

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Falcarin, Paolo; Scandariato, Riccardo; Baldi, Mario.
Article title: Remote Trust with Aspect-Oriented Programming
Year of publication: 2006
Citation: Falcarin, P., Scandariato, R., Baldi, M. (2006) ‘Remote Trust with Aspect-
Oriented Programming’. In IEEE 20th International Conference on Advanced
Information Networking and Applications (AINA 2006), Vienna, Austria, April 2006,
pp. 451-456.
Link to published version: http://dx.doi.org/10.1109/AINA.2006.286
DOI: 10.1109/AINA.2006.286

http://roar.uel.ac.uk/
http://dx.doi.org/10.1109/AINA.2006.286

Remote Trust with Aspect-Oriented Programming

Paolo Falcarin, Riccardo Scandariato, Mario Baldi
Politecnico di Torino, Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24, Torino, Italy
{paolo.falcarin, riccardo.scandariato, mario.baldi}@polito.it

Abstract

Given a client/server application, how can the server
entrust the integrity of the remote client, albeit the latter
is running on an un-trusted machine? To address this
research problem, we propose a novel approach based
on the client-side generation of an execution signature,
which is remotely checked by the server, wherein
signature generation is locked to the entrusted software
by means of code integrity checking. Our approach
exploits the features of dynamic aspect-oriented
programming (AOP) to extend the power of code
integrity checkers in several ways. This paper both
presents our approach and describes a prototype
implementation for a messaging application.

1. Introduction

Security has always been a primary concern for
industry, and recently the interest for client-side
software protection has grown. In general, network-
enabled software suffers from some inherent security
problems, like unauthorized modification by either
malicious individuals (host machine cannot be trusted
because of the user threat) or digital entities, like viruses
and Trojan horses (host machine cannot be trusted
because of the network threat). Many circumstances do
exist in which it is necessary to protect software from
malicious modifications once it is delivered to the
public, e.g., e-voting and e-commerce systems.

In particular, this work has been carried out in the
context of a research project aiming at providing an
answer to the following research question: How can be a
client application entrusted albeit running on an un-
trusted machine? With the term “un-trusted machine”
we mean a networked computing base (e.g., networked
computers and mobile devices) in which a possibly
malicious user has complete (conceivably physical)
access to system resources (e.g., memory and disks) and
tools (e.g., debuggers) in order to reverse-engineer the
application code. In the scope of this paper, an
application is deemed trusted whenever its executed
code has not been altered prior to and during execution.

Satisfying such integrity requirement in a hostile
environment is a challenging issue and TrustedFlow is
the all-in-software solution we present to tackle the
problem [1].

In our approach, clients emanate a continuous flow of
idiosyncratic tags towards to server. The tags flow is
generated by a software module that is securely
combined with the original application. As far as the
application code remains genuine, the module will
produce valid tags, which are used as continuous
evidence to the remote server that the client code is
authentic. Note that disabling the module is not an
option for the attacker. In such case, tags would no
longer be produced and the server would notice the
attack attempt immediately. This work presents
prototypal implementation of TrustedFlow based on the
deployment and nonstop replacement of integrity-
checking modules implemented as dynamic aspects. As
further discussed in the related-work section, traditional
integrity self-checking techniques offer no guaranty that
self-check has been actually performed. As a major
contribution, our approach provides remote verification
of tags in order to verifying that the check has been duly
preformed.

Our solution can be deployed in several usage
scenarios. In particular, it can be used to restrict access
to a public server, to let in genuine clients only, possibly
distributed by the server itself. Examples of existing
applications are Yahoo services (Yahoo advanced
services are available only to users deploying Yahoo’s
client), gambling servers, and on-line submission of
final exams. Along these lines, a messaging system,
composed of a server acting as entrusting entity and a
client acting as entrusted entity, has been developed as a
proof of concept.

2. Related Work

In general, tamper resistance is pursued by means of
a set of methodologies aimed at protecting software
from unauthorized modification, distribution, and use.
Among the several possible attacks, we focus on
integrity attacks, i.e., those aiming at tampering with

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

application code for malicious purposes, like bypassing
security, infringing licenses, or forcing different
execution (e.g., to manipulate ballots in e-voting
applications).

Different solutions have been proposed in literature
to protect software from above-mentioned rogue
behaviors, being integrity self-checking the main
representative.

Most of commercial applications just rely on static
self-checking, in which the program checks its integrity
only once, during start-up (e.g. to check license code),
while current research is focusing on dynamic self-
checking, in which the program verifies regularly its
integrity during run-time. The key issue is to avoid that
the self-checking function itself is removed or disabled,
without being detected. To this aim, networks of
integrity-checkers (called guards) were proposed to
detect changes to binary code [2]. Protection against
code modification is enforced by including a large
number of guards, each protecting a fraction of the
application. Clearly, the task of finding and disabling all
guards is significantly more difficult. A similar approach
provides a mechanism to redundantly test for changes
[3].

Chen et al. [4] compute a fingerprint of application
code on the basis of its actual execution. This method
makes it possible to thwart attacks using automatic
program analysis tools and other static methods.

Obfuscation aims at increasing the attack complexity
by making it hard for the attacker to comprehend the
behavior of a decompiled program [5]. Obfuscation
techniques are based on the addition of complexity to
source code structure (without changing its behavior)
through different kinds of code transformations. Code
obfuscation transformations are also employed to hide a
tamper resistance code embedded in the software so that
it cannot be easily detected and removed. However, in
most cases, breaking obfuscation it is just a matter of
time and attacker’s skills [6], and the overhead of
obfuscation techniques can be significant both in terms
of code size increase and execution time overhead.

Customization creates many different copies from an
initial version of a program [7]. Each copy of the
protected program is different in its binary shape, but it
is functionally equivalent to other copies. Thus,
published exploits to attack one version might not work
with other customized versions. This kind of protection
discourages diffusion of “cracks” but it does not aim at
detecting and reacting to tampering.

Another way to inhibit cracks diffusion is pursued by
means of techniques like Software aging [14] aiming at
frequently distributing new updates of a program: this
also allows dynamic renewal of software protection
techniques embedded in the application.

As mentioned, our approach proposes a software-

only solution. On the contrary, trusted computing
initiatives [8] rely on a trusted hardware platform to
build software authenticity from the ground up. For
instance, an implementation of trusted computing
principles was proposed using a trusted coprocessor and
a modified Linux kernel [9]. In that work, the authors
create a chain of trust where BIOS and coprocessor
measure integrity of the operating system at startup, then
the operating system measure integrity of applications,
then applications measure integrity of dynamically
loaded modules, and so on.

In conclusion, when compared to existing integrity
checking techniques (both software-based and
hardware-based), our approach extends prior art in
several direction. First, it provides remote verification
that checking has been actually performed. Furthermore,
in our implementation the checking component can be
replaced dynamically at run time by means of software
updates. Such quality improves the overall strength of
the technique we propose since attackers have limited
time resources to break the checks (see Section 4 for
further details).

3. TrustedFlow Principles and Prototype
Architecture

The key element of our approach is the software
module implementing the tag generator on board the
client application. The module must conform to two
basic principles.

Interlocking describes the combination of the
original application with the tag generator, so that
they are bound to each other in an inseparable
manner.
Hiding describes countermeasures that are
necessary for the tag generator to ensure that
reverse engineering is practically infeasible.

On the client side, the Trusted Tag Generator (TTG)
constantly generates an unpredictable flow of tags,
constituting the continuous idiosyncratic signature (that
cannot be forged) of the software’s execution. Tags are
attached to data sent by the client towards the server.
Tags are bound to both the state of the TTG (e.g.,
current encryption key and number of tags previously
sent) and traffic generated by client software. On the
server side, the Trusted Tag Checker (TTC) entrusts the
integrity of client software by verifying the correctness
of tags flow.

For increased robustness, the algorithm used to
generate the tags should not require a strong
synchronization between TTC and TTG. For instance,
current implementation uses a block cipher [10] in
counter mode and includes the counter value among the
data transmitted between the TTC and the TTG.
Moreover, cryptographic functions can be employed to

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

bind tags to transmitted data. For example, a message
authentication code (HMAC) of both the data unit and
the related tag can be attached by the TTG to protect
against alteration of data associated to a valid tag.
Alternatively, a HMAC calculation can be part of the tag
generation algorithm.

To show the applicability of our approach, we
developed a prototype implementation of TrustedFlow
relying on dynamic AOP that was deployed in a Java-
based messaging service (i.e., a client/server chat
system)

3.1. AOP tutorial

Aspect-Oriented Programming [11] is a new
programming paradigm easing the modularization of
crosscutting concerns in object-oriented software
development. In particular, developers can remove
scattered code related to crosscutting concerns from
classes and placing them into elements called aspects.
This methodology is implemented by different AOP
platforms; all these tools rely on their own join-point
model, which defines the points along the execution of a
program that can be possibly addressed by an aspect.

Thus, AOP involves a compiling process, called
weaving, for the actual insertion of aspect code into pre-
existing application source code or bytecode. When
using a dynamic AOP platform, e.g. PROSE [12],
weaving can also occur at run-time.

In PROSE platform, an aspect is a normal Java class
containing a set of Crosscut objects. A crosscut contains
a method called advice and a pointcutter object
identifying at which points in the dynamic execution of
the program, advice code should be executed. For
example, a pointcutter describes sets of join points by
specifying the objects and methods to be considered, or
a specific method execution.

PROSE offers a rich set of crosscuts: among these
the ‘MethodCall’ crosscut intercepts method calls

PROSE uses a wildcard-based syntax to construct the
pointcutters in order to capture join points that share
common characteristics, and it provides logical
operators to form complex matching rules by combining
simple pointcutters.

Dynamic AOP platforms can be further distinguished
in two categories: platforms with fixed pointcut
definition and platforms with dynamic pointcut
definition. In the former case the application code is
instrumented once, at first deployment, in order to
identify candidate join-points; then the related advice
code can be added at load-time and then updated at
runtime. PROSE use a dynamic pointcut redefinition:
the application is not instrumented and the actual join-
points are determined at runtime by the platform,
depending on the pointcutters defined in the aspect.

We decide to use PROSE platform, because of its
high dynamicity that can be an advantage for our
purposes: in fact, if the attacker knew which parts of the
application will be addressed by the aspects, (s)he could
use them as a possible starting point for an attack.

3.2. Prototype design

We started from an existing prototype of chat system,
previously developed in the context of a Java course.
Thanks to the transparent use of dynamic AOP, the
client program needs no changes. Therefore, once the
chat client program is released and distributed to users,
attackers cannot get clues about the integrity strategy the
server will adopt. In contrast with a normal chat
application, the client-side program must be executed
within the PROSE runtime environment. Concerning the
server program, it was extended to integrate with the
TTC server module.

As shown in right-hand side of Figure 1, main
components of the TrustedFlow prototype are the
Aspect Manager, the Aspect Factory and the Code
Checker. Aspect Manager provides the Chat Server with
the interface to access TrustedFlow functionalities,
namely the registration of a new client and the
verification of tagged messages. Aspect Manager is
assisted by the Tag Checker, which validates the tags
carried by user messages, and by the Aspect Factory,
which dynamically generates the code of the to-be-
deployed aspect.

Dyn AOP runtime
Chat

Server

replace

TagMsg

Aspect
Factory

load

Tag
Checker

Aspect
Manager
Aspect
Manager

TrustedFlowChat
Client

Code Checker
and
Tag Generator
(aspect)

Figure 1. TrustedFlow with Dynamic AOP
As shown in left-hand side of Figure 1, when a new

client comes in, a new aspect is crafted by the Aspect
Factory and the Aspect Manager loads it in the
execution environment of the upcoming client. The
aspect implements both code integrity checker (that
behaves as a watchdog for the client program and looks
for integrity breaches) and the trusted tag generator
aspect (that seamlessly appends a tag to each user
message). Finally, note that the aspect can be replaced
by the Aspect Manager at any moment during runtime.

4. Anti-Tampering with Dynamic Aspects

To counter reverse engineering, current software-

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

based tamper-resistance techniques rely on code
checkers whose position is hidden in the application and
whose behavior is obfuscated.

However, we observe that any technique involving a
checker that is permanently embedded within the
application is not robust enough. Indeed, the checker
can be eventually identified and inhibited by an attacker
with enough knowledge, time, and reverse engineering
tools. Under such conditions, there are no guarantees
that a remote client is actually undergoing to all the
checks it is supposed to.

TrustedFlow overcomes such limitation by
supporting dynamic replacement of the checker module,
which is implemented as a dynamic aspect. The checker
is bundled as an independent aspect, which is sent to the
client at startup and can be updated dynamically at any
time. The update rate can be tuned according to the
security requirements of the target application domains
(from minutes to days).

Nonetheless, other techniques, such as obfuscation,
are still a valuable addendum in order to make it even
harder for a rogue user to hack the checker code. A
checker that is both mobile and obfuscated gives an
additional degree of freedom to customize the security
level: the stronger obfuscation, the lower the update rate
can be, and vice versa.

Implementing anti-tampering techniques with AOP
tools is intuitively useful because aspects can be seen as
additional code having a privileged view on the
application code and data. Moreover AOP weavers help
“hooking” integrity checkers in the application code in a
simple and flexible way, instead of using ad-hoc pre-
compilers like most of the current approaches. In
particular, the power of pointcutters composition rules is
suitable for a flexible management and distribution of
checking code in a large code base.

The dynamic aspect is composed by a tag generator
crosscut, and two checkers crosscuts, i.e. the sandbox
checker and the bytecode checker.

4.1 The Tag-Generator Crosscut
The Tag Generator crosscut intercepts network

transmissions to the chat server in order to obliviously
insert authentication tags in the data sent out by the
client application.

The chat client relies on Java sockets to communicate
with the chat server. The following code snippet of the
Tag Generator shows the advice (method
METHOD_ARGS) and the pointcutter which intercept
all the messages sent by the client through a Java socket.

Each Tag Generator has a counter that is incremented
each time a new message is sent out. The Tag Generator
also shares a temporary symmetric encryption key with
the TTC. Each client has a different key and keys can be
changed at any time by updating the corresponding Tag

Generator aspect.
1. public Crosscut tagGenerator = new MethodCut() {
2. public void METHOD_ARGS(PrintWriter p, String msg) {
3. StringBuffer tag = new StringBuffer(msg);
4. tag.append(crypt(counter, key));
5. tag = hash(tag);
6. p.println(tag);
7. p.println(counter); p.flush();
8. counter++;
9. }
10. protected PointCutter pointCutter() {
11. PointCutter socket =
12. Within.method("println").AND(type("PrintWriter"));
13. return Executions.before().AND(socket);
14. }
15.};

Figure 2. The Tag Generator Crosscut
Tags are generated according to the following

algorithm:
Using the secret key, the Tag Generator encrypts the
current counter value with the AES block cipher
(line 4).
The resulting block is concatenated with the plain
user message (line 4) and then hashed to produce the
tag (line 5)
The resulting tag and the current counter are pre-
pended to the message network transmission (line 6).

Note that valid tags are generated unless the Tag
Checker discovers a tampering attempt. In that case, the
checkers invalidates the symmetric key used by the
generator. On the receiver side, the server calculates the
expected tag for the received message and compares the
result with the tag sent by the client. In case of forged
tags, the Chat Server reacts by inhibiting any further
network communication coming from the suspected
host; otherwise the plain message is relayed to clients.

The TrustedFlow module on the server side,
automatically updates each Tag Generator whenever the
aspect aging timer elapses.

Considering Figure 2, when a new Client signs in
with the Chat Server (1), the latter informs the Aspect
Manager (2) as to get the aspect pushed to the client
environment. The Aspect Manager maintains a list of
opened Client Sessions, each containing the
TrustedFlow-related information for the corresponding
Client, like the current shared key and the aging status
of the deployed aspect.

Particularly, when a Client registers, a new Client
Session instance is created (3). In turn, the Client
Session contacts the Tag Checker singleton component
to obtain a fresh key (4). Finally, the Aspect Factory
generates the Java code for the customized versions of
both Code Checker and Tag Generator aspects (5) and
the Client session deploys them to the Client (6).

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

createCode

build

createKey

[secret key]

Client
Session

Aspect
Factory

[aspecs]

register
addClient

new

load

Client Chat
Server

Aspect
Manager

Tag
Checker

(1)
(2)

(3)

(5)

(4)

(6)

Figure 3. Client registration scenario
The aspect is automatically built by the Aspect

Factory in the TrustedFlow module on the server side,
using an Aspect Template that accommodates for the
customization of main parameters, as the initial value of
the counter and the secret key. Upon installation, each
PROSE aspect can execute an initialization procedure
before being woven. Our prototype exploits this feature
to add extra security check. Namely, during the
initialization phase, the newly deployed aspect verifies
the checksum of older aspect bytecode, before
withdrawing it. In case of mismatch, the newcomer
aspect invalidates the encryption key.

4.2 The Code-Checker Crosscuts
Java's security model is focused on protecting users

from hostile programs downloaded from un-trusted
sources across a network. To accomplish this goal, Java
provides a customizable "sandbox", which restricts the
operations an application can perform.

1. public Crosscut sandbox = new MethodCut() {
2. public void METHOD_ARGS(ANY x, REST pp) {
3. key=null;
4. }
5. protected PointCutter pointCutter() {
6. PointCutter native = Within.method(NATIVE_MODIFIER);
7. PointCutter fork =

Within.method("exec").AND(type("java.lang.Runtime"));
8. PointCutter loader = Within.subType("java.lang.ClassLoader")).
9. AND(NOT(Within.type(“java.security.SecureClassLoader”));
10. return Executions.before().AND(native.OR(fork).OR(loader));
11. }
12.};

Figure 4. The Sandbox Crosscut
In our case the problem is the opposite. The trusted

aspects sent by the trusted server, in principle, cannot
trust the environment they will be deployed in. In
particular, an attacker could make use of the Java
runtime to deceive the dynamic aspect. To this aim,
deployed aspects prohibit many “dangerous” activities
to the executing application. As shown in code fragment
of figure 4, the following potentially insecure operations

are disallowed: (1) call to native methods (line 6), (2)
execution of external processes (line 7), and replacement
of default secure class loader (line 8).

1.public Crosscut bytecodeChecker = new MethodCut() {
2. public void METHOD_ARGS(ANY x, REST pp) {
3. String className =
4. thisJoinPoint().getThis().getClass().getName();
5. String method =
6. thisJoinPoint().getSignature().toLongString();
7. if (!checkBytecode(className, method))
8. key=null;
9. }
10. protected PointCutter pointCutter() {
11. return Executions.before().
12. AND(Within.packageTypes("it.polito.chat.*"));
13. }
14.};

Figure 5. The Bytecode Checker Crosscut
Once the aspect is shielded against (naïve)

disablement attacks, it can safely attend the checking
task. To this aim, the aspect contains the bytecode
checker crosscut (see Figure 5) resorts to BCEL Java
library [14] to access the application bytecode and
eventually calculate each method checksum (the above-
mentioned encryption key is used). Checksums are then
compared against an on-board list of pre-computed
values. The advice (METHOD_ARGS method) is called
whenever an application method is invoked. As shown
on lines 10 to 13, all calls within the application package
(“it.polito.chat”) are monitored. The aspect makes use of
the PROSE API to extract the actual method signature
and class name (lines 3 to 6). It then compares the
bytecode hash with the original one (line 7): if they
differ the key is nullified (line 8), and the tag generator
will send wrong tags, implicitly notifying the server that
something went wrong.

5. Threat analysis and discussion

The three main attacks to software integrity
mechanisms are discovery, disablement, and
replacement [3].

Discovery is the first step to disable or replace
protections. Our approach makes discovery more
difficult because the code-checking module is not
bundled within the application deployed on the un-
trusted host. Furthermore, even if the module is
discovered at runtime, its limited time validity reduces
attacker possibilities. Thus, static inspection tools are
defeated by our approach, thanks to dynamic loading of
the TTG module. Dynamic analysis tools, such as
debuggers and profilers, pose a possible threat to our
approach. However, the threat is moderate because the
human is involved in the loop, and, through dynamic
replacement, we bound the time available to the human
in order to discovery the checker position/behavior.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

The fact that AOP allows the integrity-checking code
to be well-modularized and separated from the rest of
the client could seem dangerous. However, the client-
deployed aspect implements both the checking
mechanism and the tag generation. Thus disablement
attack is not a concern, as disablement of checker also
disables the tag generator. Hence the server would
detect the attack (tags are no longer generated).

As current dynamic AOP platforms do not take
advantage of security technologies, our prototype is
exposed to replacement attacks currently. That is, once
the dynamic aspect is captured using packet sniffers, the
attacker could decompile it, understand the TTG
behavior, and replace it with a forged copy. It is unlikely
that such a complex attack can be completed manually
before the aspect expiration time elapses. Nonetheless,
the only possibility to thwart an automated replacement
attack is combining different protection techniques (e.g.
obfuscation) and reducing the TTG time validity.

In general, a possible improvement to increase
complexity of attacks would be based on an overlapping
coverage of multiple integrity checking aspects, so that
each aspect is validated by several others. The
disablement of one or more of the aspect advices would
be detected by the aspects still in place. Additionally,
each aspect could perform different types of code
integrity checking to improve the overall strength of our
approach to the above-mentioned attacks. Finally,
customization of aspect code would help either, so that
inferring the behavior of a newly updated aspect starting
from the previous one was difficult.

Finally, similarly to all software-based techniques,
we rely on a possibly un-trusted external platform: the
PROSE environment in our case. Reliance on such un-
trusted support could make the whole system vulnerable.
However, our prototype could be extended in order to
check authenticity of underlying PROSE virtual
machine as well.

6. Conclusions

We presented TrustedFlow, an innovative, all-in-
software methodology to deal with remote verification
of correct execution for client-side application code. The
proposed solution extends state-of-the-art integrity-
checking techniques by providing automated and
periodic replacement of checking code during run-time.
Furthermore, our approach supports the continuous
attestation of integrity by a remote server.

We presented a prototype implementation of
TrustedFlow that is based on Java and dynamic AOP.
Aspect-oriented programming proved to be a powerful
and effective technique to seamlessly weave the
integrity checker with the application program. As a
positive outcome, the strategy adopted by the checker is

not visible through static code analysis, and the attacker
duty is made even heavier thanks to continuous
replacement of the checking aspect. In our prototype,
integrity checking is based on secure checksums of
executed bytecode, which are continuously compared
with pre-calculated correct values.

7. References

[1] M. Baldi, Y. Ofek, and M. Yung, "Idiosyncratic
Signatures for Authenticated Execution of Management
Code" Proc. of DSOM 2003, 2003

[2] H. Chang and M. Atallah, "Protecting software code by
guards" Proc. of ACM Workshop on Security and
Privacy in Digital Rights Management, 2002

[3] B. Horne, L. Matheson, C. Sheehan, and R. E. Tarjan,
"Dynamic Self-Checking Techniques for Improved
Tamper Resistance" Proc. of ACM Workshop on
Security and Privacy in Digital Rights Management,
2001

[4] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and
M. Jakubowski, "Oblivious hashing: Silent Verification
of Code Execution" Proc. of 5th International Workshop
on Information Hiding (IHW 2002), 7-9 October, 2002

[5] C. Collberg, C. Thomborson, and D. Low,
"Watermarking, Tamper-Proofing, and Obfuscation -
Tools for Software Protection" IEEE Transactions on
Software Engineering, 28, 2002.

[6] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A.
Sahai, S. P. Vadhan, and K. Yang, "On the
(Im)possibility of Obfuscating Programs" Proc. of
CRYPTO 2001, 2001

[7] D. Aucsmith, "Tamper resistant software: An
implementation" in Information Hiding, Lecture Notes in
Computer Science 1174, R. J. Anderson, Ed.: Springer-
Verlag, 1996.

[8] TCG, The Trusted Computing Group, available at:
https://www.trustedcomputinggroup.org (last access 30th
May, 2005),

[9] R. Sailer, X. Zhang, T. Jaeger, and L. VanDoorn,
"Design and Implementation of a TCG-based Integrity
Measurement Architecture" Proc. of 13th USENIX
Security Symposium, 2004, pp. 223-238.

[10] J. Daemen and V. Rijmen, "The Block Cipher Rijndael"
in Smart Card Research and Applications, LNCS 1820,
Springer-Verlag, 2000.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J. Loingtier, and J. Irwan. Aspect-oriented
programming. Proc. of ECOOP 97, June 1997.

[12] A. Popovici, G. Alonso, and T. Gross, "Just in Time
Aspects: Efficient Dynamic Weaving for Java" Proc. of
2nd International Conference on Aspect-Oriented
Software Development, 2003

[13] BCEL, Byte Code Engineering Library, available at:
http://jakarta.apache.org/bcel/

[14] M. Jakobsson, K. Reiter, "Discouraging Software Piracy
Using Software Aging". ACM Workshop on Security and
Privacy in Digital Rights Management, Philadelphia,
USA, November 2001.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

	AINA 2006 cs
	AINA-06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

