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Abstract. This chapter presents the authors’ work for the Case Study
entitled “Delivering Social Media with Scalability” within the framework
of High-Performance Modelling and Simulation for Big Data Applica-
tions (cHiPSet) COST Action 1406. We identify some core research areas
and give an outline of the publications we came up within the framework
of the aforementioned action. The ease of user content generation within
social media platforms, e.g. check-in information, multimedia data, etc.,
along with the proliferation of Global Positioning System (GPS)-enabled,
always-connected capture devices lead to data streams of unprecedented
amount and a radical change in information sharing. Social data streams
raise a variety of practical challenges: derivation of real-time meaningful
insights from effectively gathered social information, a paradigm shift
for content distribution with the leverage of contextual data associated
with user preferences, geographical characteristics and devices in general,
etc. In this article we present the methodology we followed, the results
of our work and the outline of a comprehensive survey, that depicts
the state-of-the-art situation and organizes challenges concerning social
media streams and the infrastructure of the data centers supporting the
efficient access to data streams in terms of content distribution, data
diffusion, data replication, energy efficiency and network infrastructure.
The challenges of enabling better provisioning of social media data have
been identified and they were based on the context of users accessing
these resources. The existing literature has been systematized and the
main research points and industrial efforts in the area were identified and
analyzed. In our works, in the framework of the Action, we came up with
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potential solutions addressing the problems of the area and described how
these fit in the general ecosystem.

1 Introduction

1.1 Social Data Streams Features

Herein some basic terminology for the topic of our Case Study entitled “Deliv-
ering Social Media with Scalability” within the framework of High-Performance
Modelling and Simulation for Big Data Applications (cHiPSet) COST Action
1406 is introduced. The terminology appears in published works [111] and [108],
as well.

Social networks, media and platforms enable communication, exchange, busi-
ness and knowledge acquisition as well as social network users connection with
each other with the purpose of sharing content. Social data is the information
that social media users share, e.g. check-in information, multimedia data, tags,
annotations, and likes, and may include metadata such as the user’s location,
native language, biographical data and shared links, whereas ’streams’ denotes
various approaches have been performed that we do not refer to static datasets,
but rather to dynamic information generated and transmitted over the Online
Social Network (OSN).

Formally, an OSN is depicted by a directed graph G = (V,E), where V is
the set of the vertices of the graph representing the nodes of the network and
E are the edges between them, denoting various relationships among the edges
of the graph [69]. The semantics of these edges vary, and their interpretation
is expanded for various OSNs from personal acquaintance, to common interests,
microblogging services or business contact. As far as the directionality of the
edges of the social graph is concerned, it is associated with the concept of the
OSN: for Facebook, an edge denotes mutual friendship between the endpoints of
a link, for Twitter, if the edge between A and B points at B, A’s posts (tweets)
appear in B’s main Twitter page, and so on. A social node centrality is indicative
of the importance of a node within a social network. It is given in terms of a
real-valued function on the vertices of a graph, where the values produced are
expected to provide a ranking which identifies the most important nodes [40,41].

In Rogers’ classic work [150], the author defines information diffusion as the
process in which an innovation is communicated through certain channels over
time among the members of a social system. In this context, the innovation is
defined as the first spread of information from an originator. A social cascade is a
specific case of information diffusion and practically occurs within an OSN, when
a piece of information is extensively retransmitted after its initial publication
from a user. Cascades can be represented as rooted directed trees where the
initiator of the cascade is the root of the tree [26] and the length of the cascade
is the height of the resulting tree. Each vertex in the cascade tree can have the
information of the user, and the identity of the item replicated in the cascade.
Figure 1 depicts an example of the evolution of a social cascade in a directed
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Fig. 1. The evolution of a social cascade in Twitter

graph. The cascade follows the arrows’ direction. For example, in Twitter, B, C,
D, E are followers of A, whereas the adopters of a new information piece could
be the nodes, that after having been exposed in a video link, they retransmit it,
contributing remarkably to Internet traffic [1].

1.2 Challenges for Distribution of Social Data Streams

In the survey [108] we wrote in the framework of (cHiPSet) COST Action 1406
we identified the challenges of enabling better provisioning of social media data
based on the context of users accessing these resources. In our works [109–111],
that we produced in the framework of the Action, we came up with potential
solutions addressing the problems of the area and described how these fit in the
general ecosystem.

Distributing social data streams largely depends on the exploitation of usage
patterns found in OSNs, and can be improved either through the selective
prefetching of content (cost-effectiveness) or through the strategic place-
ment/selection of the employed infrastructure (energy-efficiency). The cost
of scaling such content might be the number of replicas needed for a specific
source or it may take into account the optimal use of memory and processing
time of a social-aware built system. Optimization of energy efficiency for data
centers that support social data interaction and analysis includes tasks such
as data growth, data center federation and Content Delivery Network (CDN)-
load-balancing at data center level. In our taxonomy (Fig. 2), pillars associated
with cost-effectiveness include Context-aware Computing, Content/Information
Diffusion Models and Content Distribution challenges, whereas Software for
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Fig. 2. Taxonomy of challenges for distribution of social data streams.

Infrastructure Efficiency is associated with energy-efficiency. This taxonomy
includes solutions or approaches to the ‘Challenges for Distribution of Social
Data Streams’. These solutions or approaches require enough effort, hence they
can also be considered as a challenge for the research community.

Context-Aware Computing: Application of social contextual information,
such as profiles, images, videos, biometrical, geolocation data and local data, in
situations where conventional bandwidth-intensive content scaling is infeasible,
could largely facilitate: the spreading of information, the identification of poten-
tial information sources, as well as a paradigm shift in the way users access and
control their personal data. User-generated multimedia content is especially dif-
ficult due to its long tail nature, with each item probably not popular enough to
be replicated in a global scale, but with the long-tail altogether getting sufficient
accesses [20]. Social analysis tasks interweaved with context-aware computing
could pave the ground for preactive caching mechanisms in the framework of a
content delivery infrastructure of streaming providers.

Software for Infrastructure Efficiency: The industry has made several
efforts to address challenges associated with optimization of energy efficiency
for data centers that support social data interaction and analysis [42,129,163]
such as data growth, isolation, real-time interactions, data center federation and
CDN-load-balancing at data center level, but usually lacks from focusing on
energy consumption of the employed infrastructures. The challenges in the area
of energy-efficient data-centers include workload consolidation and shut-down
techniques, Virtual Machines (VMs) consolidation and migration, data replica-
tion and placement, and energy-aware scheduling algorithms.
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Content/Information Diffusion Models: Prevalence of OSNs has trans-
formed the landscape of content exchange. Popularity of relatively data heavy
multimedia user generated content (UGC) has also risen [6], resulting in data
deluge across all media platforms [12,127,141]. Measurement studies, such as
[48], attribute the recent increases in HTTP/HTTPS traffic to the extended use
of OSNs [28,49,69]. Elaborate data manipulation presupposes coping with the
size of social graphs with billions of nodes and edges [174]. Facebook, for exam-
ple, reported that had 1.47 billion daily active users on average for June 2018
and 2.23 billion monthly active users as of June 30, 2018 [4]. Its custom built-in
data warehouse and analytics infrastructure [11] has to apply ad-hoc queries and
custom MapReduce jobs [55] in a continuous basis on over half a petabyte of
new data every 24 h for the creation of meaningful aggregations and analysis.
It is also acknowledged that a large proportion of bandwidth-intensive media is
distributed via reposted OSN links, contributing significantly to Internet traf-
fic [1], [46]. These challenges are closely associated with the Content/Information
Diffusion Models used to represent the diffusion of information over OSNs and
facilitate relevant algorithmic solutions (Fig. 2).

Content Distribution: The delivery infrastructure of video operators is made
up of scattered geo-distributed servers, which with specific cache selection mech-
anisms direct users to the closest servers hosting the requested data. Transmis-
sion Control Protocol (TCP), however, is subject to delay jitter and throughput
variations and clients are required to preload a playout buffer before starting the
video playback [111]. Thus, the quality of experience (QoE) of media platform
users is primarily determined by stalling effects on the application layer. For
the YouTube case cache server selection is also highly Internet Service Provider
(ISP)-specific, with geographical proximity not being the primary criterion and
DNS level redirections for load-balancing purposes occurring quite frequently
and substantially contributing to the initial startup delay of the playback. Sev-
eral network-level and client-level approaches are focused on the detection of such
interruptions, that negatively affect the user experience [94]. With the growing
popularity of OSNs and the increased traffic due to outspread of information
via the latter, the improvement of user experience through scaling bandwidth-
demanding content largely depends on the exploitation of usage patterns and
geolocation data associated with OSNs. These challenges are closely associated
with the Architectures, Systems and Techniques within the 5G infrastructure.

Some key factors contributing to the problem of diffusion of bandwidth-
intensive media content over OSNs are discussed below.

Large-Scale Datasets. In order to harness the power of social networks diffu-
sion over CDN infrastructure, the key areas of interest that need to be explored
include the large size of the graphs, and also the fact that diffusion of links is
multiplied through dissemination over sites like YouTube, and amplified by the
proliferation of smartphones and cheap broadband connections. The amount of
information in OSNs is an obstacle, since elaborate manipulation of the data
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may be needed. An open problem is the efficient handling of graphs with billions
of nodes and edges.

The desired scaling property refers to the fact that the throughput of the
proposed approaches should remain unchanged with the increase in the data
input size, such as the large datasets that social graphs comprise and the social
cascades phenomena that amplify the situation. Cost of scaling such content can
be expressed in different ways. For instance, it may be matched with the number
of replicas needed for a specific source. Future experimentations may take into
account the optimal use of memory and processing time of an OSN-aware built
system.

Internet of Things (IoT) is a global infrastructure that interconnects
things based on interoperable information and communication technologies, and
through identification, data capture, processing and communication capabilities
enables advanced services [5]. Things are objects of the physical world (physi-
cal things, such as devices, vehicles, buildings, living or inanimate objects aug-
mented with sensors) or the information world (virtual things), capable of being
identified and integrated into communication networks. It is estimated that the
number of Internet-connected devices has surpassed the human population in
2010 and that there will be about 50 million devices by 2020 [9]. Thus, the still
ongoing significant IoT innovation is expected to generate massive amounts of
data from diverse locations, that will need to be collected, indexed, stored, and
analyzed.

OSN Evolution. Existent works examine valuable insights into the dynamic
world by posing queries on an evolving sequence of social graphs (e.g. [146]).
Time evolving graphs are increasingly used as a paradigm for the emerging area
of OSNs [71]. However, the ability to scalably process queries concerning the
information diffusion remains to a great extent unstudied. With the exception
of sporadic works on specialized problems, such as that of inference of dynamic
networks based on information diffusion data [149], at the time of writing the
authors are not aware of relative studies on the information diffusion through
OSNs under the prism of graphs dynamicity.

5G Approaches. The demand for high-speed data applications that has risen in
recent decade lead to development of Fifth Generation Wireless (5G) communi-
cations. Development of efficient mechanisms for supporting mobile multimedia
and data services is prerequisite for 5G networks. Real bottleneck of todays’
mobile networks is the radio access network and the backhaul. Caching in the
intermediate nodes, servers, gateways, routers, and mobile users’ devices can
reduce doubled transmission from content providers and core mobile networks.

Known caching techniques that can be used within 5G are: content distri-
bution network, information-centric networks, content-centric networking, http
web caching, evolved packet core caching, radio access network caching, device to
device caching, proactive caching, predictive caching, cooperative caching [23].
Those techniques are using different algorithms and models. Analysis presented
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in [23] has shown that the deployment of those caching techniques in mobile net-
work can reduce redundant traffic in backhaul, minimize the traffic load, increase
the transfer rate in mobile network and reduce the latency. Correlation of several
caching methods and procedures could result in improving network performance
and obtaining better results.

On the other hand, well known bottleneck that 5G brings is the complex het-
erogeneity of the network. Particularly, network consists of different technologies
that coexist, where some technologies could potentially disable the transmission
of data of equipment that use other technologies. Thus, we need a solution that
efficiently handles resources in space, frequency, and device dimensions. Semantic
coordination could alternatively be used in such networks [135,164].

The nodes in the system can communicate and share knowledge in terms of
the spectrum utilization in the network. In [164], the authors proposed to model
the spectrum usage coordination as an interactive process between a number of
distributed communicating agents, where agents share their specific information
and knowledge. The information includes the current spectrum usage state, spa-
tial coordinates of the device, available communication protocols, usage policy,
spectrum sensing capabilities of the device, spectrum needs, etc. An approach
for such coordination is presented in [164] and it is based on semantic technolo-
gies and communication between heterogeneous agents with potentially different
capabilities and a minimal common compliance. The core knowledge is repre-
sented by ontologies whose representation and usage is specified in a standardized
way. The approach is used as dynamic spectrum coordination algorithms used for
coordination among different wireless technologies in 5G networking [135,164].
This semantic technologies based approach can be used for wide diapason of
problems within 5G heterogeneous networks, such as network states predictions,
network analysis, minimizing traffic load, content distribution coordination etc.
This approach could be used in combination with caching techniques in order to
improve content distribution in 5G, but further research should be done in this
area.

Mobile CDNs and the Cloud. Mobile computing (MC) [13] has created enor-
mous demand for online experience, that OSN-aware CDNs are required to sat-
isfy. Almost-ubiquitous Wi-Fi coverage and rapid extension of mobile-broadband
provide undisrupted connectivity for mobile devices, whereas devices that hop
seamlessly from WiFi to cellular networks, and technologies such as 5G, will be
optimised for uses that put a premium on continuous connectivity regardless of
the user location [5]. Mobile-specific optimizations for applications along with
drastically simplified and more intuitive use of devices (e.g. with multi-touch
interactions instead of physical keyboards) contribute to mobile applications
becoming the premium mode of accessing the Internet, at least in the US [6].

Cellular networks have become the main way citizens connect to the Inter-
net worldwide, specially in developing countries. Thanks to the development of
mobile devices and their networking capacities, as well as the arrival of fast and
reliable networks such as 5G, a high quality connectivity is ensured everywhere
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and any time. The irruption of new paradigms, such as IoT, has increased the
number of connected devices (sensors, actuators, etc.) which requires infrastruc-
tures that provide higher throughput networking, specially in use cases where
high definition videos are involved and even new scenarios are yet to emerge.

Mobile Computing entails the processing and transmission of data over a
medium, that does not constraint the human-medium interaction to a specific
location or a fixed physical link. Figure 3 depicts a general overview of the MC
paradigm in its current form. It is the present decade that signifies the prolif-
eration of MC around the world, although handheld devices have been widely
used for around two decades in the form of Personal Digital Assistants (PDAs)
and early smartphones. Almost ubiquitous Wi-Fi coverage and rapid extension of
mobile-broadband (around 78 active subscriptions per 100 inhabitants in Europe
and America) provide undisrupted connectivity for mobile devices, whereas 97%
of the world’s population is reported to own a cellular subscription in 2015 [5].
Moreover, the MC paradigm is nowadays further combined with other predomi-
nant technology schemes leading to the paradigms of Mobile Cloud Computing
[15], Mobile Edge Computing [8], Anticipatory Mobile Computing [138], etc.

Today’s mobile devices include smartphones, wearables, carputers, tablet
PCs, and e-readers. They are not considered as mere communication devices,
as they are in their majority equipped with sensors that can monitor a user’s
location, activity and social context. Thus, they foster the collection of Big Data
by allowing the recording and extension of the human senses [115].

Mobile social networking involves the interactions between users with similar
interests or objectives through their mobile devices within virtual social net-
works [44]. Recommendation of interesting groups based on common geo-social
patterns, display of geo-tagged multimedia content associated to nearby places,
as well as automatic exchange of data among mobile devices by inferring trust
from social relationships are among the possible mobile social applications ben-
efiting from real-time location and place information.

1. Industrial Applications: Maintenance, service, optimization of distributed
plant operations is achieved through several distributed control points, so that
risk is reduced and the reliability of massive industrial systems is improved
[139].

2. Automotive Applications: Automotive applications capture data from sensors
embedded in the road that cooperate with car-based sensors. They aim at
weather adaptive lighting in street lights, monitoring of parking spaces avail-
ability, promotion of hands-free driving, as well as accident avoidance through
warning messages and diversions according to climate conditions and traffic
congestion. Applications can promote massive vehicle data recording (stolen
vehicle recovery, automatic crash notification, etc.) [7].

3. Retail Applications: Retail applications include, among many others, the
monitoring of storage conditions along the supply chain, the automation of
restocking process, as well as advising according to customer habits and pref-
erences [139].
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4. Healthcare & Telemedicine Applications: Physical condition monitoring for
patients and the elderly, control of conditions inside freezers storing vaccines,
medicines and organic elements, as well as more convenient access for people
in remote locations with usage of telemedicine stations [98].

5. Building Management Applications: Video surveillance, monitoring of energy
usage and building security, optimization of space in conference rooms and
workdesks [7].

6. Energy Applications: Applications that utilize assets, optimize processes and
reduce risks in the energy supply chain. Energy consumption monitoring and
management [10,172], monitoring and optimization of performance in solar
energy plants [167].

7. Smart homes & Cities Applications: Monitoring of vibrations and material
conditions in buildings, bridges and historical monuments, urban noise moni-
toring, measuring of electromagnetic fields, monitoring of vehicles and pedes-
trian numbers to optimize driving and walking routes, waste management
[81].

8. Embedded Mobile Applications: Applications for recommendation of interest-
ing groups based on common geo-social patterns, infotainment, and auto-
matic exchange of data among mobile devices by inferring trust from social
relationships. Visual effects streaming workflow will give users on-demand,
cloud-based access to visual effects tools, that can be accessed via web, given
enough low-latency bandwidth to maintain a connection for streaming the
User Interface from the cloud. Video Game streaming workflow will give play-
ers the option of streaming graphically-rich content that requires near-instant
interaction between the game controller and the graphics on the TV screen
[139].

9. Technology Applications: Hardware manufacture, among many others, is
improved by applications measuring peformance and predicting maintenance
needs of the hardware production chain [139].

Roadmap: Our chapter is organized as follows: Sect. 2 discusses existent surveys
concerning modelling, simulation and performance evaluation in the examined
bibliographical field. The association of context-aware computing with social
networks is given in Sect. 3. Infrastructure efficiency of deployed data centers
for the distribution of social content is analyzed in Sect. 4 in terms of software
solutions, as well as data center scheduling frameworks. Section 5 presets a cat-
egorization of most predominant models for the depiction of the information
diffusion process in a social network. Section 6 discusses various architectures,
systems and techniques for efficient content distribution based on social data
streams, along with diverse studies that corroborate them as well as the way 5G
network infrastructure affects the social data streams. Section 7 concludes and
finally gives the outline of future research directions.
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2 Related Work

In a manner that resembles the utilization of social data streams Anjum et
al. [21] review the deployment of peer-assisted content delivery solutions. They
present challenges caused due to heterogeneity in user access patterns and the
variety of contextual information, such as interests and incentives of Internet
Service Providers, End-Users and Content Providers. Furthermore, Perera et al.
[139] survey context awareness from an IoT perspective. They indicate that the
technology in the IoT is expected to enable expansion of conventional content
delivery systems to a broader network of connected devices. They systematize the
collection, modeling, reasoning, and distribution of context in relation to sensor
data in a work that resembles the social data harvesting in terms of volume,
variety and velocity. The survey also addresses a broad range of methods, models,
systems, applications, and middleware solutions related to context awareness in
the realm of IoT, that could be potentially applicable to social data streams, too.

In [111] Kilanioti et al. study various experiments on a modified content
delivery simulation framework and compare miscellaneous policies for dynamic
content delivery based on analysis of social data streams. The incorporation of
an OSN-aware dynamic mechanism becomes indispensable for content delivery
services, since (i) significantly large proportion of Internet traffic results from
bandwidth-intensive multimedia content, that is produced via online media ser-
vices and transmitted over OSNs, and (ii) multimedia content providers, such
as YouTube, often rely on ubiquitous content distribution infrastructures. The
policies presented take patterns of user activity over OSNs and exploit geo-social
properties of users participating in extensive retransmissions of items over OSNs.
The authors proceed to incorporate diverse caching schemes of the underlying
infrastructure, miscellaneous policies for the handling of OSN data and various
approaches that take into account the most efficient timing for content place-
ment. The simulation framework introduced in [107] serves in this study as the
basis of further parameterized content delivery experimentation that exploits
information transmission over OSNs and decreases replication costs by selec-
tively copying items to locations where items are bound to be consumed.

Downloads of large size multimedia contents are explored through several
studies together with techniques that try to reduce doubled content transmis-
sions using intelligent caching strategies in mobile networking [14,23,101]. The
main idea is redistribution of mobile multimedia traffic in order to eliminate
duplicated downloads of popular contents. Intelligent caching strategies would
enable access to popular contents from caches of nearby nodes of a mobile net-
work operator. Those strategies allow content providers to reduce access delays to
the requested content. Many caching algorithms for content distribution already
exist [23]. Efficient caching strategy could enhance the energy efficiency of 5G
networks, thus the cooperative caching architecture is presented in [101]. This
strategy addressed the increasing demand for mobile multimedia and data ser-
vices in energy efficiency in emerging 5G systems using content caching and
distribution.
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We are not aware of surveys in the bibliography suggesting an holistic app-
roach for the utilization of social data streams towards facilitation of content
distribution decisions and social analysis tasks other than [108]. The diverse
parameters we review in this work (modelling, simulation, performance evalua-
tion) take into account low-level decisions and high-level considerations, includ-
ing energy efficiency of employed data centers, in-memory keeping solutions and
various network approaches for time-critical applications. We review combined
aspects such as optimal route selection, data redundancy, data localization and
data center optimizations.

3 Social Networks and Context-Aware Computing

A social network is a network of social bindings between people. Computer-
Supported Cooperative Work (CSCW) has contributed much in offering
advanced collaborative systems for leveraging human connections and improv-
ing human interactions in workspace environments, but these systems mostly
focus on business-driven interactions where connections among people tend to
be formal and structured [43]. Recently however, social and computing disciplines
focused specifically on the design of social-networking services, i.e. applications
that support human social interactions and can be more informal.

The advancement of wireless networks, as well as mobile, context-aware and
ubiquitous computing, enabled the improvement of social-networking services by
enabling social encounters between proximate users with common interests in an
anywhere and anytime fashion, as in Ubiquitous Computing systems [43]. Thus,
there has been a shift of the application focus from virtual to physical social
spaces using ubiquitous technologies [43]. This shift introduces a great number of
possibilities, however it also introduces a number of challenges that are related to
ubiquitous computing. While social-network systems for ubiquitous computing
environments are an emerging trend in social computing, due to the fact that
ubiquitous-computing environments are more dynamic and heterogeneous than
Internet based environments, appropriate solutions and design guidelines are
required to facilitate their ubiquitous aspect.

Ubiquitous Computing, first introduced in the nineties, refers to the shift-
ing of the computing paradigm from the desktop Personal Computer (PC) to a
more distributed and embedded form of computing [170]. Together with Perva-
sive Computing (for many these terms are synonymous), Ubiquitous Computing
introduced the concept of “anywhere, anytime computing”, allowing users to
interact with computers embedded in every-day objects in an“anywhere and
anytime” manner. Ubiquitous Computing specifies also that the interaction of
users with such devices must be straightforward to the degree that the user
would not be aware of such an interaction. Thus, in order for ubiquitous and
pervasiveness to be achieved, computers must disappear from the front-end, be
embedded to common objects that humans use daily and provide computational
and informational services without expecting from users to explicitly and con-
sciously interact with them.
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Challenges in Ubiquitous Computing can be categorized to (Want and Per-
ing [170]): (i) power management issues: refers to how mobile devices deal with
processing power and storage space and the kind of wireless technology to use in
every given situation, (ii) limitations in connecting devices: this issue has to do
with how all these small devices will be connected and managed, (iii) user inter-
face issues: since Ubiquitous Computing demands for many different small-scale
devices of various types of interfaces and displays of various sizes, the challenge
in user interfaces lies in developing user friendly and interactive interfaces to the
level where users will be motivated in using them, (iv) issues related to Location
Aware Computing. Henricksen et al. [88] add to the above list the challenge
of managing heterogeneous devices of different hardware and software specifi-
cations, such as sensors and actuators, embedded devices in objects such as
shoes, home and office appliances such as videos, mobile devices and traditional
desktop computers, in order for these devices to interact seamlessly. Another
challenge they mention has to do with maintaining network connections while
devices move between networks of different nature and characteristics. In ubiq-
uitous environments, people tend to use many devices simultaneously, therefore
there is a need for these devices to communicate and exchange data. Another
challenge Satyanarayanan [152] notes is tracking user intentions. This is impor-
tant in Pervasive Computing in order for the system to understand what system
actions could help the user and not hinder him/her.

An important challenge on context-awareness is to build context-aware sys-
tems that detect and manipulate the context in a human-like manner, i.e. making
decisions proactively based on the context and provoke actions based on those
decisions that assist the user through his/her task; the aforementioned should
be done without any user participation or disturbance, except maybe in case of
emergency. Another important issue is obtaining contextual information. Con-
textual information can be any information related to the user, the computing
system, the environment of the user and any other relevant information regarding
the interaction of the user and the system [63]. User’s personal computing space
can be used as the user’s context (any information regarding the user taken
from her personal profile, calendars, to-do lists etc.), various types of context
can be sensed in real time like location, people and objects nearby, while contex-
tual parameters could also include the current emotional and physiological state
of the user. Contextual challenges also include the way context is represented
(ontologies can be used or other context modeling techniques), the way this infor-
mation is to be combined with the system information, as well as how frequently
should context information be considered. Hinze and Buchanan [90] differen-
tiate the static context from the fluent context. An example of static context
is users profile information, while fluent context is dynamic, real-time context,
e.g. time. The authors propose that a context model should be defined for each
important entity, such as the user, the locations, etc. The authors mention as
challenges the capturing of the context (whether it should be done automatically
at particular times or manually by the user) and the process of storing the con-
text (whether it should be stored on the client, on the server or both). On the
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process of accessing contextual information, Hinze and Buchanan propose that
context-awareness can help in reducing the amount of data to be accessed in real
time, by pre-retrieving any relevant pre-known data, e.g. the static context [90],
to increase efficiency.

User modelling in another challenge in developing ubiquitous systems. User
modeling in ubiquitous environments is challenging: a user often changes roles
depending on the context and the current environment he acts into; the big
challenge is how to capture these changes and how to react on them [90].

Perhaps one of the most important contextual parameters is location, as it
plays an important role in context-aware systems and ubiquitous systems. An
issue with location as a contextual parameter is the type of location sensing
technology to be used, while privacy is another issue. The issue with privacy is
whether user privacy should be sacrificed for location awareness and to what
extent. A third issue is the semantic (and contextual) representation of the loca-
tion in order to utilize more contextual parameters than just the location itself.
For example, by semantically representing locations, one can attach to them
various information resources such as a webpage, a user profile, various objects
with semantic representation etc. Schilit et al. [154], proposed the movement
from the simplified concept of location to more contextually rich notions of
place where people and activities should also be considered. Possible problems
towards this concept include the difficulty in managing large scale positioning
data, privacy concerns regarding location-awareness and the challenge of how to
associate information objects, such as a web page, with a real-world location. Pri-
vacy issues regarding location-awareness are related to human psychology: users
often consider privacy issues when their location is to be known by a system, but
at the same time they provide private information such as credit card numbers
and addresses to online systems without hesitation. This happens because in
the first case they simply do not see the benefit of providing their location to
be used by a simple application (e.g. finding friends in the proximity), while at
the latter case they clearly see the benefit of buying goods online. The authors
also argue that the centralized nature of the most location tracking applications
(having a central server on which all user personal data are stored) discourages
users from providing any personalized information, because centralized data can
be accessed by anyone, not only illegally (e.g. hackers) but also the government,
corporations with interest in user data (e.g. advertisers) etc. A solution can be
the use of a decentralized schema where any personal data is stored and calcu-
lated on the client side, i.e. the user’s device. An example of such a technology is
the well known Global Positioning System (GPS): the client device uses satellite
links to calculate locally the user’s current position.

Context-Awareness and Adaptation related challenges and issues include

1. Modelling the context: which method is more appropriate to use
2. Observing the context: automatically or manually
3. Context sensing: how are contextual parameters retrieved (sensors, user

profiles etc.). In retrieving context data from various sources (e.g. sensors),
how are inconsistencies between these data resolved
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4. Accuracy of contextual information should be well known during the
design of ubiquitous systems

5. Storing the context: on server (privacy issues), on client or on both
6. Accessing the context
7. Using the context
8. How are the user and the environment connected and interact
9. How will the application modify its behaviour (be adapted) based

on the context
10. Systems should be more context-aware than just the location. A

place is more than a location (also a Location related challenge)
11. Devices should not operate based only on their own context, but

based on the context of the whole system
12. Contextual information should be used to reduce the amount of

input that is needed from users (also a Human-Computer Interaction
related challenge)

13. How to capture changes in the user’s role deals with capturing the
current context (i.e. the environment and the various circumstances) and
user modelling (what possible role could a person play according to context)

14. Context should be processed and various components should
adapt to it without interfering with user’s task – no user explicit
interaction should be necessary

15. Adaptation in ubiquitous environments: may need to adopt various
devices separately and at the same time, while the user maintains a consis-
tent view for the system/application

Context-aware computing has evolved over time from desktop applications,
web applications, mobile computing, pervasive/ubiquitous computing to IoT
over the last decade [139]. Context-aware computing became more popular with
the introduction of the term ‘ubiquitous computing’ by Mark Weiser, while
the term ‘context-aware’ was first used by Schilit and Theimer [155] in 1994.
Context-aware computing has proven to be successful in understanding sensor
data. Advances in sensor technology led to more powerful, cheaper and smaller
sensors. The number of employed sensors is expected to grow over the next
decade [161], generating ultimately big data [139,140].

In settings where social communities become mobile, i.e. users not only inter-
act, meet and communicate via social networks, but are mobile as well (move
into the environment, interact with others, etc.), the concept of group awareness
is met [53,134,176] where context related to the group is exploited to enable
ubiquitous applications and services to function and serve people’s concerns and
needs in a pervasive manner. There is a need, thus, for formulating dynamic
communities aiming to facilitate people in performing common tasks. It is often
the case that such dynamic communities are resolved after the current goals
have been achieved [134]. It is evident, thus, that the context within which such
dynamic communities are created, act, achieve goals and are then resolved is
important, and that, through this context, we can understand the groups’ inter-
ests and, thus, personalize the applications and services offered [134].
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A bibliography study [134] on mobile social network applications and plat-
forms states that the context features that these applications and platforms use
can be summarized as follows: Location, Interest, Time, Personal, Activity and
Social Interaction. Here, context is “any information that can be used to char-
acterize the situation of an entity” [62] and social context is “the information
relevant to the characterization of a situation that influences the interactions of
one user with one or more other users” [169]. Moreover, in [134] a context-aware
Mobile Social Network model is proposed aiming to facilitate the creation of
dynamic social networks based on a combination of multiple contexts, including
location, users’ profile, domain specific data and OSN data, along with services
for fostering the interaction among users.

4 Infrastructure Efficiency

4.1 Software Solutions for Infrastructure Efficiency

Regarding infrastructure efficiency, various models have been proposed for the
optimization of such infrastructures that support social networks data centers.
These approaches have also been proposed by industry partners addressing var-
ious challenges [42,129,163]. Among these challenges, the following have been
identified: (a) data volume increase, (b) confinement, (c) interactions made in
real-time or near real time, (d) federation of data center infrastructures and (e)
cdn-load-balancing between data centers, but usually not focused on cost effec-
tiveness. One of the main data center costs is energy consumption of both the
IT equipment as well as the supporting Mechanical and Electrical (M&E) infras-
tructure. A widely used indicator that measures the energy effectiveness of the
M&E infrastructure overhead is Power Usage Effectiveness (PUE) [25], which
is calculated as the Total facility energy/Total IT energy and has a theoretical
minimum of 1.

Figure 2 shows the categories on which the research community and other
stakeholders have developed solutions for the improvement of costs and effi-
ciency:

– Workload Consolidation and Shut-down Techniques,
– VM Consolidation and Migration,
– Data Replication and Placement, and
– Energy-aware Scheduling Algorithms.

The main objective based on these solutions is to reduce the idleness of
computing and storage nodes (throttle resources), while switching off unused
machines without jeopardizing Service Level Agreements. Some representative
examples from each category are shown in Table 1.

Regarding Workload Consolidation and Shut-down Techniques,
heuristics for energy-aware consolidation of jobs and maximization of resource
utilization are presented in [117]. These approaches estimate resource consump-
tion in terms of CPU utilized by tasks and encourage resources to execute mul-
tiple tasks in parallel. The proposal from [102] is an algorithm that search for a
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minimum multi-objective function, taking into account energy-consumption and
running time by combining resource allocation and heuristic rules and simulating
Directed Acyclic Graph (DAG) based workloads.

One of the most popular approaches to increase efficiency is to switch off idle
servers [75,78], which is usually tested in dedicated simulation tools [74]. Several
models, including games theory models [72,73], are used to balance opposite
requirements in data centers, such as performance and energy consumption.
Even models utilized for economic environments, such as Data Envelopment
Analysis, are employed to analyze the efficiency in various realistic large-scale
data centers and propose corrections to improve data-center efficiency [76].

In addition, techniques for energy conservation like Virtual Machine (VM)
Migration and Consolidation are widely studied and already employed. In
[35], a resource manager solution focused on virtualized data centers, which
enables lower energy consumption by applying VM migrations and allocations
based on current CPU usage, is proposed. An extension of VM migration is pre-
sented in [34] where Service Level Agreement (SLA) restrictions are considered.
Allocation and migration of VMs is also the target in [159] where a Bayesian
Belief network algorithm is presented. Moreover, a day/night pattern is taken
into account for an energy manager in [148], based on the aggregation of traffic
during low usage periods and shutting down idle machines.

Solutions for improving energy proportionality through Data Replication
and Placement, are also available. A power-proportional distributed file system
approach that tries to store data on non-overlapping subsets of machines is
presented in [18]. Such subsets of machines contain only one copy of each file and
administrators can decide how many subsets will be turned on to serve incoming
requests. On the other hand, a division of the cluster in non-overlapped zones
is proposed in [162], enabling operators to shut down zones. In a similar way, in
[105] the authors present a variation of the Hadoop File System (HDFS) that
divides the cluster in Hot Zones that store recent data and Cold Zones where low
[e.g. spatial or temporal] popularity files are stored. Then a power off policy is
applied to the Cold Zones. A non-uniform replica placement on data popularity
is also presented in [125].

Energy-Aware Scheduling Algorithms is the last family of solutions.
A green scheduling algorithm based on neural networks is proposed by [68],
focusing on the prediction of workload demand with the purpose of applying
power-off policies to idle servers. Experiments presented simulate a medium sized
data center that runs homogeneous workload that is intended to respond to end-
user requests. Energy-aware scheduling policies combined with Dynamic Voltage
and Frequency Scaling (DVFS) is presented in [100]. In [77], a multi-objective
scheduling algorithm is proposed, based on genetic algorithms, which takes into
account energy efficiency, performance and security constraints.

We have classified the related word under consideration in terms of their
final objective, including: (a) modelling, (b) simulation, (c) performance. Such
classification is shown in Table 2.
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Table 1. Related work summary

Ref Title: Performance evaluation of a green scheduling algorithm
for energy savings in cloud computing

Savings

[68] ∼ 45%

Category: Workload consolidation and power off policies (power off
policy based on a neural network predictor)

Evaluation: [8-512] nodes cluster simulation

Workload: End user homogeneous requests that follow a day/night pattern

Ref Title: Energy efficient utilization of resources in cloud
computing systems

Savings

[117] [5-30]%

Category: Workload consolidation and power off policies (energy-aware
task consolidation heuristic based on different cost functions)

Evaluation: Simulation of a not stated size cluster

Workload: Synthetic workload in terms of number of tasks, inter arrival
time and resource usage

Ref Title: Saving energy in data center infrastructures Savings

[148] [20-70]%

Category: Workload consolidation and shut-down techniques (safety
margin power-off policy)

Evaluation: 100 and 5000 nodes cluster simulation

Workload: Synthetic workload that follows a day/night pattern

Ref Title: Energy efficient resource management in virtualized
cloud data centers

Savings

[35] ∼ 80%

Category: VM consolidation and migration

Evaluation: 100 nodes cluster simulation using CloudSim

Workload: Synthetic workload that simulates services that fulfill the
capacity of the cluster

Ref Title: dynamic energy-aware scheduling for parallel task-based
application in cloud computing

Savings

[102] [20-30]%

Category: Energy-aware scheduling algorithms (polynomial-time and
multi-objective scheduling algorithm for DAG jobs)

Evaluation: Experimentation on a 64 nodes cluster

Workload: Synthetic directed acyclic graph-based workload

4.2 Data Center Scheduling Frameworks

Resource managers have direct impact on the efficiency of the infrastructure since
they are responsible for the application of energy-aware scheduling models. The
responsibility for actually deciding resource negotiation and tasks deployment
have range from traditional approaches to fully managed solutions such as data
centers which are used by many entities with multiple users and various kind of
applications and requirements [30,38].
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Table 2. Classification of approaches according to their objective. The green color
represents that the work focuses strongly on that objective, and the red color represents
opposite.

The constraints imposed by diverse applications in terms of size, inter-arrival
and duration, may lead to various resource efficiency, latency rates and security
levels.

Current trends aim to utilize the same hardware resources to deploy various
kind of applications and frameworks with diverse requirements, which increases
the complexity since diverse data are to be processed.

We present the main categories of the scheduling resource-managing mod-
els following several approaches and we show their limitations summarized in
Table 3.

Monolithic models, where a centralized manager is responsible for all schedul-
ing and resource managing decisions came first. Such models [96] are a good
choice when the workload is composed of a relative low number of Batch jobs,
due to these schedulers being omniscient [55], since such kind of workload does
not usually have strict latency requirements [60]. Monolithic resource managers
perform near-optimal scheduling operations [58,85,175] as they are able to com-
pletely examine the data center. This detailed inspection allows the determi-
nation in terms of performance implications and impact on shared resources.
[83,128,133,158,173]. Due to this detailed cluster inspection, monolithic central-
ized schedulers usually utilize resources at a higher level than other approaches
[168]. Monolithic centralized schedulers also achieve high-quality decisions which
result in shorter makespans, near-optimal load balancing and predictable per-
formance and availability [59,156,177].
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Table 3. Cluster scheduling approaches.

Frameworks Strategy Optimal environment Near-optimal
environments

Paragon [58] Centralized Low number of long-running and
non-latency sensitive jobs

Mid and high number of
jobs

Quasar [59] Monolithic Mixed workloads

Borg [168]

YARN [166] Centralized
Two-level

Mid number of diverse
long-running, non latency
sensitive jobs

Latency-sensitive
workloads

Mesos [89]

Omega [156] Centralized
Shared-state

Mid number of heterogeneous
workloads

High number of short and
latency-sensitive jobs

Canary [142] Distributed High number of short, non
resource-demanding,
latency-sensitive jobs

Long,
resource-demanding jobs

Tarcil [60] Mixed workloads

Sparrow [137]

Mercury [103] Hybrid Mixed workloads composed of
90% of short, latency-sensitive
jobs and 10% of
long-running,resource-demanding
jobs

Homogeneous workloads
Other workloads patterns
Evolving patterns

Hawk [57]

Eagle [56]

With the arrival of new computation paradigms such as microservices, cur-
rent trends tend to divide jobs into smaller parts which usually are more latency-
sensitive. This new scenario with huge amounts of small jobs overcome the capac-
ity of Monolithic models. Two new centralized resource managing models were
proposed to overcome this limitation by dividing the responsibility of resource
managing and scheduling:

– Two-level resource managers, such as Mesos [89], and YARN [166] employ
a central resource manager which coordinates a set of independent sched-
ulers. The parallel schedulers pessimistically block the data center in order
to make a scheduling decision. Such manager offers resource schedulers, and
as a response, the set of schedulers perform scheduling decisions for deciding
which machines will execute a particular task. The down side of this model
is that, opposed to Monolithic models, the schedulers are not omniscient. In
this model, data-center state and tasks requirements are not always available
to make optimal scheduling decisions.

– Shared-state resource managers, such as Omega [156], employ a centralized
manager which orchestrates a set of parallel scheduling agents. In contrast to
Two-level resource managers, each scheduling agent makes scheduling deci-
sions based on a partially out-of-date copy of the whole data-center state.
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Instead of blocking the data center to apply their decisions, they follow a
transactional approach. If a transaction ends up in a conflict, the data-center
state is requested and the scheduling restarts.

However, all the aforementioned proposals suffer from a performance bot-
tlenecks when huge latency-sensitive workloads composed of millions of tasks
are under consideration, as they employ centralized coordinators for resource
managing or even for resource managing as well as scheduling [137].

Distributed schedulers such as Sparrow and Canary [67,137,142,143] are
built to work optimally when the aforementioned scenarios are considered.
Distributed models employ faster and simpler algorithms in order to analyze
smaller areas of the data center, which leads to sub-optimal decisions with higher
throughput and lower latency rates.

The frameworks and applications served by data centers are constantly evolv-
ing. Current trends show that in most cases heterogeneous workloads are being
deployed in large-scale realistic clusters [50,145]. Such workloads are composed
by two main kinds of jobs: (a) Jobs such as web servers and data-center frame-
works, which represent 10% of jobs. These jobs consume, however, more than
80% of computing resources because they run for long periods; and (b) Jobs such
as MapReduce tasks, which represent 90% of jobs. These jobs run for shorter
periods and consume less than 20% of computing resources [19,144,147,175]. In
such environment, sub-optimal scheduling operations may severely impact on the
aforementioned large jobs. Hence, distributed models may achieve worse results
in terms of performance compared to those achieved by centralized models.

Finally, hybrid models, such as Hawk and Mercury [56,57,103] were devel-
oped to work well under the aforementioned scenario. These models employ
centralized and distributed approaches in order to overcome the limitations dis-
cussed. Hybrid models use a centralized scheduler for long-running jobs to pro-
vide high-quality scheduling and, on the other hand, they employ a distributed
approach for those short jobs which need quick scheduling to achieve latency
goals.

Beyond workload consolidating and resource throttling, other research has
explored the impact IT hardware refresh and optimization could have on data
centre energy consumption [31]. Additionally, it was shown that addressing
energy efficiency at the design stage of software systems presents a significant
opportunity to reduce infrastructure energy consumption [32].

5 Content Diffusion Models for Social Data Streams

This section outlines the most predominant models for the depiction of the con-
tent/information diffusion process in a social network described in [108]. Most
of the existent algorithmic solutions for content distribution are built on them,
thus the assumption that content circulation over social data streams is depicted
by one of them is of crucial importance for the suggested solutions. The main
algorithmic problems studied in the bibliography are related with the discovery
of nodes that are most prone to diffuse content to the greatest extent, and the
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categorization of nodes according to their influence degree. The categorization
of the models is depicted in Fig. 4. The models presented are the most recent in
the bibliography and there are no prior recent models to the best of our knowl-
edge. The first-level discrimination of models is based on whether they take
the structure of the network into consideration (network-aware) or not (holis-
tic). In other words the discrimination criterion is if they incorporate knowledge
about underlying associations of the nodes (edges) or, to the contrary, follow an
aggregate-level approach.

Information Diffusion Models Classification. Li et al. in [120] classify informa-
tion diffusion issues as a “3W issue”, that is with regard to “What”, “Why” and
“Where”. They consider “What” to refer to the question“what latent informa-
tion is there to be found in social networks?” and they provide as an example the
findings, such as the way that an individual’s shopping habits relate to his/her
profession, that can be included in a large volume of consumer data. Further-
more, their proposal considers “Why”, to refer to the question“why has the
information propagated in this way?” This question refers to the factors that
have affected the diffusion result, for example the factors that have produced a
particular social cascade. Finally in their view “Where”, refers to the question
“where will the information be diffused to in the future?”. This question refers
to the future diffusion path that will be followed. For example if two influential
users receive the same information from a common contact in a social network,
but have a different perspective on the information, then it is important to esti-
mate how they will respond and whether they will propagate the information
through the network.

Based on the “3W issue” they classify information diffusion models as predic-
tive and explanatory. Explanatory models aim to discover answers to important
questions concerning the information diffusion process, such the determination of
the main factors that affect information diffusion and the most influential nodes
in the network. Predictive models, on the other hand, are used to predict the
future information diffusion process in social networks based on certain factors,
for example the quality of information diffused.

In a similar manner Luu et al. in [126] classify information diffusion models
in non-network and network diffusion models. The former refers to user commu-
nities without any knowledge about the user relationship network and the latter
is more applicable to the social networks where user relationships networks are
given (e.g. Facebook, blog networks). For each model category Luu et al. describe
representative models, notable model extensions, as well as model applications.
The surveyed applications include Influence Maximization and Contamination
Minimization. Model extensions are asynchronous models that incorporate time
delay factors into the basic models.

An important class of information diffusion models are inspired from natural
and biological systems. A typical example is provided by Dewi and Kim [61], who
propose a bio-inspired model for information diffusion in complex networks using
ant colony optimization. The model introduces selfishness in forwarder nodes and
unacquainted nodes and employs ant colony optimization to find shortest path
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and manage the selfish nodes and disjoined nodes. The authors provide simula-
tion results in two types of networks: lattice networks and scale free networks,
and the results show that the ant-colony model has higher performance and
higher reachability than a selected baseline epidemic model.

Influence Maximization. Influence maximization is an important issue in social
network analysis domain which concerns finding the most influential nodes in
a social network. Determining the influential nodes is made with respect to
information diffusion models and is based on the observation that most of the
existing models only contain trust relationships. In this respect Hosseini-Pozveh
et al. in [93] classify influence maximization models in two classes: cascade-
based and threshold-based. They evaluate all models in comparison with selected
benchmark models through two real data sets, the Epinions and Bitcoin OTC.
Based on the evaluation results a main conclusion is drawn: when a distrusted
user performs an action or adopts an opinion, the target users may tend not to
do it.

The efficiency of influence maximization algorithms is subject to active
research since the problem is known to be NP-hard. In this respect Kempe et al.
proposed a greedy algorithm (referred to as SimpleGreedy) that guarantees 63%
influence spread of its optimal solution [106]. Along this line Ko et al. in [113]
propose an improved algorithm, termed Hybrid-IM, which by combines PBIM
(Path Based Influence Maximization) and CB-IM (Community Based Influence
Maximization). Ko et al. further provide evaluation results from extensive exper-
iments with four real-world datasets. They show that Hybrid-IM achieves great
improvement (up to 43 times) in performance over state-of-the-art methods and
finds the seed set that provides the influence spread very close to that of the
state-of-the-art methods.

5.1 Holistic View Models

Rogers’ theory [150] is quantified by the Bass model [33]. The Bass model is
based on the notion that “the probability of adopting by those who have not
yet adopted is a linear function of those who had previously adopted” (F.Bass).
It predicts the number of adopters n(t) ∈ N of an innovation at time t (in the
information diffusion scenario the number of retransmitters of an information
piece):

n(t) = pM + (q − p)N(t) − q/M ( N (t))2 (1)

where N(t) is the cumulative number of adopters by time t, M is the potential
market (the ultimate number of adopters), p ∈ [0, 1] is the coefficient of innova-
tion (the external influences, expressing the individuals influenced by the mass
media), and q is the coefficient of imitation (internal influence, expressing the
individuals influenced by the early adopters). This approach, however, largely
ignores the underlying network structure.



Towards Efficient and Scalable Data-Intensive Content Delivery 111

Models under the same concept of holistic view of the social behaviour make
use of differential equations, and include, among others, the “multi-step flow
model” by Katz and Lazarsfeld [104], the Daley-Kendall rumours model [54],
and also, more recent ones, such as, the Van den Bulte and Joshi model of
influentials and imitators [47].

Fig. 4. Content/information diffusion models

5.2 Network-Aware Models

These include completely novel models, but also variations of the afore-
mentioned (holistic) models, such as the Nekovee variation [136] of the Daley-
Kendall model, and are separated in following categories, based on whether they
are mathematically formulated (Analytical models) and then applied or are the
outcome of empirical methods, such as regression, regression trees etc. (Empirical
models).

Analytical Models. The first mathematical models based on nodes’ thresholds
for the depiction of information diffusion were developed by Schelling [157] and
Granovetter [86]. A categorization of the most predominant models is presented.

Game-Theoretic Models. In [112], Kleinberg proposes a simple networked coor-
dination games model. The author assumes that there are two behaviours a node
v ∈ V in the graph G = (V,E) can follow, A and B. The model is based on the
notion that for each individual the benefits of adopting a new behaviour increase
as more of its neighbours adopt the new behaviour. At discrete time steps each
node updates its choice of A or B according to the behaviour of its neighbours.
The objective of the nodes is to switch each time to the behaviour that reaps
the maximum benefit for them. For the nodes v and w there is a motivation for
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behaviour matching, expressed in the following way, where parameter q is a real
number 0 < q < 1:

– if v and w both choose behaviour A, they both receive a q payoff
– if v and w both choose behaviour B, they both receive a 1 − q payoff
– if v and w choose different behaviours, they both receive a 0 payoff

v’s payoff for choosing A is qdA
v and for choosing B is (1 − q)dB

v . The overall
payoff for v playing the game with its neighbours in G is the sum of the individual
(pairwise) payoffs; q is actually the threshold expressing the fraction of adopting
neighbours, since it easily results that v should adopt behaviour B if dB

v > qdv,
and A if dB

v < qdv, where dv is the degree of the node, dA
v the number of

its neighbours with behaviour A and dB
v the number of its neighbours with

behaviour B.
Initially there is a set S of nodes adopting behaviour B and hq(S) is the set

of nodes adopting B after one round of updating with threshold q. hk
q (S) is the

set of nodes adopting B after k successive rounds. A set S is contagious (with
respect to hq) if “a new behaviour originating at S eventually spreads to the full
set of nodes”and the contagion threshold of a social network G is“the maximum
q for which there exists a finite contagious set”.

The technical issue of progressive or non-progressive processes (monotonous
or non-monotonous as referred to later on in the present study) refers to the fact
that when a node v following till then the behaviour A updates to behaviour
B in time step t, it will be following B in all subsequent time steps. Although,
intuitively, we would expect progressive processes to give finite contagious sets
more easily (because of lack of early adopters setbacks that would hinder the
cascade), Kleinberg points out that both the progressive and non-progressive
models have the same contagion thresholds [131], which in both cases is at most
1/2 (“a behaviour can’t spread very far if it requires a strict majority of your
friends to adopt it”) [131].

More game-theoretic models can be found in the work of Arthur [22], who
proposes a simple cascade model of sequential decisions with positive externali-
ties, manifested by a term that adds to the payoff of a decision. Namely in the
scenario of two competing products, the latter become more valuable as they
are used by more users (for a social media site or a smartphone, for example, it
will aquire better third-party applications and support as its users grow). Also
game-theoretic models are introduced by Banerjee [29] and Bikhchandani et al.
[39], that are based on influence not due to positive externalities, but because of
information conveyed from earlier decisions. The proposed game-theoretic mod-
els, however, have the drawback of not taking heterogeneity into consideration,
in the notion that all nodes have the same threshold, and all their neighbours
contribute the same in making a node change its behaviour.

Bayes-Based Models. Combining nodes’ private information and their observa-
tions of earlier adoptions, in [69], Kleinberg and Easley present a Bayes based
model to formulate information cascades, answering questions such as “What is
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the probability this is the best restaurant given the reviews I have read and the
crowds I see there?”.

Pr [A|B] =
Pr [A] Pr [B|A]

Pr [B]
(2)

Three factors are taken into consideration:

– The states of the world;
– Payoffs; and
– Signals.

The first factor expresses whether an option is good or bad (if a new restaurant
is a good or a bad choice). Supposing that the two options of the world are
K (the option is a good idea) and B (the option is a bad idea), the world is
placed in K with probability p and in B with probability 1 − p (Pr [K] = p,
Pr [B] = 1 − Pr [K] = 1 − p). Payoffs for a node v are defined as follows:

– If v rejects the option, the payoff is 0.
– If v adopts a good idea, it receives a positive vg > 0 payoff.
– If v adopts a bad idea, it receives a negative vb > 0 payoff.
– If v adopts without any prior knowledge, the payoff is 0.

The signals refer to private information each individual gets about the benefit
or not of a decision: a high signal (H) suggests that adoption is a good idea,
whereas a low signal (L) suggests that it is a bad idea. If accepting is indeed a
good idea, then Pr [H|K] = q > 1

2 and Pr [H|K] = 1 − q < 1
2 . In the restaurant

example the private information could be a review that an individual reads about
the first restaurant, with a high signal corresponding to a review comparing it
favorably to restaurant B. If choosing the first restaurant is indeed good, there
should be a higher number of such reviews, so Pr [H|K] = q > 1

2 . Kleinberg and
Easley [69] consider how individual decisions are made using (Eq. 2) when they
get a sequence of independently generated signals consisting of a number of high
signals and a number of low signals, thus making interesting observations about
situations where individuals can observe others’ earlier decision, but do not have
access to their knowledge.

The basic propagation models on which most generalizations for information
diffusion are based are the Linear Threshold Model (LTM) [86,157,171] and the
Independent Cascade Model (ICM) [82] with many proposed extensions (LTM:
[106,171], ICM: [82,87,106]) and also a proposed unification [106].

Linear Threshold Model. Based on the assumption that some node can be either
active (adopts a new idea/transmits a piece of information) or inactive and
taking into account the monotonicity assumption, namely that nodes can turn
from inactive to active with the pass of time but not the opposite, we can say
that the LTM is based on the following notion: Each node v has a predefined
activation threshold θv ∈ [0, 1], which expresses how difficult it is for the node
to be influenced when its neighbors are active (“the weighted fraction of the
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neighbors of node that must become active in order for node to become active”),
and is influenced by each one of its neighbors w according to a weight bvw,
so that

∑
w∈Γ (v) bvw ≤ 1. The thresholds can be produced randomly with a

uniform distribution, but some approaches investigate a uniform threshold for
all the nodes of the network, e.g. [37]. The process takes place in discrete steps
and the nodes that satisfy the constraint

∑
w∈Γ (v) bvw > θv are gradually added

as active to the initial set of nodes. It’s worth mentioning that LTM can result
as a modification of the networked coordinations game referred in the previous
paragraph with the differentiation of payoffs for different pairs of nodes.

LTM expresses the idea that the influence of the neighbours of a node is
additive, but when the rule of influence can not be expressed by a simple weighed
sum, for example a node becomes active when one of its acquaintances and two
of its co-workers do so, the arbitrary function gv substitutes the weighed sum.
In the General Threshold Model for time steps t = 1, 2, 3... a node v becomes
active if the set of active neighbours at t satisfy gv(X) > θv.

Independent Cascade Model. Under the ICM model [82], there is also a set
of initially active nodes, the process takes place in discrete steps, but when
node v becomes active, it has only one chance of activating each of its inactive
neighbors w until the end of the process with a probability pvw independent of
the activations history and with an arbitrary order.

Exact evaluation of activation probabilities is exponential to the number of
edges of the graph. Improving the performance of the works in [86] and [160],
there are works studying the calculation of these probabilities such as [84] (based
on a General Threshold Model with the assumption that each parent’s influence
is fixed), or [64] (based on the ICM). In the latter, sampling from the twitter
dataset is conducted in an efficient Markov-Chain Monte Carlo fashion using
the Metropolis-Hastings algorithm [51] and the problem is tackled with two
differentiations, one of which considering the past paths of data known (retweets
for the twitter dataset) and one considering only the past path endpoints known
(hashtags and urls) and joint probabilities are taken into consideration, reflecting
also model uncertainty.

Epidemical Models. In the case of epidemical models a single activated
(“infected”) node causes the change of state of a neighbour susceptible node,
whereas in the afore-mentioned threshold and game-theoretic models a node has
to interact with multiple neighbour nodes to evolve (complex contagion).

Epidemical models were introduced on the assumption that information
would propagate like diseases. They constitute another category with an almost
straightforward pairing with the ICM. The ICM captures the notion of contagion
more directly, and also allows us to incorporate the idea that a node’s receptive-
ness to influence does not depend on the past history of interactions with its
neighbors.

Epidemical models variations include the simple branching processes model,
where a node infects a number of nodes and the contagion proceeds in subsequent
waves with a probability π. This model is characterized by the basic reproductive
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number of the disease R0 = kπ, where k is the number of new people somebody
meets, which expresses the anticipated number of new cases of the disease that
a single node will cause.

Extensions of the epidemical models are the SIR, SIS, and SIRS models: S
stands for susceptible nodes, nodes that have not been infected yet and have
no immunity to the contagion. I stands for infected nodes, nodes contagious to
their susceptible neighbours, and R stands for recovered nodes, with the recovery
considered as permanent in SIR and temporary in the case of SIRS [114]. The
sequence of the letters in the acronyms of the models explains the flow of the
epidemic. In SIR model nodes pass from the state of being susceptible to the
state of being infected and then recover. In SIS model nodes are immediately
susceptible once they have recovered (like in the case of common cold, recovery
does not imply immunity that lasts for long). In the SIRS model recovered nodes
free of infection may rejoin the susceptible nodes.

Markov Chain Models. Markov chains [65] are used to describe transitions from
one state of a system to another in a finite set of possible states. Their mem-
oryless nature (Markov property) has to do with the fact that the next state
each time is independent of the preceding states. More formally: With a set of
states {ξ1, ξ2, .., ξr} the process moves successively from one state to another
in so-called steps, and specifically from state ξi to state ξj with a probability
pij (transition probability) independent of the previous states of the chains, or
remains in the same state with a probability pii. A particular state is picked
from Ξ as the initial state. Markov chains are usually depicted with a directed
graph, where the edges’ labels denote the transition probabilities.

Markov models are widely used for analysing the web navigation of users.
PageRank [45] is based on a Markov model and is used for ranking of infor-
mation in the World Wide Web. By assigning weights that denote the relative
importance of an hyperlinked document in a set of documents, the likelihood
that a person will reach a specific page through random clicks is, essentially,
represented.

In [160], Song et al. use a Continuous-Time Markov Chain Model (CTMC),
namely a Markov model that describes the transition among states after some
time of stay in a particular state. This time is exponentially distributed and does
not affect the transition probability to the next state. The information diffusion
model is introduced on a network G(V , w, τ). G contains a set V of n nodes and
E edges between nodes representing the information diffusion paths. w denotes
the set of the edges’ weights (“amount of information to flow from one node to
another”) and τ the set of the time delay on the information diffusion paths.
Thus, the representation of the graph matches the CTMC in the notion that
each node represents a state, each weight a transition probability and the delay
is represented as the time-to-stay in each state.

Voter Model. The basic voter model introduced by Clifford and Sudbury [52]
and Holley and Liggett [91], is defined in an undirected network and allows the
spread of two opinions. In discrete time steps, a node adopts the opinion of a
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randomly chosen neighbour. For a node v ∈ V in graph G = (V,E), Γ (v) is the
set of neighbors of v in G and initially the nodes are arbitrarily endowed with a
0/1 state. At time step t each node adopts the opinion of one uniformly picked
neighbour. With an initial assignment f0 : V → {0, 1} inductively we define

ft+1(v) =

{
1, with probability a
0, with probability b

(3)

where a = |{u∈Γ (v):ft(u)=1}|
|Γ (v)| and b = |{u∈Γ (v):ft(u)=0}|

|Γ (v)| .
Even-Dar and Shapira [70] argue that it is one of the most natural prob-

abilistic models to capture the information diffusion in a social network. It is
suitable for depicting the spread of a technological product, as it is proved that
under this model consensus is reached with probability 1. Even-Dar and Shapira
refer to the (almost) consensus of products such as Google as a search engine,
YouTube as a video-sharing website etc.

Models from Physics. Models from physics include the Ising model [97] serving
for the description of magnetic systems, and bootstrap percolation [16] serving
for the description of magnetic systems, neuronal activity, glassy dynamics, etc.

The Ising model [97] was first proposed in statistical physics and encompasses
the notion of a ground state (in physics the state with the minimum energy),
and that of the “self-optimizing” nature of the network.

Similarly to the basic voter model, there can be two competing “opinions”,
in favour of or against a subject, let’s say depicted by a “+1” and a “−1”, which
in physics express the correspondence of an atom forming a network to a spin
variable (can be considered as the basic unit of magnetization) state σi = ±1.
The total energy of the system under this model (Hamiltonian) is defined as:

H = H(σ) = −
∑

<i,j>

Eσiσj −
∑

i

Jσi (4)

for each configuration σ = (σ1, ..., σN ), with the parameter J associated with
an “external magnetic field” and E with the“nearest-neighbours interaction”, N
the number of the atoms. The ground state is the lowest energy configuration sg

(in physics the zero temperature configuration), so that sg ∈ argminsH(s). In a
social network can be seen as the state with the most likely opinion, minimizing
conflicts among its members (atoms).

In the standard bootstrap percolation process [16] a node is initially either
active with a given probability f or inactive. It becomes active if k (k = 2, 3, ...)
of its nearest neighbors are active. In that notion it resembles the k-core problem
of random graphs [124], where k-core is the maximal subgraph within which all
vertices have at least k neighbors, but whereas bootstrap percolation starts from
a subset of seed vertices according to the above-mentioned activation rule, the
k-core of the network can be found by a subsequent pruning of vertices which
have less than k neighbors.
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Empirical Models. Before the advent of machine-readable traces, the potential
of networks in the transmission of information and messages was stated already
by Milgram in his renowned experiment [130] or Christakis [79], who suggested
in a study of 12000 participants that risks, such as the risk of becoming obese or
benefits, such as stopping of smoking, are propagated through social ties. However,
it is large scale and time-resolved machine-readable traces that, through the step-
by-step track of interactions in OSNs (although not compulsorily easily accessible/
collectible), have driven to the formulation of a plethora of empirical models.

Some generic observations concerning the empirical models are the following.
Many of them lack insight of information content, unlike works, such as that of
Huberman et al. [24], who formulate a model taking into consideration solely
the features of an information item (a news item in Twitter). Sometimes the
discovered patterns in empirical models are at odds with the predictions based
on theoretical (analytical) models. For example, in unison with the epidemical
model, Leskovec et al. in [119] claim that cascades (depicting the blogosphere
information diffusion) are mostly tree-like. More specifically, they notice that
the number of edges in the cascade increases almost linearly with the number of
nodes, suggesting that the average degree in the cascade remains constant as the
cascade grows (a trees property). Moreover, Leskovec et al. claim that these trees
are balanced, as they notice that the cascade diameter increases logarithmically
with the size of the cascade. In contradiction to the above, the trees derived
from the chain-letter diffusion model of Liben-Nowell and Kleinberg in [121] are
inconsistent with the epidemic model, as they are very narrow and deep, with
the majority of their nodes having one child and a median distance from their
root to the their leaves being of hundreds steps.

Precisely, in [121] the spread of a chain-letter is represented by a tree. Copies
of the chain-letter represent paths through the tree, the root represents the
originator and the leaves represent the recipients of a message (w is a child of
v if w appends its name in the copy of the letter directly below v). In order
to produce trees with the characteristics mentioned in the previous paragraph,
the probabilistic model suggested (i) incorporates asynchrony: after receiving a
message, each recipient waits for a time t before acting on it, and if it receives
more copies of the item in this time interval, it acts upon only one of them,
and (ii) encompasses a back-rate β, as a node can either forward the message to
its neighbours with probability 1 − β or group-reply to his corecipients with a
probability β.

In [27], Bakshy et al. attempt to model the information diffusion in Twitter
with the use of regression trees. Twitter is convenient for information diffusion
modeling, since it is explicitly diffusion-oriented: users subscribe to the content
of other users. The retweet feature, moreover, helps in the acknowledgement
(though does not guarantee it) of reposts. Seeders are users posting original (not
retweeted) content and reposting instead of the conventional retweeting (RT
@username) is taken into account. Influence is measured in terms of the size
of the whole diffusion tree created, and not just the plain number of explicit
retweets. The three different cases studied ascribe the influence to the first one
having posted a link, the most recent one or follow a hybrid approach.
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As far as the seed users are concerned, the predictors used include: the num-
ber of followers, number of friends, number of tweets and date of joining, and
regarding the past influence of seed users: the average, minimum and maximum
total influence and average, minimum and maximum local influence (local refers
to the average number of reposts by a user’s immediate friends over a period of
one month and total to the average total cascade size over that period).

Bakshy et al. [27] come to the conclusion that although large cascades have
in their majority previously successful individuals with many followers as initia-
tors, individuals with these characteristics are not necessarily bound to start a
large cascade. Thus, because of the fact that estimations cannot be made at an
individual level, marketers should rely on the average performance. By studying
the return on investment, on the whole, with a cost function of the number of
followers per individual i: ci = acf + ficf , where a is acquisition cost cf cost per
follower and fi is the number of followers, they conclude that relatively ordinary
users of average influence and connectivity are most cost-efficient.

Content-related features are, also, according to Bakshy et al. not expected to
discriminate initiators of large cascades from non-successful ones, due to the large
number of non-successes. In order to take content into account, the regression
analysis is repeated encompassing the following features: rated interestingness,
perceived interestingness to an average person, rated positive feeling, willingness
to share via email, IM, Twitter, Facebook or Digg, some indicator variables for
type of URL, and some indicator variables for category of content.

Moreover, Lerman et al. [118] claim that exploiting the proximity of users in
the social graph can serve as an adding-value factor for the prediction of infor-
mation diffusion. They discriminate proximity as coming from conservative or
non-conservative processes (denoting that the amount of spread information in
the network remains or not constant, respectively). For the case the underly-
ing network is not fully known [132], Najar et al. focus on predicting the final
activation state of the network when an initial activation is given. They find
the correspondence between the initial and final states of the network without
considering the intermediate states. Their work is based on the analogy between
predictive and generative approaches for discrimination or regression problems
(predictive models depicting a better performance, when the real data distribu-
tion can’t be captured).

In [174], Yang and Leskovec use a time series model for modeling the global
influence of a node through the whole network. For each node u, an influence
function Iu(l) is the number of mentions of an information l time units after
the node u adopted the information (at tu), and with V (t) being the number of
nodes that mention the information at time t, it applies:

V (t + 1) =
∑

u∈∈A(t)

Iu(t − tu) (5)

where A(t) are the nodes that got activated before t, tu ≤ t. For the modeling
of the influence functions a non-parametric formulation followed allows greater
accuracy and deviation, as no assumptions are made.
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A study of the social news aggregator Digg [66] crawling data from the site,
story, user and social network perspective, suggests the presence of previously
unconsidered factors for the steering of information spread in OSNs. Doerr et al.
suggest, that, beyond the bare OSN topology two factors matter: the temporal
alignment between user activities (i.e. whether users are visiting the site in the
same narrow time window) and a hidden logical layer of interaction patterns
occurring in their majority outside the social graph.

In the direction of studying the information diffusion as social graphs evolve,
Ren et al. [146] study the evolution steps for shortest paths between two nodes,
(so that they can ascribe them to a disjoint path, a short-circuiting bridge or a
new friend between them), and furthermore, metrics such as closeness central-
ity, and global metrics, like the graph diameter, across snapshots of gradually
evolving graphs. To this end, they adopt an efficient algorithm and an efficient
storage scheme.

Firstly, they cluster (in an incremental procedure not requiring all snapshots
to be present in memory) successive graphs exploiting their many resemblances
(daily snapshots). As G∪ and G∩ essentially “bound” the graphs in the cluster,
with G∩ being the intersection (the largest common subgraph) of all snapshots in
cluster C, and G∪ the union (the smallest common supergraph) of all snapshots
in C, grouping of snapshots into clusters can be based in the idea of the graph
edit similarity between these two graphs (G∪, G∩). The graph edit similarity to
capture the similarity requirement of a cluster is defined as:

ges(Ga, Gb) =
2 | E(Ga ∩ Gb) |

| E(Ga) | + | E(Gb) | (6)

Secondly, they exploit the idea that, denoting the shortest-path between
the vertices v and u, by P̃∗(u, v) in a graph G∗, where ∗ = 1, 2, ..., n,∩,∪, the
solution can easily be found by the intersection or union (two graphs) of graphs
in the cluster, or be “fixed” using these two graphs, and they propose a“finding-
verifying-fixing framework”.

As far as the storage schemes variations are concerned, for a cluster of snap-
shots C = G1, ..., Gk the deltas Δ(Gi, G∩),∀1 ≤ i ≤ k consist a small fraction
of the snapshot, and their size depends on the threshold value used for clus-
ters’ similarity. The penalty of decompression overheads needed is surpassed by
savings in I/O. Variations of the storage schemes include the following:

SM1(C) = {G∩,Δ(G∪, G∩),Δ(Gi, G∩)|1 ≤ i ≤ k} (7)

SM2(C) = {G∩,Δ(G∪, G∩),Δ(G1, G∩),D(Gi, Gi−1)|2 ≤ i ≤ k} (8)

SM FV F (C) = {D(G∩, Gp∩),Δ(G∪, G∩),Δ(G1, G∩),D(Gi, Gi−1)|2 ≤ i ≤ k}
(9)

In (7) the authors consider only the edge sets of Δ(Gi, G∩) and G∩ to execute
their algorithms on a snapshot Gi and the snapshots, Gi’s, of the cluster need
not be explicitly stored. For further compression of data of an evolving graph
sequence similarity of successive snapshots is exploited: In (8) D(Gi, Gi−1) =



120 I. Kilanioti et al.

(E+
i , E−

i ), where E+
i = E(Gi) − E(Gi−1) and E−

i = E(Gi−1) − E(Gi) are the
changes made to snapshot Gi−1 to obtain the next snapshot Gi. Authors observe
that the size of the set of edge changes D(Gi,Gi−1) is on average just 1/10 the
size of Δ(Gi, G∩). Hence, representing an EGS in terms of the D’s is much more
space efficient than in term of the Δ’s. Further compression can be achieved by
exploiting inter-cluster redundancy (9).

6 Distribution of Social Data Streams

6.1 Content Distribution for Social Data Streams

This subsection provides a description of architectures, systems and techniques
[108] for the distribution of social data content.

Architectures. In [99], Jacobson et al. introduce Content Centric Network-
ing (CCN), noting that network use has evolved to be dominated by content
distribution and retrieval. CCN has no notion of host at its lowest level - a
packet “address” names content, not location, while simultaneously preserving
the design decisions that make TCP/IP simple, robust and scalable. Content is
treated as a primitive, and with new approaches, Jacobson et al. simultaneously
achieve scalability and performance.

To share resources within the context of a social network with the use of the
cloud business model, Chard et al. in [49] propose the SocialCloud architecture.
Users register in cloud services (computational capacity, photo storage etc.), and
their friends can consume and provide these services through a Facebook appli-
cation. The allocation of resources (trading or reciprocal use between friends)
is conducted by an underlying market infrastructure, whereas the Social Cloud
application passes a SLA to the service. The advertisement of the service, so
that it can be included in the market is done with XML based metadata stored
in Globus Monitoring and Discovery System (MDS).

An interesting approach [116] applicable to the realm of content delivery
is based on an architecture which combines global learning and local caches
with small population. It is shown that age-based thresholds can timely exploit
time-varying popularities to improve caching performance. Moreover, the caching
efficiency is maximized by a combination of global learning and clustering of
access locations, accompanied by score mechanisms to help with practical issues
at local caches. Practical considerations include, though, the size of the content
that circulates over OSN and the long-tail effect, since the goal of the authors
is first to learn a good estimate at the global point and then feed it back to the
local caches in the form of content scores, thus, making the approach possibly
prohibitive for OSN-aware content delivery.

Systems. In Buzztraq [151], Sastry et al. build a prototype system that takes
advantage of the knowledge of the users’ friends’ location and number, to gener-
ate hints for the placement of replicas closer to future accesses. Comparing their
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strategy with location based placement, which instead uses the geographical
location of recent users, they find substantial decrease of cost, when requests as
part of cascades are more than random accesses of content. Furthermore, their
system reacts faster when there is a new region shift, since it starts counting
friends of previous users in a new region, even before a request comes from that
region. The key concept of Buzztraq is to place replicas of items already posted
by a user closer to the locations of friends, anticipating future requests. The
intuition is that social cascades are rapidly spread through populations as social
epidemics. The experimental results indicated that social cascade prediction can
lower the cost of user access compared to simple location-based placement. Buz-
ztrack is a simple system that only provides hints as to where to place objects.
Other more complex constraints that the present work covers, such as server
bandwidth and storage, are not taken into account. Moreover, social cascade
is indirectly analyzed because there has to be a third-party page where users
connect to view the videos and have access to their social profile.

In the direction of distributing long-tailed content while lowering bandwidth
costs and improving QoS, although without considering storage constraints,
Traverso et al. in [165] exploit the time differences between sites and the access
patterns that users follow. Rather than naively pushing UGC immediately, which
may not be consumed and contribute unnecessarily to a traffic spike in the upload
link, the system can follow a pull-based approach, where the first friend of a user
in a Point of Presence (PoP) asks for the content. Moreover, rather than push-
ing content as soon as a user uploads, content can be pushed at the local time
that is off-peak for the uplink and be downloaded in a subsequent time bin,
also off-peak for the downlink. The larger the difference is between the content
production bin and the bin in which the content is likely to be read, the better
is the performance of the system.

In [153], Scellato et al. study how Twitter can be used to examine social cas-
cades of UGC from YouTube and discover popular objects for replication. They
improve the temporary caching policy by placing content after accounting for
the distance between users. For the model CDN system constructed and tested,
Scellato et al. used the Limelight network properties with 19 clusters of servers
worldwide. To test the system, two different video weights were used: geosocial,
in which node locality values are calculated from all the users that have posted a
message about the item (even without being involved in a cascade), and geocas-
cade, in which node locality values are calculated from the users participating
in the item’s social cascade. It was shown that the model improved performance
against a no weight policy, with geocascade weight performing better.

Techniques. The introduction of concrete, unified metrics for the characteriza-
tion of the extent of the social dissemination (local or global cascades phenom-
ena) is an open issue. A systematic incorporation of this quantified knowledge
into the existent underlying content delivery infrastructure would be salutary
for proactive steps towards the improvement of user experience.
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Furthermore, novel techniques aim to incorporate the information extracted
from OSNs in the way that users share content and in how the content ultimately
reaches the users. Some of these works use the information directly from OSNs,
whereas others use such information indirectly. The research goals vary: the
decision for copying content, improvement of policy for temporary caching, etc.

Zhou et al. [178] leverage the connection between content exchange and geo-
graphic locality (using a Facebook dataset they identify significant geographic
locality not only concerning the connections in the social graph, but also the
exchange of content) and the observation that an important fraction of content
is “created at the edge” (is user-generated), with a web based scheme for caching
using the access patterns of friends. Content exchange is kept within the same
Internet Service Provider (ISP) with a drop-in component, that can be deployed
by existing web browsers and is independent of the type of content exchanged.
Browsing users online are protected with k-anonymity, where k is the number of
users connected to the same proxy and are able to view the content.

In [92], Hoque and Gupta propose a technique with a logical addressing
scheme for putting together in the disk blocks containing data from friends. The
large scale of OSNs and the predominant tail effect do not allow use of tech-
niques such as those used in multimedia file systems or web servers, where items
are globally popular, and, techniques keeping related blocks together tracking
the access pattern of blocks, respectively. To this purpose, in [92] the social
graph is divided into communities. The organization of blocks in the disk is
conducted with a greedy heuristic that finds a layout for the users within the
communities and organizes the different communities on the disk by considering
inter-community tie strength. The system is implemented on top of the Neo4j
graph database as a layout manager.

Instead of optimizing the performance of UGC services exploiting spatial and
temporal locality in access patterns, Huguenin et al., in [95], show on a large
(more than 650,000 videos) YouTube dataset that content locality (induced by
the related videos feature) and geographic locality are in fact correlated. More
specifically, they show how the geographic view distribution of a video can be
inferred to a large extent from that of its related videos, proposing a UGC storage
system that proactively places videos close to the expected requests. Such an
approach could be extended with the leverage of information from OSNs.

Kilanioti et al. in [109–111] propose miscellaneous policies for dynamic
OSN-aware content delivery over a content delivery simulation framework. The
authors propose policies that take patterns of user activity over OSNs and exploit
geo-social properties of users participating in social cascades, proceed to incorpo-
rate various caching schemes of the underlying infrastructure, different policies
for the handling of OSN data and various approaches that take into account the
efficient timing of prefetching. Given an efficient placement of surrogate servers
with maximum performance and minimum infrastructure cost, they apply con-
textual features of the user as heuristics to find the best content diffusion place-
ment, either in a global or in a local scale, i.e., which content will be copied
in the surrogate servers and to what extent, not overlooking memory, time and
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computational cost. Moreover they study temporal aspects of diffusion, related
to the most efficient timing of the content placement. The simulation framework
they introduce can serve as the basis of further parameterized content delivery
experimentation that exploits information transmission over OSNs and decreases
replication costs by selectively copying items to locations where items are likely
to be consumed.

In terms of performance, Kilanioti et al. note a significant improvement over
the respective improvement (39.43% only for the plain Social Prefetcher app-
roach [107], up to 42.32% for selected caching mechanisms, compared to 30%
in [165]) performing better than existent pull-based methods employed by most
CDNs, even though these methods additionally overlook storage issues of the
distributed infrastructure.

Last but not least, of more concurrent cascades happening it would be inter-
esting to know which of them will evolve as global and which of them will
evolve as local, possibly making some associations with their content or con-
text features. It is challenging to discover contextual associations among the
topics, which are by nature implicit in the user-generated content exchanged
over OSNs and spread via social cascades. In other words it would be useful to
derive semantic relations. This way the identification of a popular topic can be
conducted in a higher, more abstract level with the augmentation of a seman-
tic annotation. While the topic of a single information disseminated through an
OSN can be explicitly identified, it is not trivial to identify reliable and effective
models for the adoption of topics as time evolves [80,123] characterized with
some useful emergent semantics. Therefore efficient semantic annotation can be
seen as a solution for the challenge of characterization of the extent of the social
dissemination.

6.2 Content Distribution in 5G Environments and Technologies

Content became the main information item exchanged between different actors
in the Internet. Video and multimedia content counts for 80–90% of the total
global traffic. Rich multimedia content lead to rapid mobile traffic growth that
current mobile radio network, mobile backhaul, the capacity of the wireless link
and mobile core network cannot support. 5G could overcome these bottlenecks
introducing high increasing ratio of mobility communications and strong ori-
entation towards content-related services and applications for content delivery
over wireless technology, high throughput, low data delivery latency, and high
scalability enabling huge number of devices [17].

Environment. 5G represents the 5th generation network of mobile systems
which opens new possibilities, increase radio link capacity and brings plenty of
new trends such as [17,122]: heterogeneous networks (HetNets); new use cases
based on connections and communications between device to device, massive
Machine-Type Communications, and Internet of Things (IoT); evolution of radio
access technologies; cloudification throughout SDN and network function virtual-
ization (NFV) paradigms; flexible spectrum management; cell densification; etc.
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NFV and SDN capabilities in 5G systems are expected to enable network pro-
grammability. Content delivery could be affected by 5G cloudification through
different SDN/NFV paradigms [122]. Programmable network control and the vir-
tualization of all the RAN elements into virtual appliances by flexible NFV man-
agement are included within 5G networks. This enable content focused resources
allocation. Agile design of new network functions and their control are possible.
Network providers could extend network with new function that includes custom
designed information, such as services that can offer to the online media service
providers. The collaboration between the network provider and the online media
service provider by means of the edge cache could be enabled by media delivery
solutions designed for 5G. The control of the network will be kept by the network
provider. The network provider would give only the relevant information for the
online media service provider, while the online media service provider will keep
the control of the delivery process and decide whether the cache shall be used,
what and how information or resources are cached [3].

Technologies. New technologies such as LTE-A, LTE-U, WiFi and ZigBee,
SDN and NFV rapidly change networks and services and lead to changes to
content delivery. For example, mobile video will generate more than 69% of
mobile data traffic by 2019 [2]. It is expected to witness an increase to 75% by
2021, which is much greater from 46% in 2016 on the share of smart devices and
connections, while the amount of traffic offloaded from 4G was 63% at the end
of 2016, and it will be 66% percent by 2021 [2].It is also expected to witness
higher offload rates when the 5G network arrives. The main challenges in a
wireless or mobile environment that have impact on content delivery services
are reflected to the limited spectrum and bandwidth in wireless, heterogeneous
networks, wireless link characteristics that are dependent on location and time,
radio congestion, handoff issues, etc.

5G Use Cases. Future 5G developments is dependent on service providers,
technology enablers and customers. All these actors are directly involved in deci-
sions which use cases to pursue first, as well what technology is needed for the
use cases. The 5G standards development process is also dependent on decisions
which use cases first to deploy. All these ongoing developments will directly affect
content delivery mechanisms, models and systems architectures. The main 5G
use cases currently are reflected to [3]:

1. Gigabit broadband to home, related to deliver streams rated from 100 Mbit/sec
to 1 Gbit/sec, which are needed to deliver television with higher resolution than
4K, virtual and augmented reality. Specific applications require special network
configuration, for example in order to minimize latency in virtual reality appli-
cations.

2. Next generation mobile user experience.
3. Future corporate networks, addressed to better service providing, which

require operators to dynamically manage network and to use software defined
networking and network function virtualization.
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4. Digital industrial ecosystems include agriculture, smart cities and healthcare
applications, which imply network configurations that every industry partic-
ipant can benefit from.

5. Infrastructure as a service approach is for service providers that lack the
resources to invest in nationwide 5G coverage.

5G Solutions and Approaches. The demand for high-speed data applications
has been on the rise in the recent decade, which led to the development of 5G.
Development of efficient mechanisms for supporting mobile multimedia and data
services is prerequisite for 5G networks. The real bottleneck of todays’ mobile
networks is access radio network and the backhaul. Caching in the intermediate
nodes, servers, gateways, routers, and mobile users’ devices can reduce doubled
transmission from content providers and core mobile networks.

Known caching techniques that can be used within 5G are: content distri-
bution network, information-centric networks, content-centric networking, http
web caching, evolved packet core caching, radio access network caching, device to
device caching, proactive caching, predictive caching, cooperative caching [23].
Those techniques are using different algorithms and models. Analysis presented
in [23] showed that the deployment of those caching techniques in mobile network
can reduce redundant traffic in backhaul, minimize the traffic load, increase the
transfer rate in mobile network and reduce the latency. Correlation of several
caching methods and procedures could result in improving network performance
and obtaining better results.

5G brings complex heterogeneity of the network with different technolo-
gies that coexist, where some technologies could totally disable transmission of
data of equipment that use other technologies. Solutions that efficiently handles
resources in space, frequency, and device dimensions are needed. One possible
efficient solution is semantic coordination in such networks is given in [135,164].

The nodes in the system can communicate and share knowledge of their per-
spective of the spectrum utilization in the network. In [164] authors proposed
to model the spectrum usage coordination as an interactive process between
a number of distributed communicating agents, where agents share their spe-
cific information and knowledge. The information includes the current spectrum
usage state, spatial coordinates of the device, available communication proto-
cols, usage policy, spectrum sensing capabilities of the device, spectrum needs,
etc. Approach for such coordination presented in [164] is based on semantic
technologies, and harmonize communication between heterogeneous agents with
potentially different capabilities with a minimal common compliance. The core
knowledge is represented by ontologies whose representation and usage is spec-
ified in a standardized way. This semantic technologies-based approach can be
used for a wide spectrum of problems within 5G heterogeneous networks, such
as network states predictions, network analysis, minimizing traffic load, content
distribution coordination etc. This approach could be used in combination with
caching techniques in order to improve content distribution in 5G, but further
research should be carried out in this area.



126 I. Kilanioti et al.

7 Conclusions

This article describes the results of the collaborative work performed as part
of High-Performance Modelling and Simulation for Big Data Applications
(cHiPSet) COST Action 1406. The presented case study focused on multime-
dia big data from entertainment and social media, medical images, consumer
images, voice and video, that drives research and development of related tech-
nologies and applications and is steadily becoming a valuable source of infor-
mation and insights [109–111], [108]. In fact, this work describes the general
landscape and how our approach fits in the general ecosystem. Multimedia con-
tent providers such as YouTube strive to efficiently deliver multimedia big data
to a large amount of users over the Internet, with currently more than 300 h
of video content being uploaded to the site every minute. Traditionally, these
content providers often rely on social data content distribution infrastructures.
However, some measurement studies depict that a significantly large proportion
of HTTP traffic results from bandwidth-intensive multimedia content circulat-
ing through OSNs. Consequently the user activity extracted from OSNs can be
exploited to reduce the bandwidth usage. By incorporating patterns of informa-
tion transmission over OSNs into a simulated content distribution infrastruc-
ture, the performance of content distribution mechanisms can be remarkably
improved.

CDN services are increasingly being used to enable the delivery of bandwidth-
demanding large media data to end-users of multimedia content providers and
extend the capabilities of the Internet by deploying massively distributed infras-
tructures to accelerate content delivery. Next generation CDNs are being lever-
aged in an array of ways to overcome the challenges of providing a seamless
customer experience across multiple devices with varying connectivity and cor-
responding to the call for enterprise application delivery. They have to go beyond
efficient resource discovery and retrieval tasks of the established CDNs and sup-
port refined mechanisms for data placement, replication and distribution for a
large variety of resource types and media formats. OSNs on the other hand cre-
ate a potentially transformational change in user navigation and from this angle
the rapid proliferation of OSNs sites is expected to reshape the architecture and
design of CDNs. The challenges and opportunities highlighted in the interdisci-
plinary field of OSN-aware content delivery are bound to foster some interest-
ing future developments, including innovative cache replacement strategies as
a product of the systematic research of temporal, structural and geographical
properties of social cascades.

Particularly today that HTTP traffic ascribed to media circulating over OSNs
has grown, an OSN-awareness mechanism over content distribution schemes has
become essential. This mechanism aims to exploit patterns of social interactions
of the users to reduce the load on the origin server, the traffic on the Internet,
and ultimately improve the user experience. By addressing the issue of which
content will be copied in the surrogate servers of a CDN, it ensures a near-
optimal content diffusion placement. At the same time, it moderates the impact
on bandwidth that the Big Data transmitted via OSNs has, offering scalable
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solutions to existing CDNs or OSNs providers. Furthermore, it paves the way
for experimentation with variations on caching schemes, timing parameters of
content delivery and context of the OSN and the media platform.

A future target is to potentially leverage the CDN services of cloud ser-
vice providers in order to lower costs while increasing simplicity. CDNs, often
operated as Software as a Service (SaaS) in cloud providers (Amazon Cloud-
Front, Microsoft Azure CDN, etc.) aim at addressing the problem of smooth
and transparent content delivery. A CDN actually drives cloud adoption through
enhanced performance, scalability and cost reduction. With the limitation for
both CDNs and cloud services being the geographic distance between a user ask-
ing for content and the server where the content resides, cloud acceleration and
CDN networks are both complementary to achieving a goal of delivering data in
the fastest possible way. Cloud mainly handles. Utilization of OSN-aware CDNs
in cloud computing, where content is constantly changing and, thus, not easily
cached, is likely to have profound effects on large data download.
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77. Fernández-Cerero, D., Jakóbik, A., Grzonka, D., Kolodziej, J., Fernández-Montes,
A.: Security supportive energy-aware scheduling and energy policies for cloud
environments. J. Parallel Distrib. Comput. 119, 191–202 (2018). http://www.
sciencedirect.com/science/article/pii/S0743731518302843

78. Fernández-Montes, A., Fernández-Cerero, D., González-Abril, L., Álvarez Garćıa,
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through a social network. In: Proceedings of the Ninth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM
(2003)

107. Kilanioti, I.: Improving multimedia content delivery via augmentation with social
information. The social prefetcher approach. IEEE Trans. Multimed. 17(9), 1460–
1470 (2015). https://doi.org/10.1109/TMM.2015.2459658

108. Kilanioti, I., et al.: A survey on cost-effective context-aware distribution of social
data streams over energy-efficient data centres. Simul. Model. Pract. Theory
(2018). http://www.sciencedirect.com/science/article/pii/S1569190X18301709

109. Kilanioti, I., Papadopoulos, G.A.: Delivering social multimedia content with scal-
ability. In: Pop, F., Ko�lodziej, J., Di Martino, B. (eds.) Resource Management for
Big Data Platforms. CCN, pp. 383–399. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-44881-7 18

110. Kilanioti, I., Papadopoulos, G.A.: Predicting video virality on Twitter. In: Pop,
F., Ko�lodziej, J., Di Martino, B. (eds.) Resource Management for Big Data Plat-
forms. CCN, pp. 419–439. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-44881-7 20

111. Kilanioti, I., Papadopoulos, G.A.: Content delivery simulations supported by
social network-awareness. Simul. Model. Pract. Theory 71, 114–133 (2017)

112. Kleinberg, J.M.: Cascading behavior in networks: algorithmic and economic
issues. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic
Game Theory, pp. 613–632. Cambridge University Press (2007)

113. Ko, Y.Y., Cho, K.J., Kim, S.W.: Efficient and effective influence maximization in
social networks: a hybrid-approach. Inf. Sci. 465, 144–161 (2018)

114. Kuperman, M., Abramson, G.: Small world effect in an epidemiological model.
Phys. Rev. Lett. 86(13), 2909–2912 (2001)

115. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A
survey of mobile phone sensing. J. Supercomput. 48(9), 140–150 (2010). https://
doi.org/10.1109/MCOM.2010.5560598

116. Leconte, M., Paschos, G., Gkatzikis, L., Draief, M., Vassilaras, S., Chouvardas, S.:
Placing dynamic content in caches with small population. In: IEEE INFOCOM
2016 - The 35th Annual IEEE International Conference on Computer Communi-
cations, pp. 1–9, April 2016

117. Lee, Y.C., Zomaya, A.Y.: Energy efficient utilization of resources in cloud com-
puting systems. J. Supercomput. 60(2), 268–280 (2012)

118. Lerman, K., Intagorn, S., Kang, J.H., Ghosh, R.: Using proximity to predict
activity in social networks. In: Proceedings of the 21st International Conference
on World Wide Web, pp. 555–556. ACM (2012)

https://doi.org/10.1109/TMM.2015.2459658
http://www.sciencedirect.com/science/article/pii/S1569190X18301709
https://doi.org/10.1007/978-3-319-44881-7_18
https://doi.org/10.1007/978-3-319-44881-7_18
https://doi.org/10.1007/978-3-319-44881-7_20
https://doi.org/10.1007/978-3-319-44881-7_20
https://doi.org/10.1109/MCOM.2010.5560598
https://doi.org/10.1109/MCOM.2010.5560598


134 I. Kilanioti et al.

119. Leskovec, J., McGlohon, M., Faloutsos, C., Glance, N., Hurst, M.: Patterns of
cascading behavior in large blog graphs. In: Proceedings of SIAM International
Conference on Data Mining (SDM) 2007. SIAM (2007)

120. Li, M., Wang, X., Gao, K., Zhang, S.: A survey on information diffusion in online
social networks: models and methods. Information 8(4), 118 (2017)

121. Liben-Nowell, D., Kleinberg, J.: Tracing information flow on a global scale using
Internet chain-letter data. Proc. Natl. Acad. Sci. 105(12), 4633–4638 (2008)

122. Liberal, F., Kourtis, A., Fajardo, J.O., Koumaras, H.: Multimedia content delivery
in SDN and NFV-based towards 5G networks. IEEE COMSOC MMTC E-Lett.
10(4), 6–10 (2015)

123. Lin, C.X., Mei, Q., Jiang, Y., Han, J., Qi, S.: Inferring the diffusion and evolution
of topics in social communities. Mind 3(d4), d5 (2011)

124. �Luczak, T.: Size and connectivity of the K-core of a random graph. Discrete Math.
91(1), 61–68 (1991)

125. Luo, X., Wang, Y., Zhang, Z., Wang, H.: Superset: a non-uniform replica place-
ment strategy towards high-performance and cost-effective distributed storage ser-
vice. In: 2013 International Conference on Advanced Cloud and Big Data (CBD),
pp. 139–146. IEEE (2013)

126. Luu, M.D., Hoang, T.A., Lim, E.P.: A survey of information diffusion models and
relevant problems (2011)

127. Maier, G., Feldmann, A., Paxson, V., Allman, M.: On dominant characteristics of
residential broadband internet traffic. In: Proceedings of the 9th ACM SIGCOMM
Internet Measurement Conference IMC, pp. 90–102. ACM (2009)

128. Mars, J., Tang, L.: Whare-map: heterogeneity in homogeneous warehouse-scale
computers. In: ACM SIGARCH Computer Architecture News, vol. 41, pp. 619–
630. ACM (2013)

129. Menon, A.: Big data@ Facebook. In: Proceedings of the 2012 Workshop on Man-
agement of Big Data Systems, pp. 31–32. ACM (2012)

130. Milgram, S.: The small world problem. Psychol. Today 2(1), 60–67 (1967)
131. Morris, S.: Contagion. Rev. Econ. Stud. 67(1), 57–78 (2000)
132. Najar, A., Denoyer, L., Gallinari, P.: Predicting information diffusion on social

networks with partial knowledge. In: Proceedings of the 21st International Con-
ference on World Wide Web, pp. 1197–1204. ACM (2012)

133. Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-clouds: managing performance inter-
ference effects for QoS-aware clouds. In: Proceedings of the 5th European Con-
ference on Computer Systems, pp. 237–250. ACM (2010)

134. Navarro, N.D.A.B., Da Costa, C.A., Barbosa, J.L.V., Righi, R.D.R.: A context-
aware spontaneous mobile social network. In: Ubiquitous Intelligence and Com-
puting and 2015 IEEE 12th International Conference on Autonomic and Trusted
Computing and 2015 IEEE 15th International Conference on Scalable Comput-
ing and Communications and Its Associated Workshops (UIC-ATC-ScalCom),
pp. 85–92. IEEE (2015)
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