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Abstract

Corneal images can be acquired using confocal microscopes which provide detailed views of the different layers inside a human cornea.
Some corneal problems and diseases can occur in one or more of the main corneal layers: the epithelium, stroma and endothelium.
Consequently, for automatically extracting clinical information associated with corneal diseases. identifying abnormality or evaluating the
normal cornea, it is important to be able to automatically recognise these layers reliably. Artificial intelligence (Al) approaches can provide
improved accuracy over the conventional processing techniques and save a useful amount of time over the manual analysis time required
by clinical experts. Artificial neural networks (ANNs), adaptive neuro fuzzy inference systems (ANFIS) and a committee machine (CM)
have been investigated and tested to improve the recognition accuracy of the main corneal layers and identify abnormality in these layers.
The performance of the CM. formed from ANN and ANFIS, achieves an accuracy of 100% for some classes in the processed data sets.
Three normal corneal data sets and seven abnormal corneal images associated with diseases in the main corneal layers have been
investigated with the proposed system. Statistical analysis for these data sets is performed to track any change in the processed images.
This system is able to pre-process (quality enhancement, noise removal). classify corneal images, identify abnormalities in the analysed
data sets and visualise corneal stroma images as well as each individual keratocyte cell in a 3D volume for further clinical analysis.

Keywords: Cornea, Confocal Microscopy, Artificial Neural Network, Adaptive Neuro Fuzzy Inference System, Texture Features, Image Classification,

Stroma Analysis.

1. Introduction

Confocal microscopy is a major advance in comparison
with normal light microscopy since it allows the user to see
not only deep into cells and tissues, but also to create
images in three dimensions. The major difference in
principle between the optics of a conventional microscope
and that of a basic confocal microscope is the presence in
the latter of a confocal pinhole, which allows only light
from near the point of focus to reach the detector. The
resulting advantage of a confocal microscope over a
conventional microscope is the production of a series of
images (in X-Y) at different depths (Z) in the object, less
affected by out-of-focus information. Such a series of
images (a stack) is a three dimensional representation of the
object being viewed, produced by optical (as opposed to
physical) sectioning [1].

The corneal images employed in this work were
acquired using a NIDEK Confoscan 4 microscope, which
uses a confocal slit. Further details about these data sets are

presented in section 3.5. This microscope has the following
main features. It has fully automated alignment and scan
time is optimised to produce 350 images in around 15
seconds. It has nine internal fixation targets for increased
patient fixation stability and device performance. An
optional Z-ring attachment is available for this microscope
which increases the stability of the examination and the
reliability of the Z-scan reference for accurate full thickness
optical pachymetry. This feature offers an ability to define
the position of any corneal structure and opacity with high
precision [2].

The main anatomical structure of the human eye is
shown in Fig 1. The cornea is the convex and transparent
part of the front of the eye; it provides most of the focusing
power required to form the image on the retina. The cornea
is a complex 3D structure. It has three main layers
separated by two thin membranes, which are (from the
anterior to posterior): Epithelium (thickness about 50 pm),
Bowman’s membrane, Stroma (thickness about 400 pm),
Descemet’s membrane, and Endothelium (thickness about



30 pm). Injuries, dystrophies, and diseases can adversely
affect the cornea and lead to visual impairment which can
be as severe as complete blindness. Due to the development
and increased availability of in vivo confocal microscopes,
ophthalmologists can observe the living human eye in situ
at the cellular level which overcomes some of the
limitations of conventional light and electron microscopy

[3].
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Fig. 1. The anatomical structure of the human eye and a section through

the cornea showing the corneal layers [3].

The confocal images can be used to construct three-
dimensional models of the corneal layers as each image
contains a slice of information acquired at a new depth.
However, there are several challenges in the way of
processing and reconstructing meaningful 3D models from
corneal images. For example, the small movements of the
eve during the scanning process due to respiration, cardiac
pulse, and other factors cause images of adjacent layers to
be displaced laterally (in X and Y) and axially (Z). Corneal
images also contain significant amounts of noise and
intensity variations both within and between images due to
variation of illumination over the field of view and
differences in reflectivity of the corneal layers. Accurate
classification of the three main corneal layers is very
important, as each of these layers has a unique structure
which in turn requires an appropriate processing procedure
to extract the information, which can benefit
ophthalmologists (saving them evaluation time and provide
some clinically useful factors/parameters) and hence
patients. In addition, the classification of abnormal corneal
cases is vital to aiding the detection of disease and

identifying the affected layer as early as possible, which
can lead to better treatment for the patient.

The confocal microscope’s generation of a large number
of images per patient per scan, makes their analysis a
challenging task for an ophthalmologist with a large
number of patients in a busy clinical setting.
Ophthalmologists could use an efficient system to reduce
the analysis time and speed up the treatment process, by
giving them the opportunity to look at individual layers on
demand, leading to faster and more accurate diagnosis. For
example, looking at the stroma layer in 3D could save time,
as issues related to the keratocyte cells could be identified
by analysing one figure instead of looking at the large
number of individual images representing the stroma layer.
Based on these ideas our research is aiming to develop a
robust system able to analyse confocal corneal data sets,
identify abnormalities associated with this data and offer
easier clinical analysis through the 3D stroma cell
presentation. This aim is to be achieved through the
following objectives: first, an efficient pre-processing
approach which enhances the quality of the processed
confocal images, reduces the level of the noise in these
images, and eliminates redundant images; second, an
artificial intelligence approach to improve the recognition
accuracy of the corneal images into one of the epithelium,
stroma and endothelium layers; third, identify
abnormalities in the analysed corneal data sets; fourth, 3D
visualisation of the whole stroma layer as well as for each
individual keratocyte cell for further clinical analysis. This
would help the day to day clinical practice in a better
understanding of common corneal pathologies of a certain
layer in the cornea.

The rest of this paper is organised as follows. Section 2
presents the current corneal state of the art research and
clinical practices. Descriptions of the normal and abnormal
data sets employed in the work, the research methodology
as well as system development are presented in Section 3.
Section 4 presents the practical implementation and the
results achieved by automated analysis, abnormality
analysis and image visualisation. Finally, Section 5
presents the conclusions.

2. Current state of the art

The existing literature on confocal microscope related
corneal image processing and classification is rather limited
and includes the following examples. The work presented
in [4] on automatic recognition of cell layers in corneal
confocal microscopy images is based on image binarisation
followed by a description of cell shape obtained using Hu
variables. An artificial neural network is employed to
classify each image into the three corneal main layers in
normal subjects. The resulting system was tested on 46
corneal images. The work presented in [5] addressed the
problem of obtaining a 3-dimensional (3D) reconstruction
of the comnea starting from a set of confocal microscope
images by producing an image stack. Here a registration
procedure based on normalised correlation is applied to
each image. This method was intended to overcome the



effects of eye movements which occur during image
acquisition. Removing these shifts in image X and Y
directions, a 2D image stack is reconstructed.

In the work presented in [6], a program was written to
calculate the cell densities in confocal images obtained
from two types of confocal microscopes: the ConfoScan 4
(Nidek, Inc., Freemont, CA), and the Tandem Scanning
confocal microscope (Tandem Scanning Corp., Reston,
VA). The densities obtained were compared with those
obtained manually. This programme corrects the large non-
uniformity in brightness across the acquired images by
subtracting from each an image of a uniformly scattering
standard solution. The measures of keratocyte density can
be used in a variety of conditions, including contact lens
wear, excimer laser keratorefractive surgery, and corneal
transplantation.

The work presented in [7] describes a computer based
approach to detect the keratocytes in stromal images aiming
to provide accurate measurement of these cells and their
spatial distribution in the cornea. These images were
acquired from ultra-high resolution optical coherence
tomography (UHR-OCT). This approach has four main
steps including de-speckle, thresholding, cell candidate
selection, and finally cell identification.

The work presented in [12] describes several approaches
to prepare corneal images for 3D volume visualisation.
Image displacements laterally and in the anterior—posterior
directions, caused by subject movement, were addressed, in
the former case, using the speeded-up robust features
(SURF) algorithm, as well as the scale invariant feature
transform (SIFT). A modification was added to the SURF
approach to fit the application of corneal images
registration.  The structural similarity index measure
(SSIM) was used to order the images in the Z direction.
The cascade-forward neural network (CFNN) was used to
tackle the classification problem, but its performance
accuracy dropped when it was used for classifying higher
numbers of images. We wanted to improve the
classification accuracy in order to provide an accurate
system for ophthalmologists which is able to identify
abnormality in the processed data set. This aim was
pursued by testing different neural networks (including,
feed-forward neural networks (FFNN)), increasing the
range of the tested number of the hidden neurons,
proposing a new set of features consisting of 9 features
instead of 144 features, and seeking another classifier
(ANFIS) to fuse with the ANN in a committee machine
(CM) to further improve performance of corneal layers
classification.

Adaptive neuro fuzzy inference systems (ANFIS), have
been successfully and widely used in different medical
applications, but as far as we know have not been
previously applied to any type of corneal images until its
use in the current study to classify corneal layers obtained
using confocal microscopy. ANFIS harnesses the power of
the fuzzy logic and neural network, by utilising the
mathematical properties of neural network in tuning rule-
based fuzzy systems that approximate the human method of
processing information. Some examples of research work

which have implemented the ANFIS approach are as
follows. ANFIS was used in [8] to detect epileptic seizures;
the proposed ANFIS model combining the neural network
adaptive capabilities and the fuzzy logic qualitative
approach. The decision making was performed in two
stages: features were extracted using a wavelet transform;
the features were then input to an ANFIS which had been
trained with the back propagation gradient descent method
in combination with the least squares method. The results
achieved showed the ANFIS approach performed better
than a solely neural network based model. In another
application [9], ANFIS was used to detect changes in
electrocardiographs in patients with partial epilepsy. A
similar neuro-fuzzy approach presented in [10] was used to
classify image pixels into one of three sets: contour,
regular, and texture. An advanced fuzzy inference neural
network was used in [11] to detect abnormal lesions for
selected regions of interest in images obtained by using the
M2A swallowable imaging capsule.

2. 1. Clinical practices

The benefit of corneal confocal microscopy is that it can
be used in-vivo and this makes it an exciting ophthalmic
diagnostic tool. It is used in the assessment of the living
cornea in both the normal and pathological state without
the need for a biopsy in some conditions such as infective
keratitis [13, 14].

In certain types of infectious keratitis, such as
acanthamoeba and fungal [15-17], it is used routinely to
provide prompt diagnosis leading to earlier treatment with
the appropriate anti-infective agents and better outcomes
with lower morbidity.

Acanthamoeba keratitis is usually associated with
contact lens wear and poor disinfection. Though it can have
a classic presentation as documented in several textbooks,
early signs are often wide ranging and can mimic other
infective keratitis. As mentioned above, early diagnosis
with confocal microscopy in a suspected case is very
useful. Confocal microscopy findings include high contrast
round bodies, double walled structures of the acanthamoeba
ectocyst and endocyst and keratoneuritis showing irregular
swelling of the nerve fibres [15, 16].

In addition, to assessment of the cornea in the acute
conditions, it has become a useful tool to qualitatively and
quantitatively analyse the comea in dystrophies [18],
wound healing[19], contact lens induced changes [20],
peripheral neuropathy [21, 22] and keratoectasia [23].

For generations, slit lamp bio-microscopy has been used
to clinically evaluate corneal dystrophies but this technique
does not give detail at the cellular level without invasive
biopsy. Numerous investigators have looked at the
endothelial layer of the cornea and confocal microscopy
has been used to diagnose early presentation of a variety of
distinct disease entities, which usually look similar when
viewed using slit lamp biomicroscopy, such as Fuchs
endothelial dystrophy [24, 25], posterior polymorphous
dystrophy [26] and iridocorneal endothelial syndrome [27].



Although confocal microscopy is a powerful diagnostic
tool for corneal diseases, its use is limited, in research
centres or large ophthalmic departments, partly due to the
cost of the equipment but also due to difficulty in the
acquisition and interpretation of the acquired images.

3. The Methodology

Corneal confocal image analysis is an emerging
discipline, with few approaches that have been applied to
limited datasets of corneal images, focusing on individual
layers of the cornea. Until now, no systematic or modular
approach to tackle the general challenges in corneal
imaging has been presented. The utilisation of advanced
high performance analysis approaches will be useful in
aiding ophthalmologists in diagnosis, therapy planning and
patient care. The need for accurate and fast analysis of
large corneal data sets leads us to exploit artificial
intelligence (Al) techniques, including two types of
artificial neural networks (ANNs) and ANFIS, together in a
CM [28, 29]. ANFIS was chosen as the second type of
classifier for the following reasons: it is distinct from the
former, harnessing the power of the fuzzy logic and neural
network by utilising the mathematical properties of neural
network in tuning rule-based fuzzy systems that
approximate the human method of processing information.
It has been successfully and widely used in other medical
applications. A CM based on ANFIS and feed-forward
neural network (FFNN) could potentially improve the
layers classification accuracy over the component
classifiers. To achieve efficient performance with these
approaches, it is necessary to choose suitable input features
for them. Therefore feature extraction approaches are
discussed in the following section.

3.1. Feature extraction

It is important to choose features to extract from the
images under the study, so processing these features at a
later stage of the developed system will be more robust
than using the original pixels. Choosing an appropriate
feature extraction approach for the proposed application is
a significant task. Texture-based feature extraction
approaches and their important role in the human vision
system make them efficient in extracting features from
medical images which may contain combination of
repetitive  and non-repetitive patterns. The textural
appearances of objects in these images can be described as
complex visual entities composed of patterns, which have
characteristics such as brightness, colour, orientation, size.

From a human vision point of view the selection of
texture features can be subject to thorough experiment
based on the application. There are also some conjectural
expectations for certain properties of these features; for
instance it can be expected that the entropy feature has
bigger value for the more complicated images and a high
value of the correlation feature leads to the expectation of
linear dependency in the images [30]. Texture analysis
approaches were used in [31] to extract the features from

tear film images acquired using the Doane interferometer.
Texture analysis was useful to segment tear film images
based on interference patterns as presented in [32]. Texture
analysis was used in the classification process of the still
ultrasound images presented in [33].

Texture information in the area of interest provides
important information about the underlying biological
process for the benign or malignant tissue and therefore
should be included in the analysis. Looking at texture
statistics as a prognostic factor, second order parameters
were described in literature as best performing features [40),
34]. Second order statistics have been widely applied for
texture classification tasks [30, 35]. The standardisation of
first order statistics, however, showed a significant
decrease of prognostic information [36]. The work
presented in [37] has used texture features in the
development of an automated algorithm for the
categorisation of normal and cancerous colon mucosa.

Statistical features are widely used for textural analysis
in general image processing applications and for medical
image classification as well [38]. In this research a number
of feature extraction approaches were explored to find the
group of features, from the alternatives considered, which
yielded the best analysis and classification outputs of the
processed data sets. The initial approaches were chosen on
the basis of their wide published use in the literature as well
as the efficiency of extracted features used by image
processing approaches. Moreover, the corneal images in
question have been visually analysed to decide which type
of features extraction approach can be used. Based on this
analysis, it was found that on one hand, we need
information about the spatial arrangement of the images
intensities and these images have repetitive patterns (e.g.
identical cells) as well as non-repetitive patterns. On the
other hand we need an approach to help in classification of
images in question. Therefore we have investigated the
texture features approaches which can meet these needs.

The first group of features extracted are based on the
first order histogram (FOH), which represents the grey-
level distribution of individual pixels in each regions of the
image without taking account of the spatial distribution of
the grey-levels. This group consists of the six features:
mean, standard deviation, smoothness, skewness, energy
and entropy [39].

The second group of features extracted are based on the
second order histogram (SOH), which are statistical
features based on grey level co-occurrence matrices. First a
grey-level co-occurrence matrix for each image is created
for a particular co-occurrence vector. The corneal textures
display a full range of possible orientations and this is taken
account of by including vector angles of all main directions
0°, 45°, 90° and 135°. The corneal images also contain
structures with a range of widths and separations which
have been taken account of by including vector distances d
of 7,9, 11, 13, 15, 17 and 21 pixels. Then four distinct
texture measures are calculated from each matrix namely
contrast, correlation, energy and homogeneity. Then the
average of each measure over all vectors is calculated
creating the first four values of this group. The five



additional features including entropy, means of rows,
standard deviations of rows, absolute values and inverse
difference moments; are calculated for all vector distances
and angles [40, 41]. This generates 140 features, making a
total of 144 features in this group. Generally, the
classification of the fine textures requires small values of d,
whereas coarse textures require large values of d. To derive
texture measures from the co-occurrence matrices, an
appropriate range of vector distances ¢ should be chosen.
Experiments were performed on a number of features and
to choose the most suitable range of ¢ for the proposed
application. These experiments were based on the solution
suggested by [42] which uses a statistical test to select the
values of d that have the most structure and maximize the
value of this statistical test. The experiments were
performed on corneal images acquired using ConfoScan 4
with resolution of 768x576 pixel. The obtained distances
can give good results as far as they are used for processing
this type of images.

To simplify the classification step over the use of the
previous group we included a set of extracted features
based on averages of the second order histogram (ASOH);
this group of features reduces to 9 features from the
original 144, each averaged over all the considered vector
distances and angles. Analysis of several experiments
performed on all the processed data sets, found this group
of features to give better performance and improved
classification accuracy over all the other investigated
groups of features. For this reason, this method has been
chosen to extract the features from the processed data sets
in the final system. The details of the results achieved are
discussed in the results and analysis section.

The fourth group of features extracted is based on the
Laws’ texture energy measures (TEM), and consists of 14
features. This texture description uses the following
measurements: average grey level, edges, spots, ripples and
waves. Features are derived from 3 vectors: averaging
(L3) =1, 2, 1], first difference — edges (E3) = [-1, 0, 1],
and second difference - spots (S3) = [-1, 2,-1]. After the
convolution of the 3 vectors with themselves and each
other, five vectors result as follows: L5, E5, S5, RS, and
W5 [43, 44]. The last group of features extracted is based
on the grey run length matrix (GRLM), which is a
statistical approach describing the texture information of a
grey level image region using intensity values. This group
consists of 16 features [44, 45].

3.2, Artificial neural network

The artificial neural network (ANN) is one of the Al
techniques with the capability to learn from a set of data
constructing weight matrices to represent the learning
patterns. The ANN has had great success in many
applications including pattern classification, decision
making, forecasting, and adaptive control. For the purpose
of this research cascade-forward neural network (CFNN)
and feed-forward neural network (FFNN) are used. The
justification for using these ANNs is given in Appendix A,
where the results for 14 different ANNs and ANFIS are

shown. The FFNN and CFNN achieved the highest
accuracies among the neural networks, of 78% and 74%
respectively while the ANFIS achieved an accuracy of 86%
and this is the performance we want to improve on.

In the Cascade-forward neural network (CFNN), each
subsequent layer has weights coming from the input and all
previous layers to keep the influence of the inputs on all the
layers; it also has a fast training procedure. We wanted to
study the effect of these connections in the proposed
corneal application compared with the FFNN which does
not have these connections, but can still be used for any
kind of input to output mapping. An FFNN with one hidden
layer and enough neurons in the hidden layers, can fit any
finite input-output mapping problem. The results achieved
were compared and the best one, which suits the problem in
question, was chosen. The structure, training and the ability
of CFNN and FFNN are discussed later on.

The employed CFNN consists of three layers (inputs,
hidden, output). Each layer's weights and biases are
initialised at the beginning then the adaption is done with a
Levenberg-Marquardt backpropagation training procedure
[46, 47]. The input data is randomly mixed then divided
into two subsets; 80% for the training, and the other 20%
for testing. To reduce the risk of over-fitting, the algorithm
is applied repeatedly on randomly sub-sampled validation
data. The number of iterations is set to 1000 during the
training process. Several experiments varying the number
of hidden neurons (/) were performed to achieve the best
network performance and structure for the corneal layers
classification. Five groups of inputs (feature vectors) were
also employed in these experiments, with groups one to
five having 6, 144, 9, 14 and 16 features respectively. The
number of the hidden neurons in these experiments varied
between 4 and 96. Based on these experiments the best
network performance was associated with 17 hidden
neurons. Each experiment was repeated 10 times (/) and
the average and standard deviation of the results used in the
evaluation. The following metrics were calculated for each
experiment: True positives rate (TPR), False positives rate
(FPR), Accuracy (ACC), Specificity (SPC), Positive
predictive value (PPV), Negative predictive value (NPV),
False discovery rate (FDR) and Standard deviation (STD).
The results achieved by this network are presented in
section 4.

As already mentioned, the feed-forward neural network
(FFNN) was chosen, for the corneal application because it
achieved the highest accuracy among the fourteen ANNs
evaluated. It has also been widely employed in the image
processing literature, with good classification efficiency
reported in medical imaging [46]. The FFNN has three
layers (input, hidden and output). Its neuron output is
modelled using the following equation:

Y() = fELawa () -pi () + B] M)
where f'is the tangent-sigmoid transfer function for the
input vector p; w, , are the weights and b is the bias. The
weights are updated as follows to obtain an output
consistent with the training examples.

wii (G + 1) = wy; (D +a=p(j) =e(f) (2)



where a is the learning rate (chosen to equal 0.9), and e(j)
is the error calculated by taking the difference between the
desired output ¥, and the actual output Y:

e() =Ya()-Y() 3)

The FFNN experiments were conducted similarly to
those performed for the CFNN. 1000 iterations were used
during the training process; five different types of
inputs/feature  vectors were also deployed. Several
experiments on the number of hidden neurons (/) were
performed to achieve the best network performance for the
corneal layers classification. The best network performance
was associated with 19 hidden neurons. All the experiments
were repeated 10 times and the average considered. The
TPR, FPR, ACC, SPC, PPV, NPV, FDR and STD
measures were also used to evaluate the FFNN
performance. After evaluating all the results using the 5
features vectors, the best performance for both neural
networks was achieved using the ASOH group of features.
The classification accuracy obtained using the FFNN was 4
% higher than that using the CFNN, therefore the FFNN
was chosen for the proposed system. A flow chart of the
employed ANN classifier is shown in Fig. 2. This flow
chart represents one block of the complete corneal system
which is shown in Fig. 5. A discussion of the detailed
results is presented in Section 4.
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Fig. 2. Flow chart of the implemented ANN classifier.

3.3. Adaptive neuro fuzzy inference system

The ANFIS performed best on the initial tests shown in
Appendix A and so was chosen to partner the FFNN in a
committee machine expecting to improve on both in order
to provide more accurate system for ophthalmologists than
that can be provided with an FFNN or ANFIS alone.
ANFIS architecture and learning is based on a fuzzy
inference system (FIS) implemented in a framework of an
adaptive network. Using a hybrid learning procedure, an
ANFIS can learn an input-output mapping based on human
knowledge, which is provided in the form of ‘if-then’ fuzzy
rules. An ANFIS performs the identification of an input-
output mapping, available in the form of a set of N input-
output examples, with a fuzzy architecture, inspired by the
Takagi-Sugeno modelling approach [48, 49]. The fuzzy
architecture is characterised by a set of rules, which are
properly initialised and tuned by a learning algorithm. The
rules are in the form:

Rule 1: If(xis A;) and (v is By) then (f; = px +qv +ry)
Rule 2: If (x is A5) and (v is By then (f> = pox + gy + r3)
where rand yare the inputs, 4;and Zyare the fuzzy sets, f;
are the outputs within the fuzzy region specified by the
fuzzy rule, p;, g: and r; are the design parameters that are
determined during the training process [50, 51].

There are three main steps for applying ANFIS. The first
step is initialisation which generates a FIS using subtractive
clustering; it then extracts a set of rules that model the data
behaviour. The rule extraction method first determines the
number of rules and antecedent membership functions and
then uses a linear least squares estimation to determine
each rule’s consequent equations. The second step is
training; where a hybrid learning algorithm is used to
identify the FIS parameters. The maximum number of
training iterations is set to 60 by which point the error has
stabilised and stopped decreasing. The training step applies
a combination of the least-squares method and the back-
propagation gradient descent method for training FIS
membership function parameters to emulate a given
training data set. The third step is the testing of FIS on
different data sets [52]. The testing outputs are evaluated,
and if this is not satisfactory then the initialised clustering
parameters (Range of influence (RI), Squash factor (SF),
Acceptance ratio (AR) and Rejection ratio (RR)) are
optimised and new FIS is generated. The three step
procedure is repeated until a maximum performance is
achieved. A flowchart of the ANFIS procedure representing
one block in the proposed complete corneal system is
shown in Fig. 3.

Many experiments were performed using the five groups
of extracted features: FOH, SOH, ASOH, TEM, and
GRLM having 6, 144, 9, 14 and 16 features respectively, to
find the one which, combined with the optimally obtained
parameters of the ANFIS approach, leads to the most
accurate recognition of the corneal layers. From these
experiments the best layers recognition was achieved using
the ASOH features. The details of the ANFIS results are
discussed in Section 4.
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3.4. Committee Machine

The main motivation for combining classifiers is to
improve their generalisation ability and to enhance the
classification accuracy. Combining a set of imperfect
classifiers can be viewed as a way to manage the
recognised limitations of the individual classifiers [53].
Each component classifier is known to make errors,
however, the fact that the regions/features that are
misclassified by the different classifiers are not necessarily
the same, suggests that the use of multiple classifiers might
enhance the decision made. Training the CM with these
classifiers combined in such a way to minimise the overall
effect of these errors proves useful. There are several
approaches for building a CM [54, 55]. In this research the
voting, averaging and weighted averaging approaches were
tested and the most suitable one chosen.

3.4.1.  Voting Approach

In the voting approach, each individual classifier outputs

a decision instead of a score. The correct class is taken to
be the one most often chosen by the different classifiers.
Thus, the output prediction (¥p) is determined as follows:

x; when TX x,>T

V, =4 x, when 3K ,x, <T (4)

tie when X x; =T
where K is the number of classifiers, T is a chosen
threshold. There is a potential for a tic when half of the
classifiers vote for one class, and the other half vote for the
opposition class, in cases where an even number of
classifiers is used in the committee machine. The majority
vote approach is the most popular approach among
maximum, minimum, and median alternatives |56, 57].

3.4.2.  Averaging Approach

The averaging approach averages the individual
classifier outputs for cach class across the committee
machine. The highest average class output chosen
according to equation 5 is used as the predicted class.

. -1 > P —
) = argmax(- Y yii(x) 5)

j=1..N

Nis the number of classes, y;(x) Tepresents the output score
of the i classifier for the j* class of input x, and K is the
number of classifiers utilised in the committee machine
[56].

3.4.3. Weighted Averaging Approach

The weighted average approach is similar to the
averaging approach, except that the outputs of all classifiers
are multiplied by a prediction weighting as follows [56,
57):

Q@) = argmax(K, 5542 (6)
j=1..N Liza Wi
The weights w; where 7 1, A are derived by

minimising the error e;given in equation 7 of the different
classifiers

yi(x) = yai(x) + €;(x) (7
where pgis the desired output and pyis the actual output of
cach classifier.

3.5. Normal data sets

The normal data sets consist of 3 sequences of 85, 127,
and 144 corneal images from epithelium layer through
stroma to endothelium taken from 3 patients. This data is
available from [5]. The acquisition instrument was a
ConfoScan 4 confocal microscope (Nidek Technologies,
Padova, Italy) |2], with the Z ring is installed (producing
ordered images), and a field of view of 460x345 pm at 40X
magnification. The acquired monochrome images are saved
in JPEG compressed format, and are of size 768x576 pixel
[5,2].

3.60. Abnormal data sets

The abnormal images show 7 different corneal diseases
affecting the epithelium, stroma and endothelium layers.
The size of these images is 760x560 pixel.

Acanthamocba keratitis is a vision threatening, parasitic
infection. This disease was first recognised in 1973, it is
mostly seen in contact lens wearers. The possible early
signs of this disease include epithelial infiltrates, epithelial
irregularities, and pseudodendrites. Mid-stage signs may
include epithelial defects, stromal infiltrates (as a ring-
shaped, disciform, or numular), radial keratoneuritis,
anterior uveitis, scleritis, and satellite lesions, while
advanced signs include corneal perforation and stromal
thinning. Fig 4.a shows this disease with the hyper-
reflective round-shaped cysts arrowed. Another disease is
Fusarium keratitis, shown in Fig 4.b, which is an ocular
infection with potentially catastrophic visual results. This
fungal infection can simulate any microbial keratitis. It



begins when epithelial integrity is breached either due to
trauma or ocular surface disease. The third disease is a
yeast infection, shown in Fig 4.c, which produces
characteristic creamy, opaque, pasty colonies on the surface
[2, 58].

Crystalline dystrophy, shown in Fig 4.d, is an autosomal
dominant stromal dystrophy [59]. The main symptoms are
pain, decreased vision or photophobia. This condition may
arise from a multitude of causes, including infection,
comneal dystrophy and systemic disease that result in a
build-up of metabolic products in the comea. The fifth
stromal disease is fleck corneal dystrophy, shown in Fig
4.e, which is caused by mutations in the ‘PIKFYVE’ gene
[60]. Patients with this disease have small opacities
scattered in the stroma; some of these opacities resemble
flecks, others look more like snowflakes or clouds.

Fuchs® disease is an endothelial dystrophy, where a
copper beaten like appearance can be observed in the
endothelium. In this degenerative disease the corneal
endothelial cells gradually die leading to corneal oedema
and loss of clarity of the cornea. This disease is shown in
Fig 4.f and advanced Fuchs® disease is shown in Fig 4.g,
[61,62].

3.7. Svstem development

Fig 5 shows the analysis system proposed for corneal
application. The acquired images go from the confocal
microscope to a preprocessing step which performs the
following operations. First, it checks for and eliminates
blank images (some are generated due to the way confocal
microscope works in this application). A statistical
approach, using the mean, is employed to check for these
blank images; any detected mean value in the range 0-10
will cause the associated image to be removed from the
processed data sets. This range was chosen after
performing tests and cross validation on all the processed
data sets. Second, the remaining images are then processed
to reduce noise by smoothing, using a band pass filter
implemented as a fast discrete Fourier transform and
Butterworth filter of order level 4 and range of frequencies
30-120 (Different levels and frequencies ranges were tested
on the processed data sets, and best results achieved using
these values). Figures 6.a and 6.c show original stroma and
endothelium images respectively, while figures 6.b and 6.d

show the corresponding pre-processed images. Five groups
of feature vectors are then extracted from the processed
images based on FOH, SOH, ASOH, TEM, and GRLM.
The features are then analysed separately using the ANNs
and ANFIS approaches. This separation was important to
evaluate the performance of each group of features. The
detailed results for each of these approaches are discussed
in Section 4.

The ANN and ANFIS outputs are fed to the CM to
improve the accuracy of the layer recognition. Three
combination approaches were tested to find the best one to
build the CM. The weighted averaging approach
outperformed the voting and averaging approaches and was
therefore chosen. The outputs of the CM are mapped and
the three main corneal layers are displayed. Finally,
statistical analysis for these data sets is performed to help
identifying the presence of an abnormality in the related
layer of the analysed data sets. Based on the clinical need,
stroma corneal images as well as each individual keratocyte
cell are processed and visualised in a 3D volume for further
clinical analysis.

Fig. 4. Abnormal cornea images. (a): Acanthamocba keratitis, (b):
Fusarium Keratitis, (c): Yeast, (d): Crystalline Dystrophy, (e): Fleck
Corneal Dystrophy, (f): Fuchs’, (g): Advanced Fuchs™ [2].
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Fig. 5. The proposed corneal layers analysis system.
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Fig. 6. Pre-processing step. (a): original normal stroma image, (c): original
normal endothelium image, (b and d): the pre-processed images.

4. Results and Analysis
4.1. ANN results

Two types of ANN have been used to classify all the
corneal data sets as discussed in section 3.2. Considering
the CFNN first, this has been used with all the types of
extracted features (FOH, SOH, ASOH, TEM, and GRLM).
During the training stage, on the first data set, the network
performance was completely accurate except for the FOH
features where just one image from endothelium (EN) was
misclassified into stroma (S). Table | shows the number of
accurately classified images (ACI) and the number of
misclassified images (MCI) for all the five groups of
features using the first data set.

The CFNN was tested on the remaining two data sets
using all five groups of features. The best

Table 1: ACT and MCT values for all features groups, using CFNN
(training outputs).

Features Epithelium Strom (S) Endothelium
(EP) (EN)

Images 15 90 =
FOH, ACIT 15 91 4
FOH,MCT 0 I from EN 0
SOH, ACI 15 90 5
SOHMCI 0 0 0
ASOH,ACIT 15 90 5
ASOH MCI 0 0 0
TEM, ACT 15 90 5
TEM, MCI 0 0 0
GRLM, ACIT 15 90 5
GRLM, MCT 0 0 0

group of features was determined based on the following
considerations; the accurate recognition of the corneal
layers in both data sets, the network ability to detect the
endothelium layer or part of it, and the size of this features
group. The best results were associated with the ASOH,
which also has the lowest number of features. Table 2
presents the ACI, MCI for the second data set, where |
image from S, | image from epithelium (EP), and 2 images
from EN were misclassified using the ASOH features.
Using the FOH, which has just 6 features, 13 images from
S, 3 from EP were misclassified using the FOH which has
just 6 features. Table 3 shows the ACI, MCI for the third
data set, where again the ASOH features generate the best
results and the worst result was obtained using the GRLM,
with 36 image from S misclassified.

Table 2: ACT and MCT values for all features groups, using CFNN
(testing, data set 2).

Features Epithelium Strom (S) Endothelium
(EP) (EN)
Images 7 60 3
FOH, ACIT 17 53 0
FOHMCI 13 from § 3 from EN and 3 0
from EP
SOH, ACIT 8 61 |
SOHMCT 2 from EN | from EP 0
ASOH,ACIT 8 61 |
ASOHMCI I from S and I from EP and 1 0
I from EN from EN
TEM, ACI 9 60 |
TEM, MCI 2 from EN 0 0
GRLM, ACIT 4 57 9
GRLM, MCI 3 from S 2 from EP 2 from S and
4 from EP




The FFNN was also used to classify all feature groups
employing the best topology discussed in section 3.2 in
these experiments with the different groups of features. The
best classification results are achieved using the ASOH
features. Table 4 shows the classification accuracy (Acc)
and misclassification value (MCV), calculated from the
confusion matrix and defined as the fraction of samples that
misclassified, for all data sets, using FFNN. Acc is

calculated using the following equation:
TP+TN

Acc = TP+FP+TN+FN (®)
where TP are true positive, FP are false positive, TN are
true negative, and FN are false negative values.

The FFNN performance was better than CFNN, as all
the three classes were detected in all the three data sets
using FFNN. While the CFNN did not detect any EN image
for data set 3. On the other hand, considering classification
accuracy; the average classification accuracy using FFNN
for all the classes was 78%, while the average accuracy
using CFNN was 74%. The MCV for FFNN was also better
than the one for CFNN. Based on these two observations,
the FFNN was chosen for inclusion in the proposed

classification system.

Table 3: ACI and MCT values for all features groups, using CFNN
(testing, data set 3).

A large number of experiments were performed to find
the best ANFIS parameter values for the proposed corneal
layers classification, as discussed in section 3.3. These
experiments employed all the five groups of features. Table
5 shows the ACI and MCT values obtained by training the
resulting best ANFIS structure with the data set 1. All the
features group performed well for data set 1, with an
accuracy of 1, except for GRLM, with an accuracies of
0.71 for class 1 (EP), 0.92 for class 2 (S), 0.57 for class 3
(EN), and the MCV was 0.0727. Table 6 presents the ACI
and MCI values obtained by testing on the second data set;
the best results were achieved using the ASOH (9 features)
where just 3 images (1 from EN and 2 from EP) were
misclassified. Table 7 shows the Acc and MCV for all the
processed data sets using all the features types. The best
average accuracy was achieved using ASOH (0.87) and the
average MCV was 0.0205. In total just 5 images were
misclassified out of 282 processed images from all the
classes. ASOH produced one of the best results for most of
the classes in all the processed data sets; also its small
number of features (9)leads to faster processing time in
comparison to SOH with 144 features. Therefore an ANFIS
based on ASOH features was selected for inclusion in the

proposed analysis system.
Table 5: ACI and MCT values for all features groups, using ANFIS
(training outputs of data set 1).

Features Epithelium Strom (S) Endothelium
(EP) (EN)
Images 10 93 3
FOH, ACI 41 65 0
FOH ,MCI 35 from 3 from EN and 0
S 4 from EP
SOH, ACT 12 93 |
SOHMCI 2 from 0 0
EN
ASOH,ACT 10 96 0
ASOHMCI | from 2 from EN and 0
EN | from EP
TEM, ACT 12 94 0
TEM, MCI 3 from | from EP 0
EN
GRLM, ACIT 4 57 45
GRLM, MCT 3 from 0 9 from EP and 33
S from S

Table 4: Acc and MCV values for all data sets, using FFNN.

Data sct Epithelium  Strom (S)  Endothelium (EN)  MCV
(EP)

Setl, Acc 0.9375 1 0.8000 0.0090

Set2, Acc 0.5555 0.9516 0.6666 0.0571

Set3, Acc 0.8181 0.9789 0.3333 0.0283

4.2. ANFIS results

Features Epithelium Strom (S) Endothelium
(EP) (EN)
Images 15 90 5
FOH, ACI 15 90 5
FOHMCI 0 0 0
SOH, ACI 15 90 5
SOH,MCI 0 0 0
ASOH, ACI 15 90 5
ASOH, MCI 0 0 0
TEM, ACI 15 90 5
TEM, MCI 0 0 0
GRLM, ACI 21 83 6
GRLM, MCI | from EN 0 2 from S
and 5 from S

4.3. Committee machine results

Table 6: ACI and MCT values for all features groups, using ANFIS
(testing, data sct 2).

Features Fpithelium Strom (S) Endothelium
(EP) (EN)
Images 7 60 3
FOH, ACT 35 33 2
FOHMCI I from EN and | from EP 0
28 from S
SOH, ACIT 10 57 3
SOH, MC1 4 from 8 | from EP 0
ASOH, ACI 5 63 2
ASOH, MCI 0 | from EN and 2 0
from EP
TEM, ACT 19 49 2
TEM, MCI I from EN and 2 from EP 0
13 from S
GRLM, ACI 0 70 0
GRLM, MCI 0 3 from EN and 7 0
from EP

A CM was chosen for the proposed system in the
expectation that this would increase the generalisation
ability, and enhance the classification accuracy over those
of the internal classifiers. The classification accuracy of the



CM was indeed found to be better than that of the
individual classifiers; for example in subject 3 dataset the
class 1 (EP) accuracy was improved from 81% (ANN) and
83 % (ANFIS) to 91% (CM), while the classification
accuracy of class 2 (S) was improved from 97% to 100%,
and for class 3 (EN) it was improved from 33% to 67%.
The low accuracy value for the EN layer came from the
fact that there are just three images associated with this
layer, so misclassifying one image out of three reduces

accuracy to 67%.
Table 7: Acc and MCV values for all data sets, using ANFIS.

Features Epithelium  Stroma  Endothelium MCV
(EP) (8) (EN)

Setl | 1 | 0
FOH Set2 0.1666 0.5245 0.6666 0.4285
Set3 0.1960 0.5591 | 0.3867

Setl | | | 0
SOH Set2 0.5454 0.9180 | 0.0714
Set3 0.9090 | 0.6666 0.0094

Setl | 1 | 0
ASOH Set2 0.7142 0.9523 0.6666 0.0428
Set3 0.8333 0.9892 0.6666 0.0188

Setl | 1 | 0
TEM Set2 0.2380 0.7580 0.6666 0.2285
Set3 0.7272 0.9687 0.3333 0.0377
Setl 0.7142 0.9222 0.5714 0.0727
GRIM | Set2 0 0.8571 0 0.1428
Set3 0 0.8773 0 0.1226

4.4. Statistical analysis and classification with abnormal
cases

Corneal problems and diseases can occur in one or
more of the three main corneal layers. Seven different
corneal diseases affecting the epithelium, stroma and
endothelium layers have been analysed in this work. The
developed system has been tested on abnormal data
associated with these diseases, which are classified
correctly according to the layer they appear in. The system
performance was consistent in classifying normal and
abnormal images in that for both cases the ASOH features
are associated with the best layers classification results.

The diseases considered are as follows: Acanthamoeba
keratitis, fusarium keratitis and vyeast affecting the
epithelium, crystalline dystrophy and fleck corneal
dystrophy affecting the stroma, Fuchs® and advanced
Fuchs® affecting the endothelium. To test the performance
of the developed system on data sets associated with
abnormalities, these disease have been inserted into the
processed data set. The five groups of the features FOH,
SOH, ASOH, TEM, and GRLM are also employed with the
abnormal data. Table 8 shows the accurate classification for
abnormality (ACA) and misclassification of abnormality
(MCA). The best accuracy was achieved using the ASOH
features, where just one abnormal image with endothelium
disease is misclassified as a stroma.

Further analysis of the abnormal cases was performed
by calculating some statistical measures from the processed
images and comparing them with the normal ranges
extracted from three normal data sets. It was observed that
including this statistical information helps make better
decision about the abnormal images as well as building
reference ranges for the statistical features employed. The

features used are Mean, Standard deviation (SD),
Smoothness, Skewness, Energy, and Entropy. The use of
the SD beside the mean helped, for example, in deciding
which images can be ignored or considered (specially the
images at the beginning of the stroma which might have a
lower mean value in comparison with others in the
sequence of stromal images).

Table 8: ACA and MCA values for all features groups for data set
including abnormalities.

Features Epithelium Strom (S) Endothelium
(EP) (FN)
Images 18 92 7
FOH, ACA 15 98 4
FOHMCA 0 3 from EN and 3 0
from EP
SOH, ACA 16 93 8
SOH, MCA 0 1 from EP, 1 1 from EP, 1
from EN from 8
ASOH, ACA 18 93 6
ASOH, MCA 0 1 from EN 0
TEM, ACA 19 91 7
TEM, MCA 2 from EN 0 I from EP
and | from 8
GRLM, ACA 15 93 9
GRLM, MCA 0 | from EP and | I from 8 and
from EN 2 from EP

Table 9 shows the consistent ranges of the six
statistical values found for the epithelium, stroma, and
endothelium layers. The abnormal ranges of these six
features, extracted from the seven different corneal
diseased images, are also included in this table. It can be
seen from this table that the abnormal mean range is higher
(increased (INC)) than the normal one for both epithelium
and stroma, while it is decreased for the endothelium layer
(DEC). The decreased abnormal mean range for the
endothelium is due to the fact that the Fuchs’ and advanced
Fuchs® diseases affect the functionality of the endothelium
tissues and it increasingly deteriorates over time, leading to
a change in the endothelial cell shapes and structures (dark
crystal-like  shapes are sometimes noticeable). The
abnormal SD range is increased from the normal one for all
the three main layers. The abnormal range for smoothness,
skewness, and entropy is also increased from the normal
one for all the three main layers, while the abnormal range
of the energy is decreased from the normal one for all the
three corneal layers. This is consistent with increases in the
measure of randomness (entropy) in the abnormal images.
Such statistical information will help build a complete
detection system for corneal abnormalities which could
include a clinical description of each detected disease. Such
abnormalities detection with the associated measurements
could help and speed up the clinicians’ diagnosis of these
diseases. Kurtosis [63] is also introduced as a measure for
the peakedness of the data probability distribution. The
average value of kurtosis for one of the normal stroma
images (without disease) is 3.66, close to the value 3 for a
normal distribution. On the other hand, the average value of
kurtosis for the abnormal stroma associated with crystalline
dystrophy is 5.01. Fig. 7 shows a representation for
statistical values for samples taken from normal stroma,
while Fig. 8 presents these values for the samples taken
from abnormal stroma associated with crystalline dystrophy



where it can been seen that the dispersion of the data is
much higher than the normal one.

4.5. System performance

The complexity of the developed algorithm affects how
quickly the algorithm executes. However, the defined
execution time also depends on implementation factors [64]
such as: operating system, processor speed, processor
memory, instruction set, the programming environment and
type of compiler. In order to use execution times fo
estimate the relative complexities of different algorithms
the implementation factors must be kept the same. The
developed system was implemented and tested on a PC
with 3GHz processor and 8GB RAM running a 64-bit
windows 7 operating system. For the trained system, the
preprocessing, feature extraction and classification of each
image into the appropriate layer took about 0.5 second.
Using data set 1, the time taken to separately complete pre-
processing and creating a new folder of pre-processed
images was about 13.2s, to complete feature extraction
using ASOH was about 59.4s, to complete fraining using
FFNN was about 1633s and to complete classification was
about 0.8s.

For comparison with the system proposed in [4],
recognition ratios for the three main corneal layers obtained
using the developed system were calculated in a way
similar and for the same number of images. The results are
shown in Table 10. It can be seen that the current system is
able to achieve 100% recognition for these images.
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Fig. 7. Kurtosis and skewness for samples from a normal stroma image.

4.6. The stroma layer visualisation

The stroma is the thickest layer in the cornea, which
means it has the largest number of images to be analysed.
Visualising this layer efficiently can lead to full and rapid
analysis of the keratocytes cells. Therefore, the classified
stroma data set has been put through the following process
to achieve an efficient visualisation to help performing
further clinical analysis of this layer. All the processed
images have been thresholded using a validated adaptive
global approach and after that all the cells, in the stroma
layer have been labelled by filling with incremental integer
values using connected component labelling. Just to make
the labelled cells more distinguishable to the eye, all the
labelled values have been mapped with different colours.
All the images have been registered using the SURF and
SIFT approaches.
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Fig. 8. Kurtosis and skewness for samples from an abnormal stroma
image.

Table 9: Comparison of statistical features between normal and abnormal data sets where INC indicates the abnormal value is higher than normal and

DEC indicates it is lower,

Features Epithelium Status Stroma Status  Endothelium  Status
Mean (normal) 29.59-51.46 22.63-58.78 65.74-175.36
Mean (Abnormal) 113.14-121.86  INC 68.47-75.58 INC  51.99-101.27 DEC
5D (normal) 11.49-35.30 14.07-33.54 22.29-48.82
5D (Abnormal) 49.43.65.25 INC  4686-79.77 INC  51.26-53.68  INC
Smoothness (normal) 0.002-0.018 0.003-0.017 0.007-0.035
Smoothness (Abnormal) | .036-0.061 INC  0032-0.089 INC 00380042 INC
Skewness (normal) 0.010-1.977 0.095-1.012 -0.220-0.275
Skewness (Abnormal) 1.468-3.423 INC  2401-10.797  INC 1.792-3.312  INC
Energy (normal) 0.011-1.977 0.010-0.027 0.0059-0.012
Energy (Abnormal) 0.005-0.007 DEC  0.008-0.020 DEC 0.0057-0.011 DEC
Entropy (normal) 5.543-6.732 5.559-6.849 6.496-7.523
Entropy (Abnormal) 7.494.7.579 INC 6831-7.282  INC 7.073-7.620  INC

Table 10: A comparison of layer recognition percentage between

reference [4] and the proposed approach.



Corneal Reference [4] Proposed
Layers Approach
Epithelium EP 100% EP 100%
S 0% S 0%
EN 0% EN 0%
Stroma EP 19% EP 0%
S 81% S 100%
EN 0% EN 0%
Endothelium EP 0% EP 0%
s 7% s 0%
EN 93% EN 100%

Different visualisation viewpoints can be considered
(views XY, XZ, and YZ) to help the ophthalmologist easily
evaluate the cells from different directions. We anticipate
that this approach will lead us later on to a more versatile
system able to map and visualise any problem in a
particular corneal layer, or if there is any dystrophy
associated with the cornea cells. Fig 9 presents a sequence
of images at different processing stages. Fig 9.a and Fig 9.b
show the original sequence and the enhanced sequence
respectively, while Fig 9.c shows the segmented sequence,
and Fig 9.d presents the labelled by colour mapped
sequence for stromal images.

Based on the statistical analysis for the normal and
abnormal cases, we can apply a coloured label for each
case to highlight the status of each processed image. Green
is used for the normal ranges, blue for the value below the
normal ranges and red for the values higher than the normal
ranges. These choices of data presentations can help to
draw the attention of the clinical ophthalmologists if there
is any abnormality associated with the processed case.

Fig. 9: Processed images sequence. (a): original sequence, (b): enhanced
sequence, (c): segmented sequence, (d): labelled mapped sequence.

4.6.1. 3D keratocytes visualisation

The processed stroma images have been visualised in
2D and 3D with the ability to visualise different XY, XZ,
and YZ views to help the ophthalmologists in the diagnosis
and give them the opportunity to analyse a few figures
instead of many images. The 3D process was performed as
follows: connected component labelling was applied to all
the processed images in the sequence starting from the first
image. The details for each object were stored. Afterwards

the corresponding labelled objects in each pair of
neighbouring images in the sequence are identified and
their labels are updated. In the following step, the interior
of all the objects with the same label is filled with the same
colour throughout the whole sequence. Finally, the Imagel
[65] viewer was optimised and integrated in the developed
system to visualise the processed cells in a 3D volume. To
visualise a 3D model of the processed images, the
ophthalmologist (user) can perform the following steps:

- Select the processed images.

- The system gives the user an option to acquired
statistical information about the processed selected image
as well as the 3D visualisation. This information includes:
the number of the cells in each image, the average area of
the cells and the standard deviation; this information is
clinically useful, and can be used in the patient clinical
diagnosis.

- If the previous option is selected, the user needs to
select one or more images to be analysed.

- The selected image will be then displayed with the
number of cells detected in this image, the average area of
the cells and the standard deviation.

- The user can select the number of the volumes to be
visualised.

- Using an interactive window, the clinician can select
the area to be wvisualised as a 3D volume. Fig. 10.a
illustrates a processed selected stroma image, Fig. 10.b
presents the same image showing the selected region of
interest to be rendered as a volume, and Fig. 10.c shows the
selected region as a 3D volume incorporating related
images.

- A flexible interactive option has been added to the
developed system to allow the user to visualise each cell
individually (in 2D) with the ability to render the volume of
the cell of interest. Fig. 11.a shows some individual cells,
where the white plotting area indicates that there is no cell
available. If the user wants to render the 3D volume of a
certain cell, it is just necessary to enter the label of this cell
to get the required 3D figure. Fig. 11.b shows the volume
of the selected cell labelled *201°.



Fig 10: Volume visualisation. (a): processed selected image, (b): the
selected area to be rendered as volume, (c): the displayed volume of the
selected area.
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1'1: Cell volume visualisation. (a): cach row shows versions of a particular

labelled cell extracted from different images, (b): the displayed volume of
the cell labelled 201.

5. Conclusions

This research work concerns a practical study made on
corneal images acquired using confocal microscopy which
can provide detailed images from the different layers inside
the cornea. An efficient corneal layer analysis system for
normal and abnormal data has been presented. This system
has the ability to exclude the useless images from the
processed cornea sequence, enhance the quality of the
remaining images, extract five groups of the features from

these images (FOH, SOH, ASOH, TEM, and GRLM),
classify these images into the correct class (layer), identify
abnormalities in the analysed data sets and visualise stroma
corneal images as well as each individual keratocyte cell as
a volume for further clinical analysis. This helps the
ophthalmologists in the diagnosis and gives them the
opportunity to analyse a few stroma figures instead of
many images. Two types of ANNs, an FFNN and a CFNN,
have been thoroughly investigated for the proposed corneal
application. Generally, FFNN outperformed CFNN and it
was chosen as the first part of the developed CM. An
ANFIS approach has given good results with only 5 images
misclassified out of all the images. It has been employed as
a second half of the CM. The detailed results from these
approaches have been presented and discussed earlier. A
CM has been deployed; combining the FFNN and ANFIS
classifiers, to achieve an improved recognition accuracy of
100% for some classes in the processed data sets and one
image misclassified from the EN.

The system presented is able to pre-process and
analyse the main layers in the corneal data sets, it shows
robustness in processing both normal and abnormal data
sets. Just one abnormal image from endothelium layer was
misclassified while the rest of the processed data were
correctly classified. Statistical features have been also
employed to predict corneal abnormality. This statistical
information can help build a complete prediction system for
the corneal abnormalities which can include a clinical
description for each detected disease. Such abnormalities
detection with the associated measurements could help and
speed up the clinician’s diagnosis.

It is worth mentioning that some of the cornea
problems and diseases can occur in one or all of the main
cornea layers. Therefore the system developed can serve as
a helpful platform to accurately recognise each of the
corneal lavers leading to abnormality detection. This
system will also be able to extract further clinical
information associated with a certain disease or evaluating
the normal cornea. The processed outputs of the developed
system have been visually mapped to highlight the main
corneal layers as well as highlighting the presence of any
abnormality.

The next step in this research is to validate the
developed system on different types of corneal diseases as
well as extract and analyse the associated features of these
diseases for each corneal layer. These features will help
build an appropriate map for each corneal disease.
Extracting these features could be clinically useful,
underpinning the work of ophthalmologists, saving a useful
amount of clinician time in the process, and hence
improving the patient care in a busy clinical setting. A
complete coloured map for the main corneal layers
(epithelium, stroma, and endothelium) will be built based
on discussions on the clinical needs of the
ophthalmologists. This coloured map will cover both
normal and abnormal confocal corneal data sets.
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Appendix A:

Thorough experiments were performed on different
types of ANNs to find the most appropriate one to tackle
the problem in question. The following neural networks
types were investigated: competitive neural network
(CNN), Elman backpropagation neural network (EBNN),
distributed time-delay neural network (DTDNN), cascade-
forward neural network (CFNN), linear layer neural
network (LNN), feed-forward neural network (FFNN),
perceptron layer neural network (PLINN), probabilistic
neural network (PNN), feed-forward input time-delay
backpropagation network (FFTDNN), radial basis neural
network (RBNN), exact radial basis neural network
(ERBNN), layer-recurrent neural network (LRNN),
learning vector quantisation (LVQNN), self-organizing
map (SOMNN), and ANFIS. These approaches were tested
on all three data sets and the average classification
accuracy calculated for epithelium, stroma and endothelium
(AEP, AS, AEN). The total average accuracy for each

classifier (AA) was also calculated. The results obtained
from these experiments are shown in Table A. The three
highest accuracies were achieved using the FFNN, CFNN
and ANFIS. Therefore these classifiers were employed in
the analysis and the development of the proposed system.

Table A: A comparison between the accuracy of different ANNs and
ANFIS.

ANN Type AEN AS AEP AA
CNN 043 0.55 0.38 045
EBNN 042 0.97 0.70 0.70

DTDNN 0.44 0.98 0.78 0.73
CFNN 0.44 0.97 0.82 0.74
LNN 0.03 0 0 0.01
FFNN 0.6 0.97 0.77 0.78
PLNN 0.05 0 0 0.01
PNN 0.49 0.84 0.68 0.67
FFTDNN 0.33 0.96 0.62 0.64
RBNN 0 0.92 0.51 047
ERBNN 0.2 0.91 043 0.51
LRNN 042 0.61 0.32 045
LVQNN 047 0.52 042 047
SOMNN 0.52 0.81 0.58 0.63
ANFIS 0.77 0.98 0.84 0.86




