
Analysis of Obfuscated Code with Program Slicing

Mahin Talukder
Dept. of Computing and Engineering

University of East London
London, UK

u1539655@uel.ac.uk

Syed Islam
Dept. of Computer Science
University College London

London, UK

s.islam@cs.ucl.ac.uk

Paolo Falcarin
Dept. of Computing and Engineering

University of East London
London, UK

falcarin@uel.ac.uk

Abstract—In Man-At-The-End (MATE) attacks, software apps
run on a device under full control of the attackers: they can
violate the intellectual property of the app by means of malicious
reverse engineering, software piracy, and software tampering.
Obfuscation is a technique that is widely adopted by developers
to mitigate this problem. Obfuscation increases complexity of
software code, by obscuring the structure of code and data
in order to thwart the reverse engineering process. However,
it is possible to reverse engineer obfuscated code with time,
determination and the right tools. In general, there is no accepted
methodology to determine the strength of obfuscated code;
however resilience is often considered a good metric as it indicates
the percentage of obfuscated code that cannot be removed by
automated de-obfuscation tools. We introduce a novel approach
to measure the resilience of obfuscated C code using program
slicing. Given a variable of interest, that might be part of a code
region used to manipulate a crypto key or a license number,
program slicing can mimic the attacker behaviour by trying to
remove the code unrelated to that variable, acting as a new type
of de-obfuscator.

Index Terms—Program slicing, Code obfuscation, ORBS, re-
verse engineering, resilience, de-obfuscation, software security,
MATE attacks

I. INTRODUCTION

The latest BSA Global Software Survey on Software

Piracy [1] states 37% of software installed on computers

around the world in 2017 are not appropriately licensed,

amounting to $46 billion in losses. When software apps run on

a device under full control of the attackers they can be victims

of software piracy, usually achieved through Man-At-The-End

(MATE) attacks [2], where attackers use reverse engineering

tools to analyse and modify the code to use it in unauthorised

ways: e.g. removing license checks or illegally duplicating

copyrighted material. Code Obfuscation is a technique that

is widely adopted by developers to mitigate this problem by

increasing the complexity of the code, in order to thwart the

reverse engineering process .

For more than a decade, security and compiler optimisation

researchers have proposed various techniques of code obfus-

cation [3] to prevent code from being analysed, and tamper-

proofing [4] to detect the execution of tampered code; other

techniques like software watermarking [5], fingerprinting [6]

have been developed to bind authorship to the code so that

violations could be used as evidence in legal courts. The

software industry and large companies like Google [7],

Microsoft and Intel [8] have also invested significantly in

these technologies. However, secrets kept hidden within code

will eventually be discovered by a sufficiently resourced and

determined hacker. Researchers aim to stop the majority of

hackers and to slow down the more expert ones to a point in

which an attack would be no longer useful.

Code Obfuscation preserves the original functionality of a

program while adding redundant information to the code in

order to make it unintelligible for humans, and to slow down

or crash automated program comprehension tools so that the

result of program analysis is wrong or incomplete [9]. There

is currently no agreement on the methodology to determine

which obfuscation technique provides the best possible soft-

ware protection. One of the more recent metrics used to assess

the effectiveness of obfuscation is the concept of resilience,

defined as the percentage of obfuscated code that cannot be

removed by automated de-obfuscation tools, and it clearly

depends by the type of tool and the target language, e.g.:

interpreted or compiled code, bytecode or native code. In this

paper, we present a novel approach to determine the resilience
of native code (generated from C language) using program

slicing. Mark Weiser introduced program slicing with a view

to understanding behaviour of a program’s constructs [10].

The technique was built based on how programmers debug

their programs by looking at subsets of the program that are

of interest; for example, where a variable is printing incorrect

results. This is very similar to what an attacker is trying to

do when attempting to reverse engineer a piece of software,

and then we propose to apply program slicing to estimate the

resilience of software obfuscation. In the rest of the paper,

Section II provides background to the problem in terms of

code obfuscation and introduces program slicing. Section III,

presents the methodology and toolchain. Section IV describes

the experimental setup and Section V presents results from

the study. Section VI discusses related works and section VII

presents experimental data. Finally, Section VIII provides a

summary of the current work and ideas for future research.

II. BACKGROUND

A. Code Obfuscation

Code obfuscation is the most viable method for preventing

reverse-engineering [11]: the goal is to make the code difficult

to understand by using a software tool called obfuscator, a

special compiler that can perform binary-to-binary, source-

to-binary or source-to-source code transformations. As we

aim to determine resilience of the code generated by the

obfuscator, we have chosen source-to-source code obfuscation

to have more control on the compiler options, and monitor

code changes through our experiments, while in source-to-

binary and binary-to-binary obfuscators many decisions made

by the tool are neither visible nor configurable.

Lexical transformations, Control flow transformations, Data

transformations, Anti-disassembly, Anti-debugging, and En-

cryption are the types of obfuscation that are commonly

used by obfuscators [5], offered by companies like Semantic

Designs [12], Irdeto [13], and Stunnix [14], while Tigress [15]

is a well-known open source obfuscator with different kinds of

protection techniques and is widely used for research. Tigress

supports three advanced types of transformations:

• Virtualization – transforms a function into an interpreter

• Jitting – transforms a function into one that generates its

machine code at runtime.

• JitDynamic – transforms a function into one that contin-

uously modifies its machine code at runtime.

In addition to these, Tigress implements other common

obfuscation transformations, such as: Control flow flattening,

Function splitting, Function merging, Argument randomiza-
tion, Control flow splitting with opaque predicates, Encoding
of literals, and, Data and arithmetic transformation. For the

experiments in this paper, we employ Virtualization along with

Control-flow flattening and Function splitting as they are com-

plex and commonly used obfuscation transformations. Each

of these transformations has a certain number of parameters

which are used to create many obfuscated code variants.

B. Program Slicing

Program slicing is the computation of a set of programs

statements, that may affect the value of a variable at some

point of interest [16]. It is a decomposition technique that

extracts statements relevant to a particular computation from

a program [17]. A slice could be regarded as the mental

abstraction people make when they are debugging a program.

A slice consists of all the statements of a program that may

affect the values of some variables at some point of interest

referred to as a slicing criterion [10].

A slice is computed using either static information (without

program execution) known as a static slice, or dynamic infor-

mation (execution of a program) known as a dynamic slice.

Static slicing seeks to find an executable subset of a program's

statement that exhibits the same behaviour of a specified

variable at a specific location as the original program for all

possible inputs. On the other hand, dynamic slice preserves

the behaviour of slicing criterion only with respect to specific

input [18].

Observation based slicing was recently introduced by re-

searchers as an alternative to dependence-based program slic-

ing. Observation based slicing (ORBS) [18] uses a delete–
execute–observe approach where a statement is deleted, then

the program is executed and an observation is made on whether

the projected trajectory of the slicing criterion is changed. If

no changes are observed, the deleted statement is excluded

from the slices. Conversely, if a change is observed, the deleted

statement is included in the slice. This process is iterated until

no further statements can be excluded from the slice. ORBS

was introduced with a view to slice heterogeneous programs

consisting of components written in different programming

language and perform slicing that includes binary components

or external libraries. ORBS is designed to reduce the length

of a program to an abstract subset requiring less human

effort to understand the program. Our approach uses ORBS

to determine the resilience of obfuscated code.

III. METHODOLOGY AND TOOLCHAIN

In this section, we described the methodology and our

Toolchain for the experimentation. Our current Toolchain

integrates Tigress as obfuscator and ORBS frameworks into

an automated Toolchain that can create multiple obfuscated

variants of a target program, and generate the program slices

for both the original target program and its obfuscated variants.

The approach can be adopted with any source-code to source-

code obfuscator and different programming languages (instead

of C language used by Tigress) as ORBS frameworks is

programming language independent. Comparison of the slices

from these data points help us to determine and understand the

effectiveness of obfuscation techniques used to produce each

variant.

Figure 1 presents a graphical representation of our

Toolchain, which executes as a process made of different

phases, as depicted in the diagram. In the beginning (Stage 1)

the original target program (Program P1) is instrumented to

mark the slicing criteria - that is, the points of interest, so that

ORBS slicer is able to subsequently extract dependencies for

these points. We selected a point of interest from each program

to indicate a key functionality that software vendors may

want to protect from Man-At-The-End (MATE) attack. This

scenario is similar to the approach where an attacker tries to

reverse engineer the code to identify a piece of code containing

sensitive information. It focuses on a piece of code that may

be of interest and identifies all the associated code constructs.

The slice of the original target program from this stage is

later used as ground truth to understand the effectiveness of

the obfuscation.

The next stage involves using Tigress to produce several

obfuscated variants of the original program. We have generated

multiple variants of the same target program by running

Tigress with different combinations of parameters. These vari-

ants are marked as P1 V1 to P1 Vn, where n is the number of

variants created. The number of versions generated for every

target program may not be the same as some combinations

of parameters do not form a valid configuration for Tigress

or they might not work for a particular program structure.

Obfuscated code size is typically bigger than the original code,

because of the additional bogus code included to hide the

actual functionality and to make it more difficult to read and

understand the program.

In the third stage, the toolchain mimics what an attacker

would do once identified a point of interest in the code: find

Fig. 1. Obfuscation resilience checker Toolchain.

out the parts related to the point of interest and reduce the

amount of code that the attacker needs to analyse. We use

ORBS to slice the variant, to reduce the number of lines that

the attacker would need to study for the same points of interest

as in the original program. These are marked as P1 V1 S
to P1 Vn S, where n is the number of variants generated in

the obfuscation phase. Our conjecture is that the resilience

of obfuscation and its quality is correlated to the amount of

code that needs to be manually inspected by the attacker to

understand the program. Therefore, the more successful ORBS

is at reducing the program (the smaller the slice) the easier it

would be for the attacker to read and understand the code.

Finally, the results are analysed for each different obfuscated

variant of the program and compared to the original to

determine which Tigress transformation performs better than

others. The approach presented in this paper therefore is a

framework that not only helps identify which of the obfuscated

variants from a set is more resilient, but that can be later

extended to identify which of the configuration parameters of

the obfuscator will produce the best results.

IV. EXPERIMENTAL SETUP

A. Program Selection

In order to conduct the experiment, we selected 8 open

source C programs that are widely used in program slicing.

The programs have different size, structure and functionality

to ensure that we cover programs with different properties.

Table I gives information about the program sizes in terms

of Lines of Code (LoC), functionality and the slicing variable

used in our experiments.

B. Transformation Selectors

The Tigress tool has a number of parameters: out of the

several code transformation options, we selected Virtualiza-
tion, Control flow flattening and Function splitting which are

the most advanced offered by the tool.

TABLE I
EXPERIMENTAL SUBJECTS

Slice Criteria
Program Functionality Lines Variable(s)

P1 Month Calculator 45 month_days, mnames
P2 Delta Square Root 54 i
P3 Simplified Fibonacci 35 n, s
P4 Name number generator 173 counter
P5 Fibonacci (extended) 84 n, result
P6 Sequence generator 127 n, result
P7 Simple calculator 51 summation
P8 Resource allocator 40 i

Based on these transformations and their parameters, we

were able to generate from 8 to 15 variants for each of

the open-source programs included in the experiment. It is

important to note that some combinations of parameter values

do not produce valid configurations due to some conflicts

among the obfuscator parameters; sometimes Tigress is able

to detect this invalid configurations by stopping the build

process and reporting errors, while in other cases the build

process finishes but the code built might not be executable.

The Tigress transformation parameters and their options used

in this study are listed in Table II. It should be noted that the

seed parameter that selects a random transformation has been

set to 0 to exclude any randomness in code generation from

our experiments as we could not track the correspondence

between a particular seed value and the set of generated

transformations. Moreover, we did not consider switch,

indirect and call parameter values of the Control-flow
flattening transformations, because of its similarity with the

Virtualization transformation, and also because we noticed that

often such combinations did not build a valid C file, due to

the conflicts between these two types of transformations.

The three transformation parameters used could take a total

of 20 values, resulting in almost 200 possible combinations.

Some of these combinations worked for some programs and

not for others, thus we were able to generate 48 combinations

that worked across the various programs; we generated 8 to 15

obfuscated versions for each of the programs: this ultimately

resulted in a total of 90 obfuscated variants overall for the 8

subject programs.

C. Orbs Configuration Selection

Finally, the relevant configurations for the ORBS slicers

is given in Table III. We do not discuss the parameters in

detail as ORBS is deterministic and we used the parameters

consistently throughout the experiments. There are further

ORBS parameters that could be set, but only the minimal

compulsory set was used.

Each experiment subject provides multiple variables that

produce output: an attacker might be interested in one or more

of these variables. Column 4 of Table I shows the slicing

criteria that we selected for each subject programs. One key

point to note is that, in order for the ORBS tool to perform

slicing, we had to instrument the source code with ORBS

TABLE II
TIGRESS PARAMETERS

Transformation and option name and description Parameter Description
Virtualization (VirtualizeDispatch) - Turn a
function into a specialized interpreter.

switch dispatch by while()switch(next)...
direct dispatch by direct threading
indirect dispatch by indirect threading
call dispatch by call threading
ifnest dispatch by nested if-statements
linear dispatch by searching a table using linear search
binary dispatch by searching a table using binary search

interpolation dispatch by searching a table using interpolation search
? Pick a random dispatch method(not used)

Control-flow Flattening (FlattenDispatch)
Remove control flow from a function.
(switch, indirect, call) generates error and
* is randomly selected.

switch dispatch by while(1) switch (next) blocks
goto dispatch by labl1: block1; goto block2;

indirect dispatch by goto* (jtab[next])
call each block is outlined into its own function

* select a dispatch method at random.(not used)
Function splitting (SplitKinds) - Split a
function into smaller parts.

top split the top-level list of statements into functions
block split a basic block (list of assignment and call statements) into two functions.
deep split out a nested control structure of at least height> 2 into its own function

recursive same as block, but calls to split functions are also allowed to be split out.
level split out a statement at a level specified by –SplitLevel.
inside split out a statement at the innermost nesting level.

TABLE III
ORBS CONFIGURATION PROPERTIES

Name of the property Value
Slicing window size 4

Slicing direction backward

keyword to capture the trajectory for the slicing criteria; the

instrumentation process does not impact the functionality or

semantics of the program.

V. EXPERIMENTAL RESULTS

In this experiment the Toolchain has computed 90 variants

of 8 programs to determine the resilience of the obfuscated

code generated by Tigress. The Toolchain computes both the

increased number of lines after obfuscation and the redundant

code removed by ORBS: the actual lines of code left after

ORBS processing indicate the resilience of the obfuscation.

Figure 2 graphically represents the results of the increase in

the program sizes after the transformation. We can see that

depending on each transformation parameter, program size

varies widely across different variants.

For example, there are programs with initial size of 50

LoC which have increased to over 2000 lines for a given

set of parameters, whereas some have only increased to 500

for the same set of parameters. However, if it is possible for

an attacker to use automated tools to remove the amount of

inflation in lines and reverse it back to nearly the original

size, the effectiveness of the obfuscation transformation can

be considered questionable.

Our conjecture is that executing ORBS using slicing criteria

for a program will determine the least number of lines that

a MATE attacker needs to look at and understand in order

to reverse engineer. Lines that ORBS is not able to remove

Fig. 2. Program expansion using Tigress obfuscation.

from each variant represent the least number of lines that are

required to understand the behaviour of the particular point of

interest.

Table IV shows how much of the original program can be

removed by ORBS before applying any obfuscation. Column 2

reports the number of lines in the original program, column 3

reports the number of lines that were deleted, and columns

4 and 5 reporting the number of lines remaining and the

percentage of lines removed, respectively. Column 4 therefore

shows the least number of lines required to execute the

program while producing the same results for the selected

slicing criterion. From Table IV, it can be seen that ORBS

was successful at removing a minimum of 45% of the program

code (P8) leaving a potential attacker with 55% of the code to

study. On the other hand, ORBS succeeded at removing 95%

of code (P4), in which case an attacker would be left with

only 5% of code to analyse.

The graph in Figure 3 summarises 90 variants of 8 programs

and represents the resilience of obfuscated code by removing

redundant code using the developed tool-chain. The black line

represents removal of redundant code using ORBS, while the

grey line represents the resilience of obfuscated code, i.e. the

percentage of obfuscated code that could not be removed by

ORBS.

The resilience in Figure 3 reads from left to right; where

left side of the graph represents higher resilience than of the

right. The graph clearly shows obfuscated code for P8 V27
(Program 8 - version 27), has much higher resilience than

P4 V16 (Program 4 - version 16). For example, initially

P8 had 40 LoC which was increased to 950 LoC and only

130 LoC were removed by ORBS. The Tigress combination

ifnest, goto and recursive was used to generate this

variant which provides 86% resilience.

Table V presents data for the highest resilience achieved

by the variants of each program. Looking at the resilience

(Table V) for each transformation, it is not evident that

any particular set or combination parameters outperforms the

others. Therefore, the current set of results seem to show

that the structure of the program also significantly influences

the resilience resultant from the application of particular

parameters. For instance, P1 initially had 45 lines of code, this

was increased by 2216% lines of code with the Tigress param-

eter interpolation goto recursive, with the coding

exhibiting a resilience of 60%. On the other hand, Tigress com-

bination parameter ifnest goto top produced resilience

of 67% with code inflation of 1951%. Therefore, we can

argue that although combination interpolation goto
recursive produced maximum increase in the number of

lines, ifnest goto top still provides higher resilience

from attack.

Although there is no clear trend, looking at the ranked

results, the combination ifnest goto deep produced the

highest resilience at 86% for P8 V27 by removing only 14%

of redundant code. We found that increased number of lines

did not necessarily increases the resilience of obfuscated code.

Future work will further look into details of correlations

between applied transformation parameters, programming con-

structs (loops, branches etc.) and the identified resilience.

Furthermore, from Table V, it can be seen that the transfor-

mation for P8 was highly resilient when compared to P4. The

data for P8 actually mimics the results published in Table IV.

For program P8, ORBS obtained a reduction of only 45%

when slicing the original program and variants of the same

program also exhibits highest resilience at 86%. Similarly, for

program P4 whose variants have the lowest resilience, ORBS

produced the smallest relative slice at 95% reduction of the

program. Although the data for the best and worst performers

map to each other, the mapping does not hold for the programs

that lie in the middle of the range.

A. Threats to Validity

There are several threats to validity that we have identified.

These include the selection of programs and whether they

represent real-world systems. We also acknowledge that all

possible combinations of Tigress parameters have not been

explored in this paper. The combinations of parameter values

for Tigress were randomly generated out of a set of valid

values but all variants had to be compiled and run to check if

they were working. In some cases this resulted in variations to

be produced correctly for a certain set of programs but failing

for others; making the comparison unbalanced. We expect to

be able to address all such and additional threats to validity

in a future extended empirical study.

VI. RELATED WORK

There are a number of commercial and non-commercial

tools like IDA, GDB, Ghidra, Radare2, OllyDbg, Valgrind,

and the Angr framework that have been demonstrated as

effective for the purpose of reverse engineering [19]. Static

analysis and dynamic analysis are the key choice of program

analysis that are used for reverse engineering [20]. Shimba

is a tool where static information is extracted from bytecode

and dynamic events are traced automatically from selected

control flow objects [20]. In contrast, Udupa et al proposed a

dynamic analysis approach to enhance the reverse engineering

process [21]. In their experiment they have used artificial

blocks of code into two different functions: only one is

executed while the other is a decoy that can be spot with

control-flow analysis.

Different metrics are used to measure various security

requirements [22], and similarly code metrics have also been

a common approach to measure obfuscation strength [23] or

by calculating their potency [3]. Other approaches have been

proposed to measure the attacker effort increased by obfusca-

tion by means of controlled experiments with students [23],

penetration testers [24] or public challenges [25], while other

works tried to represent the attacker effort with modelling

approaches based on Petri nets [26] [27], or an ontology of

attacks and protections [28].

Yadegari et al. showed how to undo complex obfuscation

techniques [29] by noticing that weak protections only inject

bogus code with invariant behaviour that can be identified

more easily. Liu et al. used resilience as optimisation function

to search for the best obfuscation in 20 popular Javascript

projects [30]. None of these techniques consider program slic-

ing as an effective approach to reverse engineer. Sebastian et

al. proposed to characterise the resilience of code obfuscation,

transformations against automated symbolic execution [31].

Subsequently further work has also been proposed to improve

this ability by using a combination of fine-grained bit-level

taint analysis and architecture-aware constraint generations

[32]. Scrinzi et al. extracted semantic information and be-

haviour of the execution for de-obfuscation [33]. They argued

that there are some characteristics of the execution that are

strictly correlated with the underlying logic of the code which

are invariant after applying obfuscation. The search for the

TABLE IV
TARGET PROGRAMS AND LINES OF CODE REQUIRED TO EXECUTE

Program Number of Lines Lines deleted Lines remaining % of lines removed
P1 45 29 16 64%
P2 54 29 25 54%
P3 35 23 12 66%
P4 173 164 9 95%
P5 84 64 20 76%
P6 127 107 20 84%
P7 51 33 18 65%
P8 40 18 22 45%

Fig. 3. Redundant code removed by ORBS to determine resilience of Tigress obfuscation.

TABLE V
HIGHEST RESILIENCE

Program Tigress Combination Resilience%
P1 ifnest goto top 67%
P2 interpolation goto block 66%
P3 indirect goto deep 46%
P4 ifnest goto deep 25%
P5 call goto top 54%
P6 interpolation goto top 42%
P7 call goto top 70%
P8 ifnest goto deep 86%

optimal obfuscation configuration has been done by Ceccato

et al. [34] in case of software diversity but using static metrics.

To the best of our knowledge we are the first to propose slice

size as a measure of resilience: our approach mimics the use

of debugging by actual attackers and aims to automate the

resilience measurement.

VII. EXPERIMENTAL DATA

Full set of our experimental data and results available at

http://syedislam.com/obfuscation.

VIII. SUMMARY

In this paper we introduced a novel approach to compute ob-

fuscation resilience using program slicing. Our main goal was

to determine which obfuscated variant of a program provides

highest protection against MATE attacks. In general, larger

obfuscated code may be perceived as harder to understand

and reverse engineer, but we showed that this is not always

the case, when the attacker uses program analysis tools for

de-obfuscation and code size reduction. After running our

program slicing tool, we assumed that the resulting slice size

could be considered a measure of resilience of the obfuscated

code. Our results confirm our conjecture that obfuscated vari-

ant size (LoC) is not a direct measure of quality of resilience

as we found that larger size variants may be simplified by

program slicing, thus showing low resilience. Future work will

look at improving our metrics for several case studies, and

using them to search for the optimal obfuscation parameters

and configurations that maximise resilience and other code

complexity metrics.

REFERENCES

[1] BSA, “Business Software Alliance BSA global software survey 2017,”
https://gss.bsa.org/, 2018, [Online; accessed 20-January-2019].

[2] P. Falcarin, C. Collberg, M. Atallah, and M. Jakubowski, “Guest
Editors’ Introduction: Software Protection,” IEEE Software, vol. 28,
no. 2, pp. 24–27, 2011. [Online]. Available: http://ieeexplore.ieee.org/
document/5720710/

[3] C. Collberg and J. Nagra, Surreptitious software : obfuscation, water-
marking, and tamperproofing for software protection. Addison-Wesley,
2010.

[4] P. Falcarin, R. Scandariato, and M. Baldi, “Remote trust with aspect-
oriented programming,” in 20th International Conference on Advanced
Information Networking and Applications - Volume 1 (AINA’06), vol. 1,
April 2006, pp. 6 pp.–458.

[5] C. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and
obfuscation - tools for software protection,” IEEE Transactions on
Software Engineering, vol. 28, no. 8, pp. 735–746, aug 2002. [Online].
Available: http://ieeexplore.ieee.org/document/1027797/

[6] R. I. Davidson and N. Myhrvold, “Method and system for generating
and auditing a signature for a computer program,” Sep. 24 1996, uS
Patent 5,559,884.

[7] D. Wermke, N. Huaman, Y. Acar, B. Reaves, P. Traynor, and S. Fahl, “A
large scale investigation of obfuscation use in google play,” in Proceed-
ings of the 34th Annual Computer Security Applications Conference.
ACM, 2018, pp. 222–235.

[8] J. M. Nardone, R. T. Mangold, J. L. Pfotenhauer, K. L. Shippy, D. W.
Aucsmith, R. L. Maliszewski, and G. L. Graunke, “Tamper resistant
methods and apparatus,” Jan. 23 2001, uS Patent 6,178,509.

[9] J. Davis, “Protecting intellectual property in cyberspace,” IEEE
Technology and Society Magazine, vol. 17, no. 2, pp. 12–25, 1998.
[Online]. Available: http://ieeexplore.ieee.org/document/682891/

[10] Weiser and M. David, “Program slices: formal, psychological, and
practical investigations of an automatic program abstraction method,”
1979. [Online]. Available: https://dl.acm.org/citation.cfm?id=909356

[11] S. Hada, “Zero-knowledge and code obfuscation,” in International Con-
ference on the Theory and Application of Cryptology and Information
Security. Springer, 2000, pp. 443–457.

[12] Semdesigns.com, “Semantic Designs: Source Code Obfuscators,” http:
//www.semdesigns.com/Products/Obfuscators/index.html?Home=Main,
2018, [Online; accessed 11-January-2018].

[13] Irdeto.com, “Irdeto Cloaked CA ships 500,000 units in first
six months: Europe - Irdeto,” https://www.irdeto.com/news/
irdeto-cloaked-ca-ships-500-000-units-in-first-six-months-europe.htm,
2012, [Online; accessed 14-January-2018].

[14] Stunnix.com, “C/C++ Obfuscator,” http://stunnix.com/prod/cxxo/, [On-
line; accessed 30-January-2018].

[15] C. Collberg, “Tigress obfuscator,” http://tigress.cs.arizona.edu/, [Online;
accessed 31-January-2019].

[16] D. Goswami and R. Mall, “Dynamic slicing of concurrent programs,” in
International Conference on High-Performance Computing. Springer,
2000, pp. 15–26.

[17] N. Sasirekha, A. E. Robert, and M. Hemalatha, “Program slicing
techniques and its applications,” International Journal of Software
Engineering & Applications (IJSEA), vol. 2, no. 3, 2011. [Online].
Available: http://www.airccse.org/journal/ijsea/papers/0711ijsea04.pdf

[18] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo,
“ORBS: language-independent program slicing,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering - FSE 2014. New York, New York,
USA: ACM Press, 2014, pp. 109–120. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2635868.2635893

[19] C. Taylor and C. Collberg, “A tool for teaching reverse engineering.” in
ASE@ USENIX Security Symposium, 2016. [Online]. Available: https:
//www.usenix.org/system/files/conference/ase16/ase16-paper-taylor.pdf

[20] T. Systä, Static and dynamic reverse engineering techniques for Java
software systems. Tampere University Press, 2000.

[21] S. Udupa, S. Debray, and M. Madou, “Deobfuscation: Reverse
Engineering Obfuscated Code,” in 12th Working Conference on Reverse
Engineering (WCRE’05). IEEE, 2005, pp. 45–54. [Online]. Available:
http://ieeexplore.ieee.org/document/1566145/

[22] S. Islam and P. Falcarin, “Measuring security requirements for software
security,” in 2011 IEEE 10th International Conference on Cybernetic
Intelligent Systems (CIS). IEEE, 2011, pp. 70–75.

[23] M. Ceccato, A. Capiluppi, P. Falcarin, and C. Boldyreff, “A large study
on the effect of code obfuscation on the quality of java code,” Empirical
Software Engineering, vol. 20, no. 6, pp. 1486–1524, dec 2015. [Online].
Available: http://link.springer.com/10.1007/s10664-014-9321-0

[24] M. Ceccato, P. Tonella, C. Basile, B. Coppens, B. De Sutter, P. Falcarin,
and M. Torchiano, “How professional hackers understand protected code
while performing attack tasks,” in 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC), May 2017, pp. 154–
164.

[25] M. Ceccato, P. Tonella, C. Basile, P. Falcarin, M. Torchiano, B. Coppens,
and B. De Sutter, “Understanding the behaviour of hackers while per-

forming attack tasks in a professional setting and in a public challenge,”
Empirical Software Engineering, pp. 1–47, 2018.

[26] G. Zhang, P. Falcarin, E. Gomez-Martinez, S. Islam, C. Tartary, B. De
Sutter, and J. d’Annoville, “Attack simulation based software protection
assessment method,” in 2016 International Conference On CyberSecu-
rity And Protection Of Digital Services (Cyber Security), June 2016, pp.
1–8.

[27] Q. Su, F. He, N. Wu, and Z. Lin, “A method for construction of
software protection technology application sequence based on petri net
with inhibitor arcs,” IEEE Access, vol. 6, pp. 11 988–12 000, 2018.

[28] C. Basile, D. Canavese, L. Regano, P. Falcarin, and B. De Sutter, “A
meta-model for software protections and reverse engineering attacks,”
Journal of Systems and Software, vol. 150, pp. 3–21, 2019.

[29] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in IEEE
Symposium Security and Privacy, 2015, pp. 674–691.

[30] H. Liu, C. Sun, Z. Su, Y. Jiang, M. Gu, and J. Sun, “Stochastic optimiza-
tion of program obfuscation,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), May 2017, pp. 221–231.

[31] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner,
“Code obfuscation against symbolic execution attacks,” in Proceedings
of the 32nd Annual Conference on Computer Security Applications
- ACSAC ’16. New York, New York, USA: ACM Press, 2016,
pp. 189–200. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
2991079.2991114

[32] S. Banescu, C. Collberg, and A. Pretschner, “Predicting the
Resilience of Obfuscated Code Against Symbolic Execution
Attacks via Machine Learning,” 26th USENIX Security
Symposium, 2017. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/banescu

[33] F. Scrinzi, “Behavioral analysis of obfuscated code,” Master’s thesis,
University of Twente, 2015.

[34] M. Ceccato, P. Falcarin, A. Cabutto, Y. W. Frezghi, and C.-A. Staicu,
“Search based clustering for protecting software with diversified up-
dates,” in International Symposium on Search Based Software Engineer-
ing. Springer, 2016, pp. 159–175.

