP belongs to the 𝑘𝑘𝑡𝑡ℎ  cluster. All N RPs that measure signals from the 𝑖𝑖𝑡𝑡ℎ  AP in the 𝑘𝑘𝑡𝑡ℎ 

cluster are (𝐑𝐑𝑘𝑘1,𝐴𝐴𝑃𝑃𝑖𝑖 , … ,𝐑𝐑𝑘𝑘𝐾𝐾,𝐴𝐴𝑃𝑃𝑖𝑖). N is the number of RPs that are in the 𝑘𝑘𝑡𝑡ℎ cluster (𝑛𝑛 = 1, 2, … ,𝑁𝑁). 

N value in each cluster is different from other clusters. 

�̂�𝑠 = argmin
𝑛𝑛

1≤𝑛𝑛≤𝑁𝑁

(
1

𝐴𝐴𝑃𝑃
)∑ ���̅�𝑠𝑙𝑙,𝐴𝐴𝑃𝑃𝑖𝑖 − 𝐑𝐑𝑘𝑘𝑛𝑛,𝐴𝐴𝑃𝑃𝑖𝑖� − �̅�𝐫𝑘𝑘�

2
𝐴𝐴𝑃𝑃
𝑖𝑖=1                        (20) 

�̅�𝐫𝑘𝑘 =
∑ ��̅�𝑠𝑙𝑙,𝐴𝐴𝑃𝑃𝑖𝑖−𝐑𝐑𝑘𝑘𝑛𝑛,𝐴𝐴𝑃𝑃𝑖𝑖

�𝐴𝐴𝑃𝑃
𝑖𝑖=1

𝐴𝐴𝑃𝑃
                                (21) 

where AP is the total number of APs. �̅�𝐫𝑘𝑘 is the mean of differences of RSS values of RPs and RSS of TP 
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over the number of APs in the 𝑘𝑘𝑡𝑡ℎ cluster. 𝐑𝐑𝑘𝑘𝑘𝑘,𝐴𝐴𝑃𝑃𝑖𝑖 is the time averaged RSS measured by the 𝑛𝑛𝑡𝑡ℎ RP 

in the 𝑘𝑘𝑡𝑡ℎ  cluster from the 𝑖𝑖𝑡𝑡ℎ  AP. The estimated location of TP is �̂�𝑠𝑡𝑡ℎ  location that is in the 𝑘𝑘𝑡𝑡ℎ 

cluster. Also, this model can improve the results by considering altering APs and localize TP by 

considering the least variance of RSSs among APs. 

3.2.3. Assigning Weight to Points at Each Cluster  

We also assign a weight to the points in each cluster which indicates the physical distance is not 

similar to the signal distance especially in indoor areas, because there are more obstacles than outdoors 

[19]. Each point in a cluster has similarity with other points in that cluster, therefore for more details, we 

can assign a weight to each point in the cluster where TP belongs to. This weight represents how much a 

point in that cluster is similar to TP [19]. The cluster where TP belongs to, is computed based on section 

(3.2.1). As (11) has shown, the distance between a transmitter and receiver has an exponential relationship 

with RSS value measured at that point from that transmitter. This criteria can amplify the effect of level 

of closeness of points to TP by a weighting factor. 

𝐝𝐝𝑤𝑤𝑘𝑘𝑛𝑛 = �∑ �𝐰𝐰𝑖𝑖𝑘𝑘𝑛𝑛
𝑊𝑊𝑘𝑘𝑛𝑛
� ��̅�𝑠𝑙𝑙,𝐴𝐴𝑃𝑃𝑖𝑖 − 𝐑𝐑

𝑘𝑘𝑛𝑛,𝐴𝐴𝑃𝑃𝑖𝑖
�

2
𝐴𝐴𝑃𝑃
𝑖𝑖=1                      (22) 

𝐰𝐰𝑖𝑖𝑘𝑘𝑛𝑛 = 𝑒𝑒−(
�𝑠𝑠�𝑙𝑙,𝐴𝐴𝑃𝑃𝑖𝑖−𝐑𝐑𝑘𝑘𝑛𝑛,𝐴𝐴𝑃𝑃𝑖𝑖

�

𝑧𝑧 )                           (23) 

where 𝐝𝐝𝑤𝑤𝑘𝑘𝑘𝑘 is the calculated weighted distance between RSS of TP and RSS of each point in each 

cluster. 𝑤𝑤𝑖𝑖𝑘𝑘𝑛𝑛  is the weight value of each AP at the 𝑛𝑛𝑡𝑡ℎ  point that is in the 𝑘𝑘𝑡𝑡ℎ  cluster. 𝑊𝑊𝑘𝑘𝑘𝑘 =

∑ 𝐰𝐰𝑖𝑖𝑘𝑘𝑘𝑘
𝐴𝐴𝑃𝑃
𝑖𝑖=1  is a normalization factor. Therefore 𝐰𝐰𝑖𝑖𝑘𝑘𝑛𝑛

𝐾𝐾𝑘𝑘𝑛𝑛
 is the weight value that assigned to the 𝑛𝑛𝑡𝑡ℎ point 

in the 𝑘𝑘𝑡𝑡ℎ cluster for the 𝑖𝑖𝑡𝑡ℎ AP. If a point is closer to TP, we can have higher weight for that point 

since it is more similar to TP than other points. z is a tuning factor. When z tends to infinity, the distance 

𝐝𝐝𝑤𝑤𝑘𝑘𝑘𝑘 goes to Euclidean distance. Therefore, z should be between 0 and 1. A point with the smallest 

𝐝𝐝𝑤𝑤𝑘𝑘𝑘𝑘 is selected as the estimated location of TP. This method can decrease the effects of altering APs on 
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localization results in indoor areas by tuning the z value and get the least weight to these APs, because in 

the power of the exponential value in (23), the numerator has a high value for farther APs and altering 

APs and denominator is a parameter between 0 and 1 that can increase the effects of numerator value. 

Therefore, the weight in (23) becomes a low value and has lower effect on distance calculated in (22) 

compared with other APs. 

3.2.4. Criteria for Location Estimation Phase in Proposed Method 

In order to improve the localization results, we estimate the location of the user by the methods 

represented in section (2.2.2) and in sections (3.2.1-3.2.3). We estimate the location of the user as the 

mean value of these calculated values. 

𝑙𝑙𝑒𝑒𝑠𝑠𝑡𝑡 =
𝐥𝐥1+

𝐥𝐥2+𝐥𝐥3
2

2
                                 (24) 

where 𝐥𝐥1 is the estimated location of user by method in section (2.2.2) and 𝐥𝐥2 is the estimated location 

of user by method in sections (3.2.1- 3.2.2) and 𝐥𝐥3 is the location of user in section (3.2.1, 3.2.3). 𝑙𝑙𝑒𝑒𝑠𝑠𝑡𝑡 

is the estimated location of TP. The benefit of this criteria is that, we can get a higher localization accuracy 

when Wi-Fi signal levels change in indoor areas. 

3.3. Updating the Radio Map 

The radio map needs to be updated repeatedly for improving the accuracy in localization and this 

procedure takes a lot of time if the area is surveyed again. Authors in [14] presented a method in which 

the radio map can be updated by the RSS measured by TP, after the location of TP is estimated. RSS of 

a TP captured the changes in the real environment that can be valuable. The measured RSS along with 

the TP location can update the radio map.  

First, the distance between the estimated location of TP and the location of the nearest RP is 

calculated as d value. We set a threshold 𝑡𝑡𝐺𝐺 (a few meter) for RSS values to not change too much. By 
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considering 𝑑𝑑 ≤ 𝑡𝑡𝐺𝐺 , we can expect the RSS value of the nearest RP changes due to the effects of 

environmental dynamicity on signals. For updating the radio map, a parameter α is used which is between 

0 and 1.  

𝐕𝐕� ← (1 − 𝛼𝛼)𝐕𝐕� + 𝛼𝛼𝐕𝐕�                             (25) 

where 𝐕𝐕� is the RSS value of RP that the estimated location of TP is closer to the location of this RP. 𝐕𝐕� 

is the RSS value measured by TP. Therefore, the RSS value measured by RP that is the nearest point to 

the estimated location of TP is updated to a new value 𝐕𝐕� and if 𝑑𝑑 > 𝑡𝑡𝐺𝐺  the radio map is not updated. 

4. Experimental Setup and Simulation Parameters 

The Cyberspace Research Institute at Shahid Beheshti University is our layout for simulation 

where we sensed 4 APs in this area. Fig 2 shows this layout. Our measuring device in offline and online 

phases is Samsung Galaxy Grand Prime Smartphone. The size of the considered area is 36.88 m in x-

axis and 9.28 m in y-axis. We measured RSS vector of 164 RPs and 20 TPs in this area. The number of 

measured RSS time samples in each location is 80. Among sensed APs in our layout, AP2 is positioned 

in downstairs. We measured -112dBm in some points especially in rooms when we cannot measure any 

signal from some APs. Measured RSS data for sensed APs in our layout are used in our simulations also 

for higher number of APs, the simulated radio map is used. 

4.1. Building the Simulated Radio Map 

In order to calculate the simulation data, we first consider the whole area in a gridding board and 

the wall equations and equations of each two points are calculated by the crossings of these two equations 

with each other. By this method, the attenuations of walls by considering the thicknesses of each wall are 

considered. We estimate the sigma deviation for path-loss formula for our sensed APs using (12). The 

average value of correlation of mean RSS values of points from measurements and simulated data in all 
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points from all 4 sensed APs is 0.89. This correlation value shows that our method for estimating the 

parameters of path-loss formula and WAFs and FAF are almost accurate. Therefore, we use these 

parameters for simulated radio maps.  

Path-loss exponent values and sigma deviations for each AP, in radio maps that have beyond 4 

APs are computed by (26) and (27). We use 4, 10 and 18 APs in the whole area for our simulations. We 

fixed 4 APs that are in our layout in all radio maps. We set the power of transmitters equal to 27dBm. We 

considered -30dB as floor attenuation factor for AP2. The path-loss exponent value for AP1, AP2, AP3 

and AP4 that are shown in Fig 2 are respectively equal to 5.59, 6.92, 5.53 and 6.09. The sigma deviation 

for these APs are computed respectively equal to 11.74, 14.79, 11.84 and 10.30dB. The path-loss 

exponent value for all APs in all radio maps are calculated by path-loss exponent values of these four 

APs. Also we use this criteria for calculating the sigma deviation for all APs in all radio maps: 

𝑛𝑛𝑖𝑖 = (1 − 𝛽𝛽)𝑛𝑛𝐴𝐴𝑃𝑃(𝑊𝑊𝐴𝐴𝐹𝐹) + (𝛽𝛽)𝑛𝑛𝐴𝐴𝑃𝑃(𝑙𝑙𝑙𝑙𝑐𝑐)                        (26) 
𝜎𝜎𝑖𝑖 = (1 − 𝛽𝛽)𝜎𝜎𝐴𝐴𝑃𝑃(𝑊𝑊𝐴𝐴𝐹𝐹) + (𝛽𝛽)𝜎𝜎𝐴𝐴𝑃𝑃(𝑙𝑙𝑙𝑙𝑐𝑐)                        (27) 

where 𝛽𝛽 is a parameter between 0 ,1. 𝑛𝑛𝐴𝐴𝑃𝑃(𝑙𝑙𝑙𝑙𝑐𝑐) is the path-loss exponent value of AP that is closer to 

𝐴𝐴𝑃𝑃𝑖𝑖 in the case of location. 𝑛𝑛𝐴𝐴𝑃𝑃(𝐾𝐾𝐴𝐴𝑊𝑊) is the path-loss exponent value of AP that has closer WAF value 

to 𝐴𝐴𝑃𝑃𝑖𝑖. 𝜎𝜎𝐴𝐴𝑃𝑃(𝑙𝑙𝑙𝑙𝑐𝑐) is the sigma value of AP that is closer to 𝐴𝐴𝑃𝑃𝑖𝑖 in the case of location. 𝜎𝜎𝐴𝐴𝑃𝑃(𝐾𝐾𝐴𝐴𝑊𝑊) is the 

sigma value of AP that has closer WAF value to 𝐴𝐴𝑃𝑃𝑖𝑖. 

We use 𝛽𝛽=0.5 for our simulations. We use this method for simulation parameters of APs in the 

radio maps that have beyond our 4 sensed APs. As mentioned, the simulation parameters for simulated 

radio map depend on RSS measured. Therefore, when we do not have any RSS measured values from 

some APs for simulation, it is better to consider their simulation parameters by the help of the parameters 

of the closest AP to them. In our consideration, we assumed that when two APs have closer WAF value 

are closer to each other in the case of space, they have nearly equal path-loss exponent and sigma 
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deviation values too.  

We use the results of six nearest neighbours for KNN and 𝛿𝛿=0.25dB for Gaussian kernel methods. 

We use six weighted nearest neighbours for KWNN and b equal to 0.25 for method in section (2.2.2). In 

the new proposed method, we set the number of CHs in offline phase for 4, 10 and 18 APs equal to 14 

that are calculated by affinity propagation. Also we set 𝜆𝜆 =0.5 in simulations as damping factor for 

affinity propagation clustering algorithm.  

 

Fig 3 Layout of Cyberspace Research Institute at Shahid Beheshti University 

Altering APs decreases the accuracy of localization in reality, however, we want to simulate our 

proposed algorithm in simulation. Therefore, we should consider Signal Change value as a parameter 

that represents how much the power of altering APs differs when considering their variations on signals 

in location estimation phase. We consider 0 to 20dBm as Signal Change values. Fig 3 shows the mean 

distance error versus Signal Change values for only one altering AP when we have 4 APs. 
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Fig 4 Mean distance error versus Signal Change values 

As shown in Fig 3, mean distance error for the proposed method is lower than other methods, 

because our proposed method uses RSS subset sampling for localization as mentioned in section (2.2.2) 

and also the variability of variance and weights of points that are in cluster where TP belongs to, are 

analysed. The trend of increasing the mean distance error by increasing the Signal Change value for 

methods are nearly the same. Mean distance error for kernel and KNN methods are higher than method 

represented in section (2.2.2) because these methods can not consider altering APs. When we have Signal 

Change value equal to the range of 0 to 20dBm, the signal coverage area for altering APs is increased 

therefore the mean distance error in these ranges is increased for all methods.  

We consider Signal Change value of 10dBm for altering APs for the simulations throughout this 

paper. In section (3.2.3) we have z parameter that can be regulated between 0 and 1. The mean distance 

error for various values of z is computed. Fig 4 shows these results when there are 4 APs in radio map 

by considering one altering AP. As shown in this figure, mean distance error in our proposed method has 

nearly increasing trend by increasing the z value. 
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Fig 5 Mean distance error for various z values 

We use z= 0.1 in our simulations. The z value can better relate the relationship between signal 

distance and physical distance, because the criteria of comparison for signal distance is not equal to the 

Euclidean distance. Therefore, by increasing the z value, the distance between signals tend to Euclidean 

distance. 

5. Simulation Results 

For analysis of simulation of our proposed method, we compare it with KNN and kernel methods 

and the method represented in section (2.2.2).  

We analysis the results of measured and simulated radio map with 4 sensed APs in our layout 

when we have one altering AP in simulated and measured radio map then we compare it when we have 

these APs without any altering AP in measured radio map. The results of these three scenarios are shown 

in Fig 5. 
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Fig 6 Mean distance error for three scenarios by 4 APs 

As shown in Fig 5, our proposed method has the best accuracy in all three scenarios and when 

we have one altering AP, the results of localization have lower accuracy compared with no altering AP. 

We cannot measure any signal in some where especially in rooms from some APs and the results of 

measured data have lower accuracy than simulated data by considering altering APs. Therefore, when 

we use measured data with no altering AP, errors of algorithm represented in section (2.2.2), our proposed 

method, KNN and kernel methods are equal to 1.66, 1.54, 1.76 and 1.75m, respectively, that are nearly 

close to each other, because in reality we do not consider any RSS data in rooms from some Aps. 

Therefore, we should expect to have close results in all three methods in reality, because we do not have 

much more RSS variances.  

Table 1 shows the mean distance error for various number of altering APs when we have radio 

map with 18 dimensions and we use one, five and ten altering APs. As shown in this Table, mean distance 

error in all methods is increased by increasing the number of altering APs. However, the proposed method 

has lower error than other methods because it considers both clustering the RSS vectors and analysis of 

variance of RSS value and signal distance more deeply compared with others and clustering the locations 

by RSS subset sampling that is better in learning in dynamic effects in indoor environments. 
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Table 1 mean distance error (m) 

 1 5 10 

Algorithm in (2.2.2) 1.86 2.70 4.02 
proposed method 1.47 2.59 3.7 
kernel 1.98 2.81 4.36 
KNN 1.92 2.78 4.28 

According to Table 1, the mean distance error increases when the number of altering APs 

increases. For simplicity, we evaluate the proposed method when there is only one altering AP for the 

rest of the paper. The localization results of all 164 RPs are shown in Fig 6 by considering one altering 

AP. As shown in Fig 6, by increasing the number of APs, the mean distance error decreases and the 

proposed method has shown more improvement than other methods. Because the RSS subset sampling 

(section 2.2.2) and the RSS variances among APs in each cluster in location estimation phase are 

computed and also we assigned a weight to each point in each cluster, that can better represent the 

relationship between signal distance and physical distance. The reason is that in indoor areas, there are 

obstacles that may change the AP signals. 

 

Fig 7 Mean distance error for one altering AP for various number of APs 

By these simulation results, we find out that for 4, 10 and 18 APs with only one altering AP and 

164 RPs, the results of method in section (2.2.2) are improved by 12%, 20% and 21% that in average is 

17.67%. As simulation results have shown, when we have lower numbers of unchangeable APs, the errors 

Number of altering APs Method
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in localization results become higher.  

We can update the radio map as we discussed in section (3.3). We set 𝑡𝑡𝐺𝐺=1.3 m as the threshold 

distance value and we simulate all methods for various α values as shown in Fig 7 for 4 APs with one 

altering AP. 

 

Fig 8 Mean distance error by various α values for 4 APs with one altering AP 

As shown in Fig 7, when α=0.75 there are more improvements in localization results in all 

methods. The reason is that in this case, the RSS value of TP is used more than RSS value of RP for 

updating the radio map. Therefore, it is normally possible that the results of localization be much more 

improved. However, for α=0.5 the RSS of TP and RP have the same share. This situation is more common 

in reality because the RSS value has non-stationary values with time, therefore it should be better that 

we consider this case for our simulations. Thus, we select α=0.5 for updating the radio maps with one 

altering AP. The results of this analysis are shown in Fig 8. 
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Fig 9 Mean distance error by α=0.5 for all radio maps with one altering AP 

As shown in Fig 8, mean distance error decreases by increasing the number of unchangeable Aps. 

Also, in average we improve the results of method in section (2.2.2) as 22.5% when we have one altering 

AP by this radio map updating algorithm. The results have shown that our proposed method can filter 

altering APs and decreasing their effects on localization results, without deleting them from our 

simulations. The improvement on KNN and kernel methods by this radio map updating algorithm in 

average is equal to 8% and 16%, respectively, and the proposed method has more improvements.  

6. Conclusion 

The proposed method in this paper considers the dynamicity on Wi-Fi signals such as altering 

APs and improves the results of localization without deleting altering APs. Our proposed method uses 

affinity propagation clustering algorithm in signal space and it has considered the least variance of RSS 

measurements from APs in each cluster in order to get higher accuracy for location estimation of TP. 

Also we assign lower weight to altering APs in each cluster that can better represent the exponential 

relationship between physical distance and signal distance in indoors. Also, we use an algorithm for 

updating the radio map. Then we get in average 22.5% improvement in compare of when we simulate 

RSS subset sampling for localization because of altering APs. 
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