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Abstract—This paper examines deep learning models for ac- 
curate and efficient identification and classification of pavement 
distresses. In it, a variety of related studies conducted on the 
topic as well as the various identification and classification 
methods proposed, such as edge detection, machine learning 
classification informed by statistical feature extraction, artificial 
neural networks, and real-time object detection systems, are 
discussed. The study investigates the effect of image processing 
techniques such as grayscaling, background subtraction, and 
image resizing on the performance and generalizability of the 
models. Using convolutional neural networks (CNN) 
architectures, this paper proposes a model that correctly 
classifies images into five pavement distress categories, namely 
fatigue (or alligator), longitudinal, transverse, patches, and 
craters, with an accuracy rate of 90.4% and a recall rate of 
90.1%. The model is contrasted to a current state-of-the-art 
model based on the You Only Look Once framework as well as a 
baseline CNN model to demonstrate the impact of the image 
processing and architecture building techniques discussed on 
performance. The findings of this paper contribute to the fields 
of computer vision and infrastructure monitoring by 
demonstrating the efficacy of convolutional neural networks 
(CNNs) in image classification and the viability of using CNN-
based models to automate pavement condition monitoring. 

Index Terms—Pavement Condition Monitoring, Computer 
Vision, Image Processing, Convolutional Neural Networks, 
Object Detection. 

 
I. INTRODUCTION 

Over the past few decades, the field of computer vision 
has evolved from studies on the brain’s visual neurons as 
conducted by Harvard neurophysiologists Hubel and Wiesel 
[1] to its practical applications in various industries and fields 
of study today. The work of Hubel and Wiesel in 1959 
explored how the visual system builds an image from simple 
stimuli into more complex representations by observing a 
kitten’s visual cortex neural responses to series of images. 
This research indicated that image processing begins with the 
recognition of small shapes and patterns found in images. 

In the mid-1970s, the introduction of Optical Character 
Recognition (OCR) and Intelligent Character Recognition 
(ICR) technology further propelled the study of Artificial 

Intelligence [2]. Fukushima leveraged the findings from pre- 
ceding studies and proposed a neural network model called 
the ”neocognitron” in 1980. The neocognitron was a self- 
organized neural network that could learn without a teacher 
and recognize stimulus patterns [2]. 

These discoveries eventually led to the development of 
convolutional neural networks (CNNs) which include a 
convolutional layer for feature extraction and subsequent 
layers for image classification. Lecun and Bengio [3] 
proposed the use of multi-layer back-propagation to turn the 
initial layers in neural networks into feature extractors. 

This research focuses on investigating the effectiveness of 
convolutional neural network (CNN)-based image processing 
and object detection tools in accurately identifying and 
categorizing pavement cracks. The study aims to develop a 
reliable tool for automated condition assessment of road 
surfaces and explore the feasibility of implementing real-time 
classifiers for pavement crack detection.  

The research also addresses subject-specific factors that can 
impact classifier performance and examines image 
processing techniques to improve prediction accuracy. It 
analyzes different types of pavement distress, their causes, 
and the consequences of not identifying and addressing them 
promptly. The study aims to identify potential barriers to 
the implementation of CNN-based pavement condition 
monitoring systems in real-world scenarios and propose 
solutions to overcome them. It seeks to answer research 
questions related to real-time detection and classification of 
pavement distress, image processing techniques, and 
challenges encountered during data collection and model 
building. 

The research objectives include developing and training a 
CNN for accurate detection and classification of pavement 
distress, conducting a comparative analysis with pre-defined 
data detection tools, investigating challenges and limitations, 
exploring transfer learning techniques, and assessing 
scalability and computational efficiency. 

Expected outcomes include the creation of a model for ac- 
curate pavement crack classification, improving efficiency and 
accuracy in pavement condition monitoring, early detection 



and timely intervention to prevent further deterioration and 
safety hazards, optimization of existing infrastructure, and cost 
savings. 

Overall, the research aims to contribute to the field of 
automated pavement monitoring and provide a foundation for 
advancements in pavement crack detection technologies. 

II. LITERATURE REVIEW 

A. Image Processing 

Image processing plays a crucial role in the quality of results 
obtained from image classification models. [4] emphasize the 
significance of image processing in improving the accuracy 
of crack detection. They propose adaptive thresholding to 
enhance the contrast between distresses and the background, 
as cracks tend to have darker contours. Applying thresholding 
techniques can improve a model’s ability to identify crack 
features in input data. The authors also highlight the need for 
filtering to remove noise, deblur images, and highlight specific 
crack features. 

Data collection methods can greatly impact the quality of 
input data for image classification models. Radopoulou and 
Brilakis [5] propose the use of vision trackers installed in 
civilian vehicles to automatically detect patches in video 
frames, providing a cost-effective alternative to manual data 
collection. They emphasize the importance of image 
processing techniques such as grayscale transformation, 
median filtering, histogram equalization, image binarization, 
and morphological operations in improving the quality of 
training data. They suggest that pavement distress detection 
requires attention to detail, as these distresses can be 
challenging to detect even for the human eye. The authors 
also highlight the importance of addressing blurriness in 
images through techniques like median filtering and the use of 
grayscale transformation to reduce noise associated with 
color. 

Balbin et al. [6] propose image processing techniques such 
as Hough transform, dilation, grayscale transformation, and 
Haar wavelet transform as precursors to automatic surface 
crack detection. They use edge detection to isolate crack 
contours for better detection. Surface crack classification is 
performed using a Haar trained cascade object detector trained 
on positive and negative samples. 

Liu et al. [7] employ image grayscaling and smoothing 
techniques to reduce noise introduced by color and blurriness. 
They apply binary image denoising based on the 8- 
neighborhood feature of noise to eliminate isolated noise 
points. The authors study the trajectory, length, width, and area 
of specific crack types as features for classification. Length and 
width are extracted through the distance between image pixels, 
while the crack area is calculated as the product of length and 
width. 

B. Image Classification 

Different authors have investigated various approaches for 
the object detection/classification portion of these tasks, 
including edge detection, feature extraction for machine 
learning, and deep learning. 

1) Edge Detection: Nienaber et al. [8] conducted a study on 
the use of edge detection to identify potholes in South African 
roads. They utilized the Canny edge detection algorithm to 
identify and highlight the distinctive edges of potholes in the 
captured images. The assumption was that the darker lining 
along the edges of a pothole, in contrast to the rest of the 
road, would serve as a key feature for detection. 

However, this approach may have limitations. It fails to 
consider the possibility that some potholes may be obscured by 
dust or debris, causing their edges to blend with the surround- 
ing pavement and making them indistinguishable through edge 
detection alone. Additionally, the research primarily focused 
on detecting a single distress class (potholes), which may limit 
its effectiveness in detecting other types of pavement distress, 
such as longitudinal, transverse, or alligator cracks. Different 
distress types may have distinct characteristics that require 
tailored detection approaches. 

Nevertheless, the edge detection approach has its 
applications in other areas of research. Dwivedi et al. [9] 
utilized edge detection techniques, including smoothing, 
intensity gradient calculation, non-maximum suppression, and 
hysteresis thresholding, to detect edges in images for the 
purpose of identifying unattended safety breaches in public 
spaces such as parks, shopping malls, and transportation hubs. 
This research aimed to enhance security measures by 
promptly and accurately identifying potential security threats. 

2) Machine Learning: Shi et al. [10] focused on the 
traditional approach of feature extraction from crack images 
and employed machine learning techniques for detection. 
They initially used mean and standard deviation values as 
features and then incorporated channel features such as a 
histogram of oriented gradient to achieve faster detection 
results. By combining different colors, magnitudes, and 
orientation channels, they extracted a total of 3328 distinct 
features. 

To address the issue of overfitting in decision trees, they 
utilized a random structured forest, which is an ensemble 
of randomized decision trees. This ensemble approach helps 
mitigate the overfitting problem by training multiple models 
that contribute to the final result. 

One noteworthy aspect of their work is their cautious 
approach to image binarization. They avoided traditional 
thresholding methods that tend to classify small regions as 
noise based on their size, potentially removing inconspicuous 
cracks. Instead, they proposed a crack descriptor that utilizes 
statistical features of structured tokens to identify unique 
properties of cracks and distinguish them from noise. 

However, a limitation of their research is the inadequate 
consideration of large volumes of noise typically found on 
busy highways, where pavement condition monitoring is most 
crucial. The training images used in their study do not include 
non-pavement objects in the background, which could be a 
nuisance if detected in new data. 

Other researchers, such as Gavilan et al. [11], Nguyen and 
Hoang [12], Hoang et al. (2018), and Zhang et al. [13], have 
also proposed machine learning classifiers, including support 
vector machines and random forest classifiers, for the detection 



of pavement cracks. These studies contribute to the exploration 
of different machine learning approaches for crack detection 
and classification. 

3) Convolutional Neural Networks: Convolutional neural 
networks (CNNs) have gained popularity in recent years for 
classification of images with patches. Zhang et al. [14] trained 
a CNN model for crack patch classification, outperforming 
support vector machines and tree-based models. Chu et al. 
[15] proposed a pothole crack detection (PCD) model based on 
CNNs optimized with K-fold cross-validation, achieving high 
precision and recall rates in identifying potholes. Pintelas et 
al. [16] introduced Multiview convolutional neural networks, 
which enhanced the performance of pre-trained neural net- 
works like ResNet and VGG. Cha et al. [17] utilized CNNs 
for concrete crack detection, aiming to create a model that is 
robust to noise introduced by lighting, shadow casting, and 
blurriness. 

Issa et al. [18] focused on predicting pavement condition 
indexes using artificial neural networks (ANNs), designing 
a multilayer architecture with input neurons receiving inputs 
related to pavement conditions. Singh et al. [19] developed 
an anomaly recognition software based on CNNs, processing 
CCTV footage and using a pre-trained network for 
classification. Mandal et al. [20] applied deep learning 
techniques to predict irregularities in road pavements, 
employing a You Only Look Once (YOLO) v2-based deep 
CNN. 

Huyan et al. [21] proposed the Crack Deep Network 
(CrackDN) based on the Faster Region Convolution Neural 
Network (F-RCNN) architecture, which achieved effective 
crack detection in complex backgrounds. Song et al. [22] 
compared the performance of F-RCNNs with traditional CNNs 
and a K-value method, finding that the F-RCNN ensemble 
performed better in detecting pavement distress. 

Melegrito et al. [23] developed a YOLO v3-based transfer 
learning CNN model to detect abandoned carts, while Manalo 
et al. [24] trained a transfer learning model based on the YOLO 
v3 framework using the ImageAI python library. These studies 
demonstrate the application of CNNs and related architectures 
in various image classification tasks, including crack detection, 
pothole detection, and object detection in parking lots. 

III. METHODOLOGY 

This study aims to compare two different approaches for 
detecting and classifying pavement distress: the proposed 
CNN-based approach and the YOLO v8 approach. The flow 
of methodology components is depicted in Figure 1. 

A. Data Collection 

To gather the necessary data for this study, we utilized 
the Roboflow’s Pavement Distresses v2 Image Dataset. This 
dataset contains a wide range of images showcasing road 
pavements in various states of distress. Prior to conducting 
this study, the dataset was annotated using TensorFlow to 
identify the bounding boxes, and the annotations were saved in 
a CSV document. The dataset includes a total of 680 images, 
with 1009 bounding boxes and annotations. Some images have 
multiple annotated bounding boxes. 

 

 
 

Fig. 1. Flow of Methodology Components 
 
 

B. Dataset Description 

This study utilizes image data sourced from Roboflow’s 
Pavement Distresses v2 Image Dataset. Roboflow is a platform 
that hosts a vast collection of open-source computer vision 
datasets and APIs across various fields and industries. The 
dataset used in this study consists of images depicting road 
pavements in different states of distress. Prior to this study, 
object detection was performed on the dataset using Tensor- 
Flow, and the annotations were saved in a CSV document. 
The dataset was then divided into train, test, and validation 
folders. 

The dataset comprises a total of 680 images with 1009 
bounding boxes and annotations. Some images contain more 
than one annotated bounding box. The annotations fall into 
five distress categories, which are described below. 

1) Fatigue (or Alligator) Cracking: Fatigue cracking is 
a common type of pavement distress characterized by 
interconnected cracks caused by load-related deterioration. 
It is prevalent in areas with high traffic volumes, occurring 
when the asphalt layer of pavements is insufficient to support 
repeated traffic loads. Longitudinal cracks form along the 
wheel paths and eventually connect, resembling the back of 
an alligator or crocodile. Fatigue cracking leads to roughness 
on the pavement surface and allows moisture infiltration, 
which can result in potholes and pavement disintegration if 
not detected and treated early. There are 172 images in this 
category (see Figure 2). 

2) Transverse Cracking: Transverse cracks occur 
perpendicular to the pavement’s centerline. They also lead to 
moisture infiltration and roughness, similar to block cracks. 
These cracks are usually caused by thermal cracking, which 
involves the shrinkage of the asphalt surface due to low 
temperatures or asphalt binder hardening. However, factors 
such as inadequate pavement thickness or excessive traffic 
loads can contribute to their development as well. The dataset 
contains 246 images in this category (see Figure 3). 

3) Longitudinal Cracking: Longitudinal cracks occur par- 
allel to the pavement’s centerline and indicate possible fatigue 
cracking and structural failure. They also lead to moisture 
infiltration and roughness. These cracks can be caused by 
poorly constructed or located joints, reflective cracks from 
underlying layers, asphalt fatigue, or top-down cracking. The 



  
 

Fig. 2. Collage of Images in the Fatigue Category 

 

 
 

Fig. 3. Collage of Images in the Transverse Crack Category 
 

 
dataset includes 231 images in this category (see Figure 4). 

4) Potholes: Potholes are small bowl-like depressions that 
penetrate the pavement surface down to the base course. They 
occur most frequently on roads with thin HMA (Hot Mix 
Asphalt) surfaces and can cause severe roughness and 
vehicular damage or accidents, particularly on highways. 
Potholes also lead to moisture infiltration, further deteriorating 
the pavement. They generally form as a result of severe 
fatigue cracking, where interconnected cracks create small 
chunks of pavement that become dislodged. The dataset 
contains 155 images of potholes (see Figure 5). 

5) Patching: Patching refers to corrective measures taken 
to repair localized pavement distresses. These patches appear 
darker than the surrounding pavement area due to their relative 
youth. Although patches may perform well, they contribute to 
overall pavement roughness. The only way to remove patches 
is by applying a structural or non-structural overlay to the 

 
Fig. 4. Collage of Images in the Longitudinal Crack Category 

 

 
Fig. 5. Collage of Images in the Pothole Category 

 
 
entire pavement area. The dataset contains 205 images of 
patches (see Figure 6). 

C. Dataset Summary 

The dataset comprises images categorized into Fatigue, 
Longitudinal, Transverse, Patch, and Pothole groups. The 
images have varying dimensions and were captured using 
colored lenses. Some misclassifications are present, such as 
patches mistakenly categorized as potholes. Additionally, the 
alignment of transverse and longitudinal crack images may be 
inaccurate due to portrait mode instead of landscape mode, 
causing them to appear parallel rather than perpendicular. 
Some images from both categories may appear diagonal, 
lacking a clear point of reference for determining their 
alignment with the pavement’s centerline. A few images also 
include objects other than pavement distress, such as vehicles 
and traffic cones. 



 

 
 

Fig. 6. Collage of Images in the Patches Category 
 
 

D. Data Analysis Methods 

In this section, we discuss the analysis conducted in this 
research, which involved data pre-processing and model 
architecture. The focus was on training a CNN-based model 
using the MATLAB integrated development environment 
(IDE). 

1) Preprocessing: During the pre-processing phase, the 
data from the Roboflow database was obtained in image and 
CSV format (Roboflow). The three image folders (train, test, 
and val) along with their corresponding annotation files were 
merged and uploaded to Google Drive for further processing 
using the Python IDE in Google Colab. 

To address an issue of smaller cracks being classified as 
noise and affecting model performance, the data cleaning 
process started by removing tiny images with dimensions 
below 20 pixels. This was achieved using the pandas library, 
which allowed for subsetting the data based on specific criteria. 
The height and width of the bounding boxes were extracted 
from the annotation files and used to create two new columns 
in the DataFrame. Images that did not meet the minimum 
size requirement were eliminated as they contained minimal 
information and introduced noise to the model. 

Additionally, images predominantly classified as transverse 
or longitudinal cracks were adjusted to match their correct 
orientation. By comparing the height and width of the 
bounding boxes, longitudinal cracks were reclassified as 
transverse cracks if the height was greater than the width, and 
vice versa. However, diagonal fractures within these 
categories were not addressed in this reclassification process. 

The os library played a crucial role in navigating the file 
system (os). It provided functions for creating, renaming, 
moving, and deleting files and directories, as well as retrieving 
information about the file system and system-related details. 
In this study, the os library was used to extract file paths, file 
names, and folder names for further analysis. 

The cv2 library, which specializes in image and video 
processing, was extensively used in this study (cv2). It offered 
functions for reading and writing image files, image filtering, 

thresholding, and image resizing. Specifically, the imread 
function was used to read each file, and the bounding box 
coordinates from the annotation files were used to extract the 
detected cracks. The chdir function from the os library 
facilitated switching between directories, allowing the 
extracted images to be saved in the respective category folders 
using the imwrite function from cv2 

E. Model Building 

The analysis involved using the MATLAB IDE for the 
deep learning part. The data was cleaned and uploaded to 
MATLAB Drive, then read into the IDE using the imageData- 
store function. The folder names were used as labels for the 
images. The data was split into train and validation datasets, 
with an 80:20 ratio. The labels for the validation dataset 
were saved for later evaluation. To augment the datasets, 
the augmentedImageDatastore function was used to resize the 
images to 250 x 250 and remove background images to reduce 
noise. 

Alternatively, the MATLAB transform function could have 
been used for applying various image processing techniques 
like binarization, resizing, grayscaling, and histogram 
equalization. However, the transform function’s output 
couldn’t be directly used with the trainNetwork function, so 
additional steps would be required to combine the transformed 
data with the image labels. 

The network architecture consisted of an input layer, 30 
hidden layers, and an output layer. The hidden layers included 
convolutional, batch normalization, relu, and max pooling 
layers. The convolutional layers performed feature extraction 
by applying convolution operations to detect patterns in the 
input data. The batch normalization layers standardized the 
input data to improve performance and mitigate overfitting. 
The relu layers applied the rectified linear unit activation 
function to learn complex features. The max pooling layers 
reduced the spatial dimensions of the feature maps. Finally, 
the fully connected layer connected every neuron in the input 
to every neuron in the output, and the softmax layer provided 
probability distributions over the classes. 

The classificationLayer was used as the output layer to 
generate probability distributions and make predictions based 
on the highest probability. This layer ensured the outputs were 
normalized and could be interpreted as probabilities. 

F. Limitations 

The proposed CNN-based method for detecting pavement 
distresses has several limitations. Firstly, the model’s 
inference time was found to be slow, especially when 
processing input images. This slow performance would be 
further exacerbated when working with larger datasets with 
higher dimensions. Consequently, the proposed method may 
not be suitable for real-time pavement distress detection 
scenarios where prompt results are crucial. Additionally, the 
MATLAB environment used in the study lacked sufficient 
resources for effective troubleshooting of potential 
implementation issues. This limitation could introduce 
challenges in 



ensuring the smooth functioning and reliability of the proposed 
method. Given these limitations, it is recommended to explore 
alternative approaches, such as model training in a Python 
IDE, or to optimize the CNN-based method to improve 
inference speed. Additionally, addressing the need for better 
troubleshooting resources and comprehensive documentation 
within the MATLAB environment would be beneficial. 

IV. RESULTS 

In MATLAB, these images were divided into two datastores 
using an 80:20 division, with 80% of the data set aside for 
training the model and 20% for validating and evaluating its 
performance. At the conclusion of this research, the highest 
validation set accuracy achieved was 89.90%. 

 
TABLE I 

RESULTS FROM THE PROPOSED MODEL 

 
TABLE II 

NO OF INSTANCES FOR EACH CLASS FOR YOLOV8 TRAINING 
 

CLASS INSTANCES 
Fatigue 4 
Longitudinal 30 
Patch 18 
Pothole 14 
Transverse 21 
All 87 

 
 

TABLE III 
RESULTS FROM YOLOV8 MODEL TRAINED AT 100 EPOCHS 

 
 
 
 
 
 
 
 
 
 

TABLE IV 
RESULTS FROM YOLOV8 MODEL TRAINED AT 200 EPOCHS

 

 
 

 

While the model accurately predicted the majority of images 
in the validation dataset, it had trouble distinguishing between 
fatigue fracture, longitudinal crack, and transverse crack im- 
ages. Six fatigue fractures were predicted to be longitudinal, 
four transverse cracks were predicted to be longitudinal, and 
four longitudinal cracks were predicted to be transverse. In 
addition, there were a few minor misclassifications of fatigue 
and longitudinal fractures as patches and transverse cracks, as 
well as a misclassification of a single patch and transverse 
crack as fatigue cracks. This category was not misclassified in 
any way (potholes were not misclassified as other categories or 
other categories were not misclassified as potholes). It can be 
inferred from these results that Nienaber et al’s [8] hypotheses 
are accurate, as the model was able to distinguish craters from 
other study categories. This may be due to the difference in 
pothole outlines as they appear in images or the width of 
the contrast between the distress and the remainder of the 
pavement surface. This model’s parameters were modified and 
optimised for optimal performance. The options that produced 
the greatest results were solver: Adam., The Learning Rate is 
0.01 and the Validation Frequency is 40. 

Using the same image dataset, YOLOv8 baseline and pre- 
trained models were also examined for comparison. Both 
models had 225 layers, were trained with 570 images, and 
were evaluated with 54 images from a validation dataset. The 
default image resolution of 640 x 640 pixels was maintained. 
At 100 epochs, the YOLO v8 baseline and pre-trained models 
produced the outcomes detailed in Table II to VII. 

 

TABLE V 
RESULTS FROM YOLOV8 MODEL TRAINED AT 300 EPOCHS 

 
 
 
 
 
 
 
 
 

TABLE VI 
RESULTS FROM YOLOV8 MODEL TRAINED AT 400 EPOCHS 

 
 
 
 
 
 
 
 
 

TABLE VII 
RESULTS FROM YOLOV8 MODEL TRAINED AT 500 EPOCHS 

CLASS INSTANCES PRECISION RECALL 
Fatigue 34 0.813 0.765 
Longitudinal 45 0.795 0.867 
Patch 42 0.953 0.976 
Pothole 28 1.000 1.000 
Transverse 49 0.957 0.898 
All 198 0.904 0.901 

 NEW MODEL PRE-TRAINED MODEL 
CLASS PRECISION RECALL PRECISION RECALL 
Longitudinal 1.000 0.133 0.667 0.133 
Patch 0.778 0.778 0.923 0.667 
Pothole 0.800 0.286 0.833 0.357 
Transverse 0.727 0.381 0.800 0.190 
All 0.661 0.316 0.845 0.320 

 NEW MODEL PRE-TRAINED MODEL 
CLASS PRECISION RECALL PRECISION RECALL 
Fatigue 0.000 0.000 1.000 0.250 
Longitudinal 1.000 0.033 0.419 0.167 
Patch 0.769 0.556 0.652 0.833 
Pothole 0.500 0.143 0.500 0.286 
Transverse 1.000 0.048 1.000 0.048 
All 0.654 0.156 0.714 0.317 

 NEW MODEL PRE-TRAINED MODEL 
CLASS PRECISION RECALL PRECISION RECALL 
Longitudinal 1.000 0.033 0.643 0.300 
Patch 0.817 0.722 0.824 0.778 
Pothole 0.833 0.357 0.800 0.571 
Transverse 1.000 0.095 0.600 0.429 
All 0.730 0.242 0.773 0.466 

 NEW MODEL PRE-TRAINED MODEL 
CLASS PRECISION RECALL PRECISION RECALL 
Longitudinal 0.625 0.167 0.667 0.267 
Patch 0.824 0.778 0.833 0.556 
Pothole 0.800 0.286 0.833 0.357 
Transverse 0.700 0.333 0.625 0.238 
All 0.601 0.341 0.800 0.362 

 NEW MODEL PRE-TRAINED MODEL 
CLASS PRECISION RECALL PRECISION RECALL 
Longitudinal 0.625 0.167 0.667 0.267 
Patch 0.824 0.778 0.833 0.556 
Pothole 0.857 0.429 0.875 0.500 
Transverse 0.700 0.333 0.625 0.238 
All 0.601 0.341 0.800 0.362 



200 epochs produced the greatest performance for the 
YOLO baseline model (73%), while 400 epochs produced 
the best performance for the pre-trained model (84.5%). The 
model demonstrates a universal recall-precision trade-off, as 
precision scores generally decreased as recall scores increased. 
This indicates that the model accurately predicts instances for 
each category (few false positives) but ignores a significant 
number of actual positive instances (high false negatives). 

A. Comparison to Baseline Method 

To evaluate the efficacy of the proposed method for 
pavement distress detection, both the proposed model and 
YOLO v8 approaches were compared comprehensively to 
baseline models. The dataset of 680 pavement images 
captured under various lighting conditions and distress 
categories was used for comparison. Each image was 
painstakingly annotated by domain specialists to provide 
ground-truth labels for regions of distress. Evaluation metrics 
included precision, recall, and macro-weighted precision and 
accuracy. The proposed technique significantly outperformed 
the baseline method for both metrics. It attained a precision 
of 90.40 percent compared to the baseline’s 20 percent, 
indicating a greater accuracy in identifying positive results. 
The recall rate also increased significantly, with the proposed 
method attaining 90.1% as op- posed to the baseline’s 24.7%. 
As a result, the overall accuracy improved, with the proposed 
method yielding an impressive 89.9% as opposed to the 
baseline’s 24.75%. These results clearly demonstrate that the 
proposed method is superior to the baseline technique for 
detecting pavement distresses. Using deep learning 
techniques, in particular the employed CNN architecture, 
enables the model to effectively capture complex patterns and 
variations in distress categories, resulting in enhanced 
detection performance. 

TABLE VII 
Final Comparison 

 

V. CONCLUSION AND FUTURE WORK 

In conclusion, this paper has investigated and presented a 
comprehensive analysis of pavement distress detection using 
deep learning models. The experiments conducted with the 
proposed model architectures showcased the efficacy and 
potential of these models in accurately identifying and 
classifying various types of distresses. The method 
outperformed the base- line approach with a macro-averaged 
precision score of 90.4% and macro-averaged recall score of 
90.1%, demonstrating superior performance. It also 
outperformed the contemporary YOLOv8 model, which 
yielded macro-averaged precision and recall scores of 84.5% 
and 32.0%, respectively. 

The utilization of image processing techniques, as outlined 
in Figure 1, and their impact on model performance have 
highlighted the importance of specific techniques such as im- 
age grayscaling, background subtraction, and image resizing. 
The paper has also identified various challenges that may arise 
during image processing and model building. 

Future endeavors will therefore focus on refining and 
optimizing the proposed method, exploring new architectures, 

additional image processing techniques, and expanding its 
applicability to other data formats and case scenarios. By 
further optimizing the data pre-processing, image processing, 
and classification pipeline, the efficiency of the proposed models 
can be improved, enabling faster and more accessible 
deployment. Additionally, incorporating advanced image 
augmentation techniques, evaluating the models on equally 
weighted target categories, and testing them on video data will 
contribute to enhancing their performance and adaptability in 
real-world scenarios. 

In summary, this research has demonstrated the effective- 
ness of deep learning models in pavement distress detection 
and has provided insights into the importance of image 
processing techniques and challenges in model building. The 
proposed models and future directions outlined in this paper 
have the potential to advance the field of automated pavement 
condition monitoring, leading to more accurate and efficient 
detection of distresses and facilitating timely maintenance 
activities. 
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