
Integrating Risk Management Activities into

Requirements Engineering

Shareeful Islam

Institut für Informatik

Technische Universität München, Germany

islam@in.tum.de

Siv Hilde Houmb

Arena for Service Innovation

Telenor GBD&R, Norway

siv-hilde.houmb@telenor.com

Abstract— Software projects are often faced with unanticipated

problems caused by e.g. changes in the development environment

resulting in delays or threatening the ability of the project to

succeed. Managing these uncertainties is a challenging task at all

phases of the development, but nevertheless crucial in controlling

schedule and costs. Therefore software development risks need

to be controlled as early as possible. As software development

risks are not merely of technical nature it is equally important to

tackle non-technical risks. The paper presents a goal-driven

software development risk management model (GSRM) that

takes a holistic view on development, taking both technical and

non-technical development components into consideration. The

focus of the paper is on how to integrate GSRM and particularly

the holistic risk perspective into requirements engineering.

GSRM effectively identifies and makes explicit the critical

project goals (for arriving at a successful project) and the risk

factors that may obstruct these goals. GSRM also helps in

planning how to employ control actions for mitigating risks and

by that increase the ability to meet project goals. The integrated

requirements engineering risk management model has been

applied to an on-going development project in a low-cost

development environment (Bangladesh). The result showed it to

be relatively trivial to integrate the model into requirements

engineering activities and that the model did indeed contribute to

the overall project success.

Paper Category- Technical Solution

Keywords - software development riskt; risk management; goal-

driven modelling; risk modelling; requirement engineering.

I. INTRODUCTION

Software development projects have to deal with both

generic and project specific risks and particularly those related

to delay, stress of entering into a new market,

miscommunication among project stakeholders, missing

business features, erroneous requirements, and many more.

Risk management in software development is challenging, but

effectively contributes to control these problems before they

occur and certainly improves the overall project outcome.

However, the problem though is not that developers and project

managers are not aware of the importance of risk management

and its positive contribution to project outcomes, but that risk

management is not effectively applied in practice [19, 20]. A

study showed that, 75% of surveyed project managers did not

follow any detailed risk management approach [20]. The cause

of most project failure has little to do with technical issues

despite of the common tendency among project managers to

focus more on these [16]. Failed projects just as often suffer

from the poor management of people-related problems [6, 16].

McManus [17] identified that 65% of the project failures are

accounted by management issues and 35% by technical issues.

Several software risk management approaches emphasize the

importance of performing risk management activities as early

as possible [1, 13, 15, 18, 20]. However, there is still a lack of

comprehensive detailed guidelines describing how to integrate

risk management activities explicitly at the early development

stage. If risk management activities are merely employed from

the design phase on, the result may end up in expensive

revision to the design or major rework of the elicited

requirements and related artefacts. This may also pose

additionally problems later on depending on the competence

and ability of developers to tackle and quickly respond to late

discovered risks or mistakes in the requirements, inconsistent

design, and may also end with passive customer/user

involvement.

This paper contributes to integrate Goal-driven Software

Development Risk management Model (GSRM) [8, 9] for

managing software development risk as part of Requirements

Engineering (RE). The model considers goals relating to

project success beyond schedule, budget, and quality and

recognises the importance of motivating project stakeholders in

particular customer/user to take active part during the

development. The model focuses on the non-technical

components such as project execution constraints, stakeholders,

customers/user and project participants’ communication, and

usage environment, along with the technical components such

as development process and tools even before starting with the

requirements elicitation. By doing so, we believe GSRM not

only contributes to reducing the error rate in the elicited

requirements but also to control issues relating to non-technical

development factors. This contributes for an effective

development process moving steadily towards a successful

project. The integration of risk management, here GSRM, into

RE follows two perspectives; i.e., artefact and process oriented

view. This allows us to specify the dependencies between

requirement and risk artefacts along with the underlying

activities and tasks. We employed the model in an on-going

offshore software development project in Bangladesh as a case

study and to demonstrate the effect of integrating GSRM into

requirements engineering activities and by that reducing

requirements errors and contributing to increased project

success. The case study also evaluated the feasibility of

integrating GSRM into RE.

 The structure of the paper is as following. Sect. II outlines

the early software development components as foundation
concept for the Goal-driven Risk Management Model. The
framework of the model is introduced in Sect. III. Sect. IV
described the fundaments of integrating GSRM into RE. The
integrated model is demonstrated at the hand of a case study in
Sect. V. Sect. VI gives overview of related works and Sect. VII
concludes the paper and points to future work.

II. EARLY SOFTWARE DEVELOPMENT COMPONENTS

To develop a goal based risk management model it is

important to understand the basic elements of software

development, what it takes to succeed with software

development and how to specify project goals and identify and

address risk. Therefore, we have investigated the early software

development components and project success factors from

existing literature and from these specified a set of general

project goals and identified a set of often experienced risks to

these. Our initial focus was on issues relating to the initial part

of a development project, including RE activities, artefacts, and

then further to the rest of the development phase. The main

task of RE is to produce a number of artefacts towards a

comprehensive requirements specification document that aims

to describe the problem space of the future system-to-be or

system-to-be-next. Integration of GSRM at RE stage facilitates

to manage any change in particular relating to cost and

schedule rather easily. For example, a study found that cost

relates to fixing errors during the testing phase is twenty times

more than the cost of fixing these in the requirements phase

[2]. Moreover requirements errors are the most expensive

software errors that persist throughout the system life cycle

[15]. There are several reasons for requirement problems, such

as developers failing to address requirements because they

consider requirement specification as being the responsibility

of the customers. However, customers rarely have a clear

conception of their problem domain about the system-as-is and

are often not able to state their requirements explicitly, but

expect the end-product to meet all their needs and supports the

business demands. Developers when involved in RE may not

have adequate project specific domain knowledge. There may

also be infectivity in the activities used to elicit, analyze, and

validate the user and system requirements. Practitioners of the

development team commonly focus more on solution oriented

view of the system-to-be rather than detailed analyses of the

existing problem space. Project may not support adequate

schedule and budget for requirement engineering. These are the

problems during RE that pose major risk to successful

development. Therefore, if factors relating to these issues are

addressed up-front, even before the actual elicitation of

requirements, it can effectively contribute not only to reduce

requirement errors but also to increase the ability for the

project success.

GSRM provides a greater understanding of the early

technical and non-technical software development components

and how these relates to RE from the perspective of project

success. However the perception of success and successful

project differ significantly among the various stakeholders

including customer/user, software practitioner, project

manager, and senior/executive management. The reasons are

that each of these groups has different backgrounds,

responsibilities, expectations, and understanding to evaluate

project success. Generally accepted industry standard

organizational/managerial definition of projects success is:

having met agreed upon business objectives, been completed

on time and within budget, meets all customer/user

requirements, has effective project management and achieve

user satisfaction [6, 14, 18, 20]. The user satisfaction is the

single most widely cited measure of the system success [10].

On the other hand, practitioners tend to focus more on the

micro-level project view (details of design, cool coding, etc.)

compared to project management such that ensuring that

requirements are technically realistic, realistic estimation of

schedule and effort, effective leaders, diverse and synergistic

development team, employee motivation, and adequate

development facilities [14, 16, 18]. These are important success

factors in respect to the development process, associate

management, project constraints, and overall product.

Furthermore, these factors combine both technical and non-

technical aspects of the development. .

According to Boehm [2, 3] and McConnell [16] effective

and efficient software development and ultimate project

success can be framed in terms of people, process, product and

technology. Procaccino et al. [18] further categorise seven

factors such as management, customers and users,

requirements, estimations and scheduling, the project manager,

the software development process, and development personnel

that contribute to the success and failure of the software

systems. Several other researches also emphasize development

environment and project management related issues as critical

components that directly influence project success [6, 10].

Based on our investigation from the existing literature, we

categorise software development components into five

dimensions(e.g. as shown in Fig. 1). These are: project

execution constraints, development process, product, human,

and finally environment (internal & external). These

components are all based on a set of elements that are essential

for the component. The elements may further be characterised

by terms of single or multiple factors. Thus elements and

factors collectively represent the characteristics, artefacts,

methods, and activities required for the development

components. Generally, the elements are intertwined,

interdependent, and contribute combindely to attain one or

more development goals that influence for the project success.

The component-element-factor hierarchy focuses on both

technical (i.e. hardware and software) and non-technical (i.e.

human factors, project management, and environment) aspects

of software development. However, managing non-technical

issues is rather difficult and challenging compared to the

technical ones. Unfortunately, project managers tend to neglect

these factors as it requires certain time, experience, and quality

to attain these factors at a reasonable level. However,

experience has shown that these factors indeed play a critical

role for the success or failure of software development [6, 16,

17]. A brief overview of the components is given below:

Project execution constraints: This component considers

relevant elements for the project execution such as project

planning and control including factors like budget, schedule,

roles and project management, project scope including factors

like success criteria, boundary, and contract and technical

issues including tools, hardware and software and complexity.

Therefore the component consists of three elements which all

are further categorized into factors.

Processes: The activities, tasks, and methods for the

development and risk management process, their usage during

the development, and tool support are considered under the

process.

Product: This component is concerned with the early artefacts

of the business and requirement specification such as business

goals, business process, business domain, system vision, user,

system and architectural requirements. Furthermore, it also

focuses on the requirement faults, documentation, priority,

traceability, and product quality factors as elements and factors

for the component.

Human: This component mainly deals with the non-technical

issues relating to the practitioner, customer/user, and

management that directly or indirectly influence the

development. For instance, practitioner’s knowledge, skill,

motivation, customer/user’s involvement, team overall

performance, coordination, management supports are

considered by this component.

Environment (internal & external): This component deals

with the development project environment, including in-house

sourcing or outsourced, development facilities, corporate

environment are main consideration by this component.

GSRM requires a detailed elaboration of these components

so that expectations from these components can be mapped

with the issues relating to the project success. GSRM considers

them as goals of the development component and this further

eases to identify risk factors that obstruct these goals.

Therefore component-element-factor hierarchy allows us to

identify and category the goals and risk factors during the

development. For instance, requirements specification is an

element under the product component and error free

requirement is an important expectation from the element for

any software project. On other hand, requirement errors

certainly obstruct this goal to attain. This hierarchy supports to

focus on holistic view of the development. For instance,

elements and factors of the human and environment component

focus more on the non-technical issues, but product and

process components, on the other hand, focus more on the

technical issues, but GSRM analyses them combindely for the

software development risk management.

poject

execution

constraints

internal &

external

environment

project scope

Technical

 issues

 planning &

control

processes

development

process

risk

management

product

requirement

specification

business

specification

human

team

management

support

practitioner

customer/

user

communication

& coordination

organisational

stability

Facilities

budget

schedule &

milestone

roles &

responsibilities

contract

success

criteria

boundary

complexity

tools,language,

hardware

activity

task

artefacts

motivation

quality

attributes &

goals

qualtiy

requirements

domain

knowledge

skill

involvement

level

knowledge

performance

leadership

quality

commitment

structure

policies &

procedures

development

infrastructure

method

requirement

faults

category &

priority

document
process usage

artefacts

corporate

environment

project

management

development

tools support

consistency

Figure 1. Early development component-element-factor hierarcy

III. GOAL-DRIVEN SOFTWARE DEVELOPMENT RISK

MANAGEMENT MODEL (GSRM)

We propose GSRM to follow the existing goals modelling

techniques to accommodate the risk management activities.

Goal provides anchor for risk analysis and facilitates to model

and trace the risk factors that obstruct the goals and

countermeasure that satisfy the goals [15]. Goal modelling

language such as KAOS, i* , and Tropos has long been

recognized in the RE community as useful to elicit, analyze,

negotiate, document, and modify requirements. GSRM extends

KAOS to support risk management activities during RE.

KAOS defines obstacle as a construct that can be used to

identify undesirable behaviour against the strategic interest of a

stakeholder [15]. GSRM adopts this construct and defines

software risk factors and their consequence as obstacles that

contribute negatively to fulfilling the specific development

goals [8]. These risks must be analysed and controlled and

GSRM does this by assigning suitable treatment actions. Thus

GSRM adopts goal and obstacle concept from the KAOS and

further extends these with risk assessment and treatment for

modelling and managing software development risk. This

facilitates the reasoning and tracing of treatment actions and

their ability to mitigate risks, and hence, to fulfil goals. This is

done using the four layer modelling structure of GSRM: (i)

Goal layer, (ii) Risk-obstacle layer, (iii) Assessment layer, and

(iv) Treatment layer.

Goal layer

GSRM starts with identifying, elaborating, and modelling the

goals from the components-element-factor hierarchy. These

goals are the objective, constraints, and expectations from the

development components. The initial identified goals can be

higher level representations of the abstract expectation from the

components. Therefore elicited goals is refined using AND or

OR refinements into sub-goals to provide a concrete meaning

for their satisfaction. Thus goal refinement supports different

levels of abstraction ranging from higher level coarse grained

to lower level finer-grained sub-goals.

Generally sub-goals contribute to the parent goals by

including contribution link from the sub-goal to the related

parent goal. This goal refinement together makes up the goal

model. Most of the goals in software development are soft in

type as they specify several alternatives to satisfy the main

objective. However some times the goals are also behavioural

(i.e. known as hard) to specify certain clear cut objective of any

property. For instance, every project should maintain

[EstimatedBudget ThroughoutDevelopment], which represents

a clear cut goal, on the other hand, improve

[Customer/userParticipation] during development cannot be

specified in strict sense. This is because customer/ user may not

have adequate time to actively participate in the development

but expect the project to be finished within budget, on time and

to meet their implicit expectations. Goals are represented in

natural language through a precise meaning describing the

purpose of the goal. GSRM also follows informal temporal

pattern as stated in KAOS [12] to represent the goal. However

whatever syntax is used for the goal representation, i.e.,

temporal pattern or natural language, it must precisely state its

meaning in an explicit manner.

Risk-obstacle layer

Risk obstacles are the causes that reduce the ability to satisfy

a single or multiple goals. This layer is used to identify the risk

factors that influence the undesirable events that may occurred

during a development project. To ease the risk identification in

the early requirements phase, GSRM provides a set of general

risk factor structured according to the goal categories along the

components-element-factor hierarchy. For instance, if a goal is

to improve overall team performance then this layer focuses on

the factors that could deteriorate the overall team performance

such as frequent conflicts among the team members, negative

team attitude, incompetence staff, and so on. We provide

obstruction link from the risk factor to the goal and this allows

constructing the goal-risk model.

The same risk factor can obstruct more than one goals and

this is important to capture this obstacle, as it is crucial

information when later considering treatment options. Risk

factors that cross-cut several goals are in general more effective

to treat, as the effect of a treatment in such cases often

propagates to goals that are not directly linked to the particular

risk factor. In GSRM, we follow a set of questionnaires (i.e.

such as those in Karolak’s SERIM method [5]) based on the

state of early development components to identify the risk

obstacles. The Questionnaires consist of 82 close questions and

arranged sequentially based on the component-element-factor

hierarchy. Overview of the questions is given in section V. We

also recommend using brainstorming session with key project

members to review and categorize the risk factors from the

answer of the questionnaires.

Assessment layer

The main role of the assessment layer is to provide more

insight into each individual risk factor. This includes

identifying any resulting event of the risk factors. E.g. risk

event. Each risk event is characterized using the two properties:

(a) likelihood and (b) impact. Likelihood specifies the rate of

occurrence of a risk event and is modelled as a property of the

risk event itself. Impact is a measure over the negative

consequence of a risk event to the goals. Therefore this layer

quantifies the individual risk level through risk event likelihood

and impact. GSRM only allows risk factors that directly

obstruct goal or that in some way cause problems in executing

development activities. Thus, a risk event is defined as an

undesirable circumstance of the early development

environment. What is important to take into consideration

when working on the assessment layer is that the same risk

factor may leads to more than one risk event and that the same

risk event can obstructs more than one goal. Such

representations allow capturing situations where an event is

influenced by more than one risk factor and where both factors

and event combindely impact negatively to single or multiple

goal. The value of likelihood and impact estimates the risk

level for specific goals. We use a qualitative scale (i.e. high,

medium and low) to estimate the risk level, likelihood, and

impact.

This layer models the risk events by following the casual

relationship from the risk factors to the related risk events.

Thus risk factors as causes are refined to risk event and further

mapped with the consequences as goal negation. We follow

Bayesian Belief Network [11] to construct a casual

relationships model from the risk factor to the risk event.

Furthermore, this layer also enhances the goal-model by

including contribution link from the risk factor to the risk event

and obstruction link from risk event to the related single or

multiple goals. This allows tracing the obstacles to the goals.

The risk assessment layer finally prioritises the risk based on

the risk level derived from the likelihood and impact values.

Treatment layer

The fourth and final layer of the GSRM is the treatment

layer which models the possible control actions and chooses

the most suitable ones to mitigate the risks. Once the goals, risk

factors, and events are identified and analysed by the goal, risk

obstacle and the assessment layers, then it is crucial to identify,

plan and then quickly implement cost effective

countermeasures. Thus the aim of this layer is to gain control

of the software development risks as early as possible and

preferable in the earliest stages of RE by assigning appropriate

countermeasures. Risk treatment further requires monitoring

the status of individual risks throughout the development.

Thus, it evaluates the effectiveness of the implemented control

action and identifies any new risks during the course of the

development. The initial consideration should be the risk

factors that influence several risk events as well as obstruct

several goals. E.g. high prioritised risk factors and associated

events. Note that, there can always be alternative

countermeasures to the obstacles, but treatment layer should

select the most potential ones for the risk mitigation. Every

treatment action requires evaluating based on several criteria

such as schedule, cost, resource availability, and goals for its

implementation. Furthermore, project context is also important

in identify and select the suitable countermeasures.

This layer includes three different links; contribution link

from the control action to the goals, obstruction link from

control action to the risk event and finally responsibility link

from the control action to the agent that is responsible to

prevent, reduce or avoid the risk. This allows tracing and

reasoning the treatment action to the goal satisfaction and

obstacle obstruction.

Fig. 2 shows the modelling framework of GSRM. Note

that GSRM uses the same notations for goals (parallelogram)

and obstacles (reverse parallelogram) as the KAOS model. On

top is the goal layer which refined parent goal through AND

and OR refinement depending on the goal context. The two

middle layers collectively represent the software development

risks as obstacle which directly obstructs the goals. Therefore

top three layers combindely produces the goal-risk model. The

bottom level is the treatment layer which initially contains

goals as prevent, reduce and avoid risk and assigns

responsibilities to agents i.e. resource such as project

participant and specific tool, that contributes to control the risk

to satisfy the goal. Therefore, treatment layer includes

contribution, obstruction, and responsibility link to the top

three layers.

risk

metric <<trace>>

<<reason>>

goal

sub-goalsub-goal

AND refinement

OR

risk

metric

risk

metric

treatment

layer

new

goal

assessment

layer

goal layer

risk- obstacle

layer

risk

metric

risk

factor
risk

factor

risk

event

risk

event

s-subgoals-subgoal

risk

factor

new

agent

new

agent

prevent

risk

reduce

risk

task
task

perform

task

Figure 2. Overview of GSRM

IV. USING GSRM TO SUPPORT REQUIREMENTS

ENGINEERING

As stated, we follow artefact and process orientation view

to understand the background foundation regarding the

integration of GSRM into RE time. A short overview of these

two principals is given below.

Artefact oriented view

Artefact oriented requirement engineering is a systematic

methodology that describes the problem space of the system-

as-is as comprehensively as possible towards complete,

consistent, and rigid requirement specification document. The

artefact orientation combines both structure and content of the

artefacts and incorporates techniques and notions for producing

the consistent and complete result. Artefact oriented

requirement engineering in particular for the business

information domain mainly covers two main artefacts types,

i.e., business specification and requirements specification,

considering system-to-be or system-to-be-next [5]. The

business specification contains several content items such as

business vision, business domains, business goals and

restrictions, business roles and capability and requirement

specification with system vision and user, organisational and

integrational requirements [5]. Artefacts rely on concepts to

describe the content of the artefact and syntax to represent the

concept through textually or graphically representation. GSRM

also focuses on the artefact oriented view as work product by

the underlying activities and tasks. The main artefact type of

GSRM is the risk specification that consists of risk

management plan, goal detailed, risk detailed and risk status

report. These risk management concepts mainly represent

through highly structured text by following the natural

language. On the other hand, modelling concepts about

software development risk such as goal-risk model, causal

relationship model are generally represented graphically. The

requirement specification artefacts provide limited visualisation

support by following use case, activity, or sequence diagram

when representing the user requirements or scenario.

Business goals

& restrictions

Business

domains

Business vision

System vision

Business Specification

 Risk Specification

Risk management plan

Risk status report

Goals detailed

Goal-risk model

Business

roles & capability

Glossary

Requirements Specification

Causal relationship

model

system requirements

Organisational req.

Integrational req.

Glossary

Risk detailed

Figure 3: Overview of the artefact types

Both requirement and risk artefacts are interdependent

upon each other. Fig. 3 shows an overview of the requirement

and risk artefacts. Goals are one of the main initial elementary

artefacts that support to create business, requirement, and risk

specification. Several goals such as business goals, stakeholder

expectations, constraints, and problems of the system-to-be are

identified and reviewed to elicit user and system requirements.

Risks are identified by analysing the negation of the identified

goal in particular those relating to the development component-

element-factor. The more the goals refine the easier it is to

assess and manage the software development risks. Risk

controls actions also introduce new goals in terms of reduction,

prevention, and avoidance of risk from the development

environment. Goals support tracing and rational from higher

stakeholder expectation, business needs, and system objective

to the refined system requirements and further to the control

action for the goal satisfaction. Requirement artefacts are

among one of the elementary inputs for risk identification. On

the one hand, quality of requirements highly influences to

attain goals relating to schedule, budget, quality, and error free

requirements. In fact, reduce project risk is a critical

requirement for any project situation. On the other hand,

complete requirement specification document is highly

desirable for any software development project. Requirement

errors are one of the most expensive software development

risks [5, 15]. Therefore risk control actions such as include

competence practitioner to the development team, increase

customer/user active participation, adequate budget for

requirements engineering, adequate domain analysis, and so on

certainly contribute to attain complete requirements

specification document.

Process oriented view

The process oriented view deals with the underlying

activities of both the requirements engineering and GSRM.

Requirement engineering is comprised of elicit, analyze,

validate, and management activities separated into several fine-

grained tasks and sub-tasks. In GSRM, we consider several

activities for the software development risk management, such

as plan risk management planning, identify and model goals

and obstacle, and assess and treat risks. Requirement elicitation

techniques commonly rely on background study of specific

type of artefacts including pre-existing documents about the

system as-is such as organizational charts, policies, work

procedure, business rules, data samples, and scenario analysis

of the interaction among the system. Furthermore, the

elicitation also focuses on stakeholder-driven processes such as

structured and unstructured interview and workshop-like

activities. Risk management planning, in particular specifying

the risk context, development component goals, and identify

risk obstacle, also focus on the preliminary analysis of the

system-as-is, running project information, project domain

analysis, and the requirement artefacts. Taxonomy based

questionnaires and brainstorming session with stakeholder are

also very effective techniques for risk identification. This

means that the techniques used as well as the input artefacts

require for goal, requirement and risk identification are similar.

Furthermore, risk monitoring are similar to requirement

validation and management with being a continuous activity

throughout the development life cycle. Thus both requirements

engineering and risk management are iterative processes.

GSRM focuses a holistic view of the overall development

environment. Activities and tasks under the development

process require certain responsibilities deemed roles where

roles are the active entity(ies) that performs the activities.

Customer/user representative in particular members of user

groups play important role to elicit both requirements and risks.

Business analyst with particular domain knowledge relating to

certain customer domain such as financial sector or insurance is

responsible for creating business specification. Requirement

engineer is the key responsible person that creates and

manages the requirement specification by aligning the business

needs with the needs towards the software-to-be. Risk manager

is mainly responsible for the risk assessment and management

activities. But in real project situation, in particular for small or

medium size project, there may not have any risk manager due

to budget constraints. Therefore, project manager concerning

the overall project execution also performs the role of a risk

manager. This means that the project manager needs adequate

experience with both project execution and risk management,

in cases where he/she is responsible for risk management.

We propose to start with the goal and risk identification

activities of the GSRM in parallel to requirement elicitation

activities. This is because it is beneficial to carry out these

activities as part of preparing artefacts such as business vision,

business processes and system vision for customer approval.

Therefore, goals and risks relating to the business needs and

project scope can be easily and effectively identified at this

stage. Although, note that if required, certain goals and risks

from the elements and factors of the project execution

constraints, human, and environment are analysed before the

elicitation of the business specification and system vision, i.e.

prior to user or system requirements elicitation. For instance,

goal and risk factors relating to project schedule and budget,

staffing, tools support, customer/user involvement, project

participants knowledge, management commitment,

organisational stability, and development facilitates. In

particular, focusing on these aspects early on allows us to

capture non-technical project risks up-front, even before any

requirements have been identified. To effectively tackle risks at

an early stage and to reduce errors or wrong requirements; it is

important to align the risk management plan with the project

scope and system vision. As a minimum, the risk management

plan shall define the scope, schedule, and pre-conditions of the

risk identification, analysis and evaluation activities and align

these with the requirement engineering activities, such as

requirements elicitation. The framework is also flexible and

can be tailored to the particular project such that it fits with the

project scope, budget and development timeframe.

V. DEMONSTRATION OF GSRM FOR REQUIREMENTS

ENGINEERING

We employed GSRM as part of requirements engineering

to an on-going offshore software development project in

Bangladesh. A short overview of the case study and its results

is presented in this section.

A. Context

The company was a software development house in

Bangladesh established in 1998. From 2003, the company

expanded their business strategy to include offshore customers

and since 2007 they have completed several offshore projects,

focusing mainly on the coding (implementation), testing, and

maintenance phases. At the beginning of 2009, the company

started an offshore development project covering all

development life cycle phases. Fortunately, one of the co-

authors, a former part-time employee of the company, obtained

consent from the managing director to perform the risk

management activities into a running project. Four Master in

Information Technology students of a university mainly took

part in the case study. They are the project students of the co-

author and have obtained adequate knowledge about software

risk management through courses and about GSRM through

tutorial. Moreover, two of them have gained experienced by

working in three different software projects..

The development team was on a tight schedule and

therefore not interested in following a detailed tutorial on

software development risk management and GSRM. Our team

therefore decided to give a high-level overview of GSRM and

rather take active part in the risk management activities

themselves. The situation is similar to action research, but

required an even tighter communication with the developers to

be successful. The project context was development of

application software with a set of common features such as

data tracking, searching and filtering, and reporting linked to

external components offered by other systems at the customer

site. The development team consisted of 9 members, including

project manager, requirements engineering, software architects,

developers, and testers with approximate duration of ten

months. Due to confidentiality restrictions, we cannot provide

more information about the project. In early development

projects at the company, risk management had been performed

in an informal way focusing on generic risks without any

formal process for risk identification, analysis, treatment, and

monitoring.

B. Case study objective

The main objective from our side was to analyse the

effectiveness of the software development risk management

during requirements engineering and particularly for GSRM.

Note that by the term effectiveness, we refer to the advantages

and disadvantages of performing risk management activities in

requirements engineering time using GSRM. For evaluation

purposes, we identified a set of hypothesis to evaluate the

observed results. These are:

 Software development risk management activities can be

well integrated with requirements engineering (H1).

 Goal-driven risk management; GSRM, contributes to

manage software development risk by considering a

holistic view of both technical and non-technical

development components (H2).

 GSRM effectively reduces errors from the elicited

requirements (H3).

C. Instrument

Our team initially attempted to identify the goals and risk

factors from the development components. To support them in

this activity, the developers reviewed documents like

information about the project and development team, project

business context, and so on. Our team then obtained feedback

from the project participants in general about the integration of

risk management activities into the requirements engineering

phase and in particular the use of GSRM. The evaluation was

performed using a mix of structured interviews, brainstorming

sessions, and an offline analyze of the initial artefacts. The data

collection was done in a two-steps manner. First step consisted

of two different parts: (i) interview with the project team

members using our interview template of 82 close questions,

and (ii) brainstorming sessions was conducted with the project

manager and requirement engineer. The interview results were

used as input to the brainstorming sessions with the purpose to

identify project goals and risk factors. The brainstorming

sessions was also used to plan for risk control actions and their

implementation. The final step of the evaluation consisted of

25 open questions asked to the interview participants. The goal

of this step was to obtain feedback on the integration of risk

management in requirement engineering and on GSRM.

D. GSRM activity and tasks into the running project

Goal identification and elaboration

The project participants identified an initial set of goals

linked to particular business goals and the user expectations as

part of the requirements engineering activities. We executed an

offline review of the initial project documents to elaborate the

goals based on project constraints, process, product, human and

the environment. We completed the goal identification and

modelling together with the project managers, requirement

engineers and one customer representative via a series of

conference calls. Note, however, that there was only one

customer representative available for the GSRM activities.

Risk obstacle identification

An interview template with 82 close questions was used to

identify the initial raw risk-obstacles from the project that

obstruct the goals. A brainstorming session was also conducted

together with the project manager and requirement engineers to

review the raw risk factors and cluster them into groups

according to components and elements. At this stage goals and

risk factors are modelled and their detailed are documented.

The interview template focused on the issues that obstruct the

project goals in particular relating to budget, schedule,

requirements, human factor and so on based on the

development components. A short overview of the close

questions is given below:

Project constraints (Budget, project scope)

[Q] Are all distinct milestones including estimated duration

realistically identified & agreed with the customer?

 [] Not at all [] Partially but not sufficient [] Distinct agreed

milestone for each development phase

[Q] Up to now how much is the variation of the estimated schedule

and cost compare to actual one?

[] high [] Medium [] Not at all

[Q-15]Is the project success criteria clearly defined?

[] Partial [] More than partial [] Full

Process (development activity)

[Q] Does the development activity adequate for every development

phase?

 [] Not adequate [] Partially adequate &documented [] Adequate &

documented

[Q] Are all project members aware & trained with the development

methodology?

[] Some are trained with some portion [] All trained with some

portion [] All trained with all portion

Product (Requirements)

[Q] Are the requirements provided different ambiguous

interpretations or lack of support for rational?

[] Highly [] Partially [] Rarely

[Q] Are the requirements categorised and prioritised?

[] Less than some [] Some [] Almost all

[Q] Do you follow any standard (template, notations, and checklist)

for producing the requirement specification?

[] No [] Partially [] Yes

Human (competence practitioner)

[Q] What is the overall relevant domain knowledge of the

development team?

[] Not much [] Less than adequate [] Adequate

[Q] How much capable is the project manager?

[] Unreliable [] Reliable [] Much reliable

[Q] What is the level of involvement of customer / user up to now?

[] Passively [] Occasionally [] Actively

Environment (internal)

[Q] Are there adequate infrastructure facility (e.g. power, space,

internet, telephone) exists relating to communicate with customer /

client or other distributed development site?

[] Not at all [] Partially [] Adequate

[Q] Is there any legal disputes considering data privacy, intellectual

property rights of product & development artefacts with customer?

[] Yes [] Partially [] No

Risk assessment and treatment

Risks level is estimated by identifying the likelihood of

risk event occurrence and impact of the occurrence towards the

goal negation. The risks are prioritised and the project manager

was initially interested in the risks having risk level between

high and medium. Finally, countermeasures were identified and

planned to control these risk. Note that as GSRM focuses on

effective use of time and resources the project manager was

more concerned to prevent (if possible) or reduce the risk.

Therefore, our team focused more on the control actions that

can prevent or reduce the risks. The selection of appropriate

control action for the prioritised risks also depends upon the

agent who is responsible for implementing the action. For

instance the agent may be a practitioner that is responsible to

countermeasure the risk. This means that the project manager

role is also important when selecting the suitable risk control

action. At this stage, our team documented details on the risk

and the state of the risk status reports and the project manager

was assigned the responsibility to monitor the risk throughout

the development despite of the tight schedule pressure.

Feedback about the effectiveness of GSRM

Regarding the effectiveness of GSRM in requirements

engineering, our team used 25 open-ended questions to

structurally collect comments from the project practitioner. It

was mainly the project manager, requirement engineering and

one developer that participated in this last feedback-loop. The

questions also help them to form their opinion about GSRM as

goal-driven risk management approach in general and its

contribution to requirements engineering in particular. A short

overview of the close questions is given below:

[Q]What are the generic advantages/limitations of performing risk

management into RE?

[Q] Do you think risk management at RE significantly contribute to

reduce error from requirements?

[Q] Are there any dependencies between requirements and risk

artefacts?

[Q] Is there any conflict situation arise between risk management and

RE activities while performing the tasks under the activities within RE

time?

[Q] Is software development risk management based on goal-driven a

useful technique for risk management?

[Q] What are the main reasons to informally follow the risk

management activities at your software development projects?

[Q]For each task under the GSRM, what are the advantages/problems

from your opinion?

[Q] For each artefact of GSRM, what type of problem can arise in

terms of its creation and maintenance at development in particular

within RE?

E. Results

There are several findings with respect to the GSRM and its

integration in requirements engineering that should be noted:

The activities of GSRM were regarded as systematic and

did not incur any extra burden to requirements engineering

activities. Around 15% (i.e. 4 person days for 45 days) of the

overall project effort is allocated for producing complete

requirement specification. GSRM only consumed 14% of these

efforts.

Goal and risk

There were several goals identified and agreed with the

project manager and other practitioner of relevance to project

success. Some of the goals are outline in Table I. These goals

are important and desirable for any software development

project.

TABLE I. LIST OF THE IDENTIFIED HIGH LEVEL GOALS

Project constraints

Improve[RealisticBudgetEstimation]

Maintain[EstimatedBudgetThroughoutDevelopment]

Improve[RealisticScheduleEstimation]

Maintain[EstimateScheduleThroughoutDevelopment]

ClearRolesAndResponsibilitiesAssignment

ContractApprovalWithCustomer

ClearProjectSuccessCriteriaAndBoundary

Minimize[TechnicalComplexity]

Process

Improve[AdequacyOfTasksAndMethods]

Improve[ProjectManagementCapability]

Improve[FormalRiskManagementPractice]

Product

Attain[CompleteBusinessSpecification]

Reduce[ErrorFromRequirements]

Improve[CompletenessInRequirementSpecificationDocument]

Human

Improve[CompetencyOfTeamMembers]

Improve[Customer/UserParticipation]

Reduce[Customer/UserDissatisfaction]

Improve[OverAllTeamPerformance]

Improve[EffectiveCommunicationAndCoordination]

Improve[ManagementCommitment]

Environment

Improve[StabilityOfTheOrganization]

Improve[AdequateDevelopmentFacilities]

Risk factors identified from the project context that

directly obstruct the goals are also outlined in Table I. Our

team observed that some factors influences several risk events

and obstruct more than one goal compare to other risk factors.

These factors are important and require extra attention to

control as early as possible. Table II shows the high

prioritised risk factors and associate event identified from the

project.

TABLE II: HIGH PRIORITISED RISK FACTOR AND EVENT

Risk factor Event

 Under-specified, unstable,

incorrect, and infeasible

requirements

 Incomplete requirement

specification document

 High level technical

complexity

 Software-to-be demands

several external links with

other parts of the customer

 Unclear business process

 Practitioner inadequate

domain knowledge

 Customer/user passive

participation

 Local environmental

problems

 Missing information from

the demanded legislation

 New development platform

 ErroneousRequirements,

 Technical Infeasibility,

 ProjectComplexity

 IncompetencePractit-

ioner,

 UnclearSystemVision,

 IneffectiveCommunicati

on

 PassiveCustomer/UserIn

volvement

 Customer/UserDissatisfa

ction

 BudgetOverruns

 ScheduleOverruns

The elicited requirements are one of the main sources for

these risk factors. A total of 165 system requirements were

identified while performing the risk management activities.

Therefore, our approach facilitated to identify the errors from

the elicited requirements. Our team found that 12 of the

requirements were under-specified or ambiguous, 12 were

unstable, 8 were incorrect and 5 were technically infeasible.

Therefore 35 out of the 165, i.e., approximately 22% of the

system requirement were erroneous. There are several causes

for these requirement errors such that the project was

inherently complex due to the large number of links among

several components within the system under development, as

well as with external system components, and the lack of

domain and system knowledge among the project members.

Besides requirements errors, some other risk factors were

observed such as customer/user representatives passive

involvement during requirement elicitation process,

information regarding regulatory compliance was partially

missing, and new development platform was required to

support the specific device for the project. There were also

some local environmental risk factors: power shortage and

interrupted internet bandwidth. Therefore, risk factors were

raised from all development components and consisted of both

technical and non-technical issues.

Assessment and treatment

The control actions were considered by conducting a

brainstorming session with the project manager and

requirement engineer. The project manager mainly focused on

the human as an agent to resolve these risks, because most of

the identified risks are caused by humans. Initially the focus

was to prevent the risk completely (if possible), otherwise

reduce it as much as possible to satisfy the goals.

Unfortunately, due to the inherent nature, all risks were not

resolved. This is because some of the requirements were

unclear by both customer and developer site. The project

manager considered it as being a common situation in offshore

projects. However, due to the schedule pressure, these

requirements can pose sever problems later on. But no

immediate actions were taken in respect to these requirements.

It was rather decided to obtain more information in particular

about the component dependencies and the specific legislation

context. However, some of the requirements errors are

recovered by reviewing the goals and system vision together

with the end user. Two requirements were removed due to their

technical infeasibility after approval from the user. Therefore,

out of the 35 requirements, 15 requirement errors were

completely solved. The remaining requirements required

further analysis, e.g., in the later development phases. In

addition to the requirements error some other risks such as

bandwidth problem, inadequate knowledge about programming

platform were also resolved. E.g., the project manager

recommended to assigning additionally one or two new

members with expertise on the system-to-be require for the

project. The project manager further recommended to the

customer/user to get more actively involved in rest of the

requirements engineering tasks, as well as in later stages of the

development.

F. Discussion

We made several observations about GSRM from the case

study context and these are discussed in the following.

Integration of Risk Management into Requirement

Engineering

There are indeed strong dependencies among requirements

and risk artefacts. In particular, business specification, system

vision, and requirements closely support goal and risk

identification activities. Risk management as part of

requirements engineering contributed to producing a complete

requirement specification document. Furthermore, controlling

human and environmental factors such as practitioner domain

knowledge, customer/user participation, adequate development

facilities for the effectively completion of the development

activities. Activities of GSRM did not introduce any conflicts

or significant unnecessary burden to the requirements

engineering activities, as well as not consuming much extra

efforts. A project manager with some background knowledge

and experience in risk management were able to perform the

risk management activities to a sufficient level. Furthermore,

the requirement engineers also contributed to the goal and risk

identification and later on also to the risk control and monitor

activities, in particular in reducing requirement errors. This is

because GSRM is a goal-driven approach which greatly eases

the risk management activities and systematically integrates

such into requirements engineering. Risk control actions

showed that requirements errors can be reduced (i.e. 42% of the

errors were directly solved) with the support of GSRM We

observed that risk assessment results help to prioritise

requirements so that high prioritised requirements get early

attention to the later development phase. Therefore, we can

conclude that the observed results support hypotheses H1 and

H3. Moreover, in the evaluation process, we considered risks

from both the technical and non-technical perspectives and

similarly the risk control and monitoring actions where all

executed in a holistic view. Thus the result of the case study

also supports hypothesis H2.

Overall observation of GSRM from the case project

GSRM is a goal-driven approach and therefore eases the

practical execution of risk assessment and treatment activities.

Goals are identified from the project success criteria and by

following the component- element-factors hierarchy. On one

hand several risk factors may influence multiple risk events.

On the other hand the same risk event may have different

impacts on different goals. For instance, Erroneous

Requirements obstruct two goals, i.e., reduce

[ErrorFromRequirements] and maintain [Esti-

mateBudgetThroughoutDevelopment]. However impact of the

event to the goals is different. Furthermore, our team also

observed that the same risk event can be a risk factor in another

context. For instance ErroneousRequirements as a consequence

of requirements faults such as under-specified, unstable,

incorrect and infeasible requirements and further being risk

factors for the schedule or budget overruns. Therefore, the

consequences and causes of a risk event may vary from context

to context.

Further on, there were several points that the participants

in particular the project manager and requirement engineer

remarked, in addition to those mentioned above:

 The close questions and the brainstorming sessions are

effective techniques for the risk identification

 Development component-element-factor hierarchy eases to

identify and categorise the goals and risk factors.

 Goal refinement is difficult as there may be several sub-goals

under one parent goal. Huge number of sub-goals can

increase complexity for handling it through assessment and

treatment. Risk assessment is complex and this makes a

project manager averse. Therefore, simplified estimation

technique is desirable for software development.

 The effort involved in developing risk artefacts, e.g. the risk

monitor sheet and goal-risk model, are in general reasonable.

However, if the number of sub-goals increases substantially

it will incur extra burden on managing the artefacts in

particular for projects with tight schedule and high budget

pressure.

We treat the last two remarks as limitations of GSRM.

These factors can increase the overall risk management effort

in requirements engineering. At the early stages of

requirements engineering, it is also not possible to plan and

control all identified risk due to inadequate knowledge of the

problem space of the system-to-be and uncertainty about the

future project activities. Additionally, if a project contains

many risk factors, then modelling the obstacle and maintain

risk status report would consume more time in the project. As

we have only considered a single software development

project, the data is limited and the validity of the experiences

made, as well as its generalization, cannot be concluded upon.

This restricts the choice of data points to analyze the results.

What we did was to document all information collected from

the interviews of both close and open questions and the

brainstorming sessions. The result of the identified risks was

compared with published risk factors [7, 21] from similar

development environment to augment to our limited experience

data. The risk factors and the consequences from the case

project coincide with the published survey risk factors of

offshore project. E.g., requirement errors, in particular unstable

and incorrect requirement, inadequate project domain

knowledge, are also highly ranked by other research results.

The local environmental context highly influences the risk

factors; therefore we do realize that project risks are cultural

dependent [21], which is also observed in related research.

VI. RELATED WORKS

Several works in the literature already contributed to the

area of software risk management. The core initial contribution

of risk management into a single framework was done by

Boehm [3] in his spiral model. Following the spiral model

there were many contributions each describing well-

documented risk management approaches, such as Karolak’s

SERIM method [12] and Konito’s Riskit [13]. Researches also

have contributed to identify software risk factors in particular

in offshore development environment [7, 21]. All contributions

put emphasize on performing risk management as early as

possible, but comprehensive detailed guidelines are still

missing. Thus far, some works have tackled the problem of

considering risk management as part of early development

activities [1, 13]. Ansar et al [1] contribute by introducing

organizational setting besides requirement risk by extending

Tropos and focusing more on the early stages of requirements

engineering. Procaccino et al., [18] as stated identified seven

early development factors and discussed how these contribute

to the success or failure of a software project. Ropponen et al.

[20] conducted a survey to investigate six software

development risk components and showed how to provide

assistance in addressing these components.

In the area of goal oriented requirement engineering, goal

models generally shows the system’s functional and non-

functional goals that contribute to each other through

refinement towards software requirements and environmental

assumption as constraint to support the goals. Requirements

are the lower level goals under the responsibility of a single

agent of the system-to-be. Goal oriented requirements

engineering already recognised as an essential component for

all phases of requirements engineering life cycle. KAOS (Keep

All Objective Satisfied) aims to model not only what and how

aspect of requirements but also why, who, and when [15]. The

model also includes obstacle as unintended risks that associates

with undesirable behaviour and anti goal as intended risk that

associates with intended risk. Other goal model such as i*,

Tropos [4] models and analyses requirements both the system-

to-be and its organisational environment by using concept of

actor, goal, task, resource, and social relationships to capture

stakeholders’ intentions in an organisation.

In GSRM [8, 9], we follow the basic concepts from

KAOS. Note that KAOS also includes risk management

activities within requirements evaluation with main focus on

ensuring the completeness of the requirement specification. But

GSRM focuses comprehensive detailed on software

development risk management in particular from the early

development components where requirement completeness is

one of the main goals. Our main focus is to integrate risk

management activities into early requirements engineering

activities. The result from the case study showed that risk

management can indeed be well-integrate into requirements

engineering.

VII. CONCLUSIONS AND FUTURE WORKS

The paper presents GSRM, a modelling framework to

manage software development risk in the early stages of

requirement engineering. The model was implemented in a

running offshore software project to analyse the effectiveness

of GSRM. The results showed that GSRM can be well-

integrated with requirement engineering activities and

effectively contributes to reduce requirements errors. GSRM

is particularly beneficial at the early phases of the

development because at this stage the project generally

focuses on formulating and understanding the core goals for

the system-to-be. The model also supports in identifying

potential risks from both the technical and non-technical

development components. The case study context was a

developing country with limited IT infrastructure facility

(Bangladesh). We believe that this type of research

contributes positively to the offshore market in the local

context which is continuously growing. Further work includes

more case studies as well as work towards improving our

understanding of integrating risk management into software

projects in particular at the early stage. We would also like to

review GSRM for further improvement by following the

stated observation from the participants within the case study.

ACKNOWLEDGMENT

The work is partly supported by the German Academic

Exchange Service (DAAD), Germany, and by the Telenor

COLAB – A part of the Telenor Connected Objects Project.

REFERENCES

[1] Ansar, Y. and Georgina, P., Modeling Risk and Identifying
Countermeasure in Organizations, In Proc. of the first International
Workshop on Critical Information Infrastructures Security, Springer,
2006.

[2] Boehm B., Software Engineering Economics, 1981.

[3] Boehm, B., Software Risk Management: Principles and Practices, IEEE
Software, Vol. 8, pp. 32-41, January 1991.

[4] Bresciani, P. Perini, A. Giorgini, P. Giunchiglia, F. and Mylopoulos, J.,
Tropos: An Agent-Oriented Software Development Methodology.
Journal of Autonomous Agents and Multi-Agent Systems, 8(3):203–236,
2004. ISSN 1387-2532.

[5] Fernández, D. and Kuhrmann, M., Artefact-based Requirements
Engineering and its Integration into a Process Framework, Technical
Report, number TUM-I0929, Technische Universität München, 2009.

[6] Glass. R. , Software Runaways: Monumental Software Disasters.
Prentice-Hall, 1998.

[7] Iacovou, C. L. and Nakatsu, R., A Risk Profile of Offshore-outsourced
development project, Communication of the ACM, Vol 51, No. 6, June
2008.

[8] Islam, S. , Software Development Risk Management Model-a goal
Driven Approach, Doctoral Symposium, In Proc. of the 7th ESEC/FSE,
Amsterdam, The Netherlands, 2009.

[9] Islam, S., Joarder, M.A. and Houmb, S.H., Goal and Risk Factors in
Offshore Outsourced Software Development from Vendor's Viewpoint,
Proceedings of the Fourth IEEE International Conference on Global
Software Engineering, Limerick, Ireland , 2009.

[10] Jiang, J. and Klein, G., Software Development Risks To Project
Effectiveness, Journal ofSystems and Software, Volume 52, Number 1
(2000) p. 3-10.

[11] Jensen, F., An introduction to Bayesian Network. University College
London: UCL Press, 1996.

[12] Karolak, D., Software Engineering Risk Management, IEEE Computer
Society Press, 1996.

[13] Kontio, J., Software Engineering Risk Management: A Method,
Improvement Framework, and Empirical Evaluation. PhD thesis,
Helsinki University of Technology, 2001.

[14] Linberg, R., Software Developer Perceptions About Software Project
Failure: A Case Study, The Journal of Systems and Software, Vol. 49,
Issue 2/3, 1999.

[15] Lamsweerde van A., Requirements Engineering: From System Goals to
UML Models to Software Specifications, Wiley, 2009.

[16] McConnell, S., Rapid Development. Microsoft Press, 1996.

[17] McManus J. , Risk Management In Software Development Projects,
Elsevier Science Inc, 2004.

[18] Procaccino, J. D, and Verner, J. M. Case Study: Factors for Early
prediction of software development success; Information and Software
Technology; Vol. 44, 2002.

[19] Pfleeger, S. L., Risky business: what we have yet to learn about risk
management, Journal of Systems and Software, Volume 53, Issue 3, 15
September 2000, Pages 265-273.

[20] Ropponen, J. and Lyytinen, K. Component of Software Development
Risk: How to address them? A project manager survey, IEEE
Transactions on Software Engineering, Vol.26, Issue: 2, Feb 2000, 98-
112.

[21] Sheng Z., Nakano M., Kubo S., and Tsuji H., Risk Bias
Externalization for Offshore Software Outsourcing by Conjoint
Analysis, New Frontiers in A. I , Volume 4914, 2008.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=18187&isYear=2000

