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Joint Coordinate Optimization in Fingerprint-Based
Indoor Positioning
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Abstract—Fingerprint-based indoor positioning estimates the
users’ locations in wireless local area network environments
where satellite-based positioning methods cannot work properly.
In this method, the location of a user is estimated by a pattern
recognition algorithm (PRA). Traditionally, the training phase of
PRA is conducted for G and H coordinates separately. However,
the received signal strength from access points is a unique
fingerprint for each measured point, not for G and H coordinates,
independently. In this letter, we propose a novel PRA-based
Gaussian process regression (GPR) method, named 2D-GPR,
to jointly employ the G and H coordinates during the training
phase. Experimental results show the superiority of 2D-GPR over
conventional GPR (CGPR) and other competitors, especially in
limited data samples. Also, the proposed method has a lower
computation complexity compared with CGPR.

Index Terms—wireless local area network, fingerprint-based
positioning, machine learning, pattern recognition.

I. INTRODUCTION

SATELLITE signals cannot penetrate in indoor environ-
ments, and due to the non-line-of-sight error, the accuracy

of satellite-based positioning methods is not enough [1], [2].
The fingerprint-based wireless local area networks (WLANs)
positioning is used in indoor environments to reach a high
accuracy positioning [3]. In the training (offline) phase, re-
ceived signal strength (RSS) vectors from several access points
(APs) are captured at reference points (RPs) in the WLAN
environment and then they are handed over to a database. A
pattern recognition algorithm (PRA) is employed to recognize
the statistical patterns of gathered data in the training phase.
The trained PRA is utilized in the test (online) phase to convert
users’ RSS vectors to the Cartesian coordinates of the WLAN
environment.

The conventional PRAs have been created for single output
scenarios, and this limitation forces us to utilize these algo-
rithms for G and H coordinates separately. These algorithms,
such as conventional Gaussian process regression (CGPR)
[4], [5], support vector regression (CSVR) [6], and random
forest (CRF) [7] have been used for positioning purposes, in
which the optimization is performed for G and H coordinates
separately. Some GPR-based algorithms have been developed
for multi-task learning problems [8]. In the context of multi-
task learning, the input features are different for each task,
and the complexity of these techniques is at a high level,
which is not suitable for a positioning system due to the
battery consumptions and delays. Also, the GPR-based multi-
task learning algorithms have been designed for correlated
outputs, and they have apriori assumption in the training phase,
such as a linearity assumption between the tasks, which means
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that we have to accept a linearity relation between G and
H coordinates. However, the G and H outputs in fingerprint
localization do not have necessarily a linear dependency in
the WLAN environment. Besides, the uniqueness of the RSS
vector as a fingerprint corresponds to the RP location, not its
G and H coordinates separately, and the PRAs can be modified
by considering this fact.

In this letter, we introduce a novel fingerprint-based GPR
positioning algorithm via a joint coordinate optimization
within the offline phase. The proposed method, named 2D-
GPR, maximizes the multivariate probability of RSS samples
for 2D coordinates during the training phase of PRA, which
means that it is optimized with respect to RPs not based on G
and H coordinates. It uses a shared covariance matrix (which
is a similarity matrix for RPs not for G and H coordinates
separately) with the same hyperparameters across G and H co-
ordinates and leverages joint information from their locations
at the same time. Also, it does not need a linearity assumption
during the training phase. The proposed method not only
achieves better accuracy compared with CGPR in limited
data samples, but also has a lower computation complexity
compared with its counterpart due to its one-time optimization
accomplishment in the training phase and calculation of matrix
elements in the test phase.

II. CONVENTIONAL GPR BASED POSITIONING

This section describes the structure of conventional Gaus-
sian process regression (CGPR), which is needed to apprehend
the proposed 2D-GPR algorithm. First, we consider a training
dataset consists of RPs’ fingerprints and corresponding loca-
tions as follows

S = [s1, s2, · · · , s# ]) ,
x = [G1, G2, · · · , G# ])
y = [H1, H2, · · · , H# ]) ,

(1)

where s8 ∈ R"×1 is the fingerprint of the 8Cℎ RP, " is the
number of APs, and # is the number of RPs. In CGPR the
aim is to obtain two functions that can map any RSS vector
∀s ∈ R"×1 to the 2D Cartesian coordinates as follows

G = lG (s) + nG , H = lH (s) + nH and nG , nH ∼ N(0, f=), (2)

where lG and lH are pattern recognition functions that can
convert RSS vectors to the G and H coordinates, respectively.
The lG and lH should be optimized with the training dataset
in (1). The optimization process of lG and lH are similar,
and in the following, we only describe this procedure for lG .
In the Gaussian processes perspective [9], each variable G can
be defined by a mean and corresponding variance. Initially,
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the mean values can be considered as zero, and therefore, the
vector x has a multivariate distribution as follows

x ∼GP(0,CG), (3)

where CG ∈ R#×# is the covariance matrix, and each element
of this matrix is calculated by a user-defined kernel function.
The kernel functions capture the similarity between each pair
of RSS samples. Here, we use a combination of three kernels
as follows

2G
8 9
= U2

1 exp

(
−
(s8 − s 9 )) (s8 − s 9 )

W2

)
+ U2

2s)
8

s 9 + f2
=X8 9

X8 9 = {1 if 8 = 9 , 0 o.w},
(4)

where 2G
8 9

represents the 8Cℎ row and 9 Cℎ column element of
matrix CG , and s8 is the 8Cℎ row of S. In (4) the first and
second terms are squared exponential and linear kernels that
elicit non-linear and linear dependencies of sCℎ

8
, respectively.

Finally, the third term models the variance of nG in (2). The
vector ) = [U1, U2, W, f=]) contains the hyperparameters that
play a key role for PRA design and should be optimized in
training phase to maximize the log-likelihood of multivariate
probability density function (PDF)

)̃ = arg max
)

log(?(x)) = arg min
)
(− log(?(x)), (5)

where ?(x) is the multivariate PDF defined as follows

?(x) = 1

(2c)
#/2 |CG |

1/2
exp(−1

2
x)C−1

G x). (6)

Therefore, the objective function of (5) is as follows

L(\) = − log ?(x) = 1
2

log |CG | +
#

2
log(20) + 1

2
x)C−1

G x. (7)

The optimization problem in (5) is non-convex; however, it
can be solved for a locally optimum point via gradient-based
algorithms such as conjugate gradient [10]. The conjugate
gradient algorithm (CGA) needs the first-order gradient of
L(\) to optimize the hyperparameters where for the 9 Cℎ

hyperparameter can be calculated as follows

∇L(\ 9 ) = −
1
2

tr((qGq)G − C−1
G )

mCG

m\ 9
) where qG = C−1

G x. (8)

The CGA is iterated till convergence, and then it is needed to
derive the posterior distribution from the joint distribution to
estimate the users’ locations. Assume that the joint distribution
of test and train samples is as follows[

x
x̂

]
∼ N

[(
0
0

)
,

(
CG CG (s, ŝ)
CG(ŝ, s) CG (ŝ, ŝ)

)]
, (9)

where x̂ ∈ R#̂×1 is the vector of users’ locations that should
be estimated with conditioning over the training samples x,
#̂ is the number of test samples (users), CG ∈ R#×# is the
covariance matrix between the training samples, C)G (ŝ, s) =
CG (s, ŝ) ∈ R#×#̂ is the covariance matrix between the test
and training samples, and CG (ŝ, ŝ) ∈ R#̂×#̂ is the covariance
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ŝ

ŝ
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Fig. 1. Difference between (a) Conventional GPR (CGPR) and (b) Proposed
2D-GPR algorithms.

matrix between the test samples. The elements of these ma-
trices are calculated by the optimized hyperparameters, and
then, the posterior distribution can be derived as follows

x̂|x ∼ N(8G , �G)
8G = CG (ŝ, s)C−1

G x
�G = CG (ŝ, ŝ) − CG (ŝ, s)C−1

G CG (s, ŝ),
(10)

where 8G is the pattern recognition function whose output is
equal to estimated locations of (2), �G is the corresponding
covariance matrix where the diagonal elements of �G are the
estimated variances correspond to the variance of nG .

III. 2D-GPR BASED POSITIONING

In this section, we present the proposed optimization proce-
dure of hyperparameters for a 2D scenario. Fig. 1 shows the
difference between the proposed 2D-GPR and CGPR algo-
rithms. Here, each pair of G and H coordinates are considered
as the characteristics of a given RP, A = (G, H). Therefore, x
and y have the same covariance matrix as depicted in (11)

(x, y) ∼ GP((0, 0),CA ), (11)

where CA ∈ R#×# is the shared covariance matrix between
G and H, and elements of this matrix are calculated by kernel
functions similar to CG in the previous section. Considering
a shared covariance matrix CA for both coordinates, in the
optimization process, means that the similarities of RSS vec-
tors are captured for the RPs, not for G and H coordinates
separately. The proposed optimization problem employs both
coordinates during the training phase as follows

)̃ = arg max
)

log(?(x, y)) = arg min
)
(− log(?(x, y))), (12)

where ?(x, y) = ?(x|y)?(y). To derive the ?(x|y) we first can
use the joint distribution of training coordinates

[
y
x

]
∼ N


(

0
0

)
,

(
CH (s, s) CG,H (s, s)
CH,G(s, s) CG (s, s)

)
︸                             ︷︷                             ︸

�G,H


, (13)

where the joint covarince matrix �G,H in (13) is a singular ma-
trix and is not invertible, because the input features and hyper-
parameters are the same for both coordinates. In other word,
in (13) we have CG (s, s) = CH (s, s) = CG,H (s, s) = CH,G (s, s).
Therefore, the posterior distribution cannot be derived. To
avoid this problem, we can assume that ?(x, y) = ?(x)?(y).
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In the following, it can be seen that both of x and y take part
to calculate the objective function L()) and corresponding
gradient ∇L()). First, the objective function can be calculated
as follows

L()) = − log(?(x, y))
=

1
2

log |CA | +
#

2
log(2c) + 1

2
x)C−1

A x +
1
2

log |CA | +
#

2
log(2c) + 1

2
y)C−1

A y.

(14)

It can be seen that the objective function L()) depends on
both training coordinates x and y with the same covariance
matrix CA . The gradient of (14) for the 9 Cℎ hyperparameter
can be derived as follows

∇L(\ 9 ) =
m (− log(?(x, y)))

m\ 9

= −1
2

tr((qGq)G − C−1
A )

mCA
m\ 9
) − 1

2
tr((qHq)H − C−1

A )
mCA
m\ 9
)

= −1
2

tr((qGq)G + qHq)H − 2C−1
A )

mCA
m\ 9
),

(15)
where qG = C−1

A x and qH = C−1
A y take both coordinates

during the optimization of PRA. As explained in the previous
section, CGA can be applied to update the hyperparameters till
convergence. The joint distribution of test and train samples
in this 2D scenario can be written as follows[
(x, y)
(x̂, ŷ)

]
∼ N

[(
(0, 0)
(0, 0)

)
,

(
CA CA (s, ŝ)
CA (ŝ, s) CA (ŝ, ŝ)

)]
, (16)

where x̂, ŷ ∈ R#̂×1 are the vectors of users’ locations
that should be estimated with conditioning over the training
samples x, y, #̂ is the number of test observations (users),
CA ∈ R#×# is the covariance matrix between the training
observations, C)A (ŝ, s) = CA (s, ŝ) ∈ R#×#̂ is the covari-
ance matrix between the test and training observations, and
CA (ŝ, ŝ) ∈ R#̂×#̂ is the covariance matrix between the test
observations. The posterior distribution can be derived as
follows

(x̂, ŷ) | (x, y) ∼ N ((8G ,8H), �A )
8G = CA (ŝ, s)C−1

A x
8H = CA (ŝ, s)C−1

A y
�A = CA (ŝ, ŝ) − CA (ŝ, s)C−1

A CA (s, ŝ).

(17)

Proof: To derive the posterior distribution, we explain the
process for the 8G with respect to the shared covariance matrix
that can similarly be employed for 8H . Initially, from the
Bayes rule, we have

?(x̂|x) = ?(x̂, x)
?(x) ∼

exp(− 1
2 x̄) Σ−1

A x̄)
exp(− 1

2 x)C−1
A x)

= exp(−1
2
(x̄) Σ−1

A x̄ − x)C−1
A x)),

(18)

where,

x̄ =
[

x
x̂

]
, ΣA =

[
CA CA (s, ŝ)
CA (ŝ, s) CA (ŝ, ŝ)

]
, (19)

where �−1
A is the inverse of 2 × 2 block matrix that can be

calculated as below

�−1
A =[
C−1
A + C−1

A CA (s, ŝ)HCA (ŝ, s)C−1
A −C−1

A CA (s, ŝ)H
−HCA (ŝ, s)C−1

A H

]
where, H = (CA (ŝ, ŝ) − CA (ŝ, s)C−1

A CA (s, ŝ))
−1
.

(20)
the above equation can be substituted to inner term in (18)
which can be simplified as follows

x̄) �−1
A x̄ − x)C−1

A x =
[

x) x̂)
]
�−1
A

[
x
x̂

]
− x)C−1

A x

=
(
x)C−1

A CA (s, ŝ)HCA (ŝ, s)C−1
A x − x)C−1

A CA (s, ŝ)Hx̂
)
+(

−x̂)HCA (ŝ, s)C−1
A x + x̂)Hx̂

)
= (x)C−1

A CA (s, ŝ)H) (CA (ŝ, s)C−1
A x − x̂)+

x̂)H(−CA (ŝ, s)C−1
A x + x̂)

= (−x)C−1
A CA (s, ŝ)H + x̂)H) (x̂ − CA (ŝ, s)C−1

A x)
= (x̂ − CA (ŝ, s)C−1

A x))H(x̂ − CA (ŝ, s)C−1
A x).

(21)
therefore, Eq. (18) can be simplified as follows

?(x̂|x) ∼ exp
(
−1
2

(
x̂ − CA (ŝ, s)C−1

A x
))

H
(
x̂ − CA (ŝ, s)C−1

A x
))
.

(22)
from (22) it can be seen that the posterior mean vector and
covariance matrix are as follows{

8G = CA (ŝ, s)C−1
A x

�A = H−1 = CA (ŝ, ŝ) − CA (ŝ, s)C−1
A CA (s, ŝ).

(23)

Note that �A is equal for both coordinates because it does not
depend on G and H.

Complexity Analysis: In the training phase, 2D-GPR needs
the inverse of CA in each iteration of CGA for (15) that
causes O(#3) calculations. This process is done two times
to calculate the CG and CH for CGPR. In the test phase, 2D-
GPR calculates the CA (ŝ, s) C−1

A in (17) which is equal for 8G
and 8H , whereas CGPR performs this process two times for
CG (ŝ, s)C−1

G and CH (ŝ, s) C−1
H . Therefore, the proposed method

has lower complexity compared with CGPR during the training
and test phases.

IV. EXPERIMENTAL RESULTS

The proposed method has been implemented using the R
programming language, and we use a dataset introduced in
[5] to evaluate it over competitors. This dataset consists of
250 points, and each point has 75 samples from 27 Wi-Fi
APs where the area size is 120<2. Here, 9 out of 27 APs
that are more powerful in the environment have been selected.
We conduct several experiments to compare the proposed 2D-
GPR algorithm with three of the most popular baseline PRAs
including CGPR [4], [5], CSVR [6], and CRF [7]. We use the
Monte-Carlo cross-validation method [11] to evaluate these
algorithms in which the train and test samples from 250 points
are randomly selected  times, and the average of test errors
is reported to reduce the error bias. The mean average error
(MEA) over these  times is calculated as follows

MAE =
1
 #̂

 ∑
:=1

#̂∑̂
==1

√
(x̂:
=̂
− [8G]:=̂)2 + (ŷ

:
=̂
− [8H]:=̂)2, (24)
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TABLE I
THE MAE (<) OF DIFFERENT ALGORITHMS VIA DIFFERENT EXPERIMENT SETUP FOR DIFFERENT NUMBER OF RPS, APS, AND SAMPLES.

RP (# )⇒
AP (" )⇒
Sample⇒

40 80 150

3 5 9 3 5 9 3 5 9

3 5 15 3 5 15 3 5 15 3 5 15 3 5 15 3 5 15 3 5 15 3 5 15 3 5 15

2D-GPR 3.28 2.97 2.58 2.93 2.62 2.24 2.91 2.60 2.23 2.78 2.49 2.11 2.61 2.30 1.92 2.48 2.16 1.78 2.67 2.37 1.99 2.40 2.10 1.74 2.21 1.91 1.56

CGPR [4], [5] 3.76 3.42 3.01 3.84 3.46 3.00 3.07 2.73 2.53 2.97 2.64 2.24 2.64 2.32 1.95 2.63 2.37 1.96 2.77 2.46 2.07 2.42 2.12 1.76 2.25 1.94 1.59

CSVR [6] 3.78 3.52 3.22 3.57 3.30 3.01 3.42 3.15 2.87 3.03 2.77 2.43 2.84 2.55 2.24 2.69 2.40 2.10 2.83 2.52 2.15 2.60 2.30 1.97 2.40 2.09 1.78

CRF [7] 4.35 4.05 3.72 3.84 3.53 3.18 3.35 3.03 2.68 3.67 3.36 2.98 3.26 2.92 2.53 2.89 2.58 2.19 3.29 2.94 2.53 2.90 2.54 2.15 2.49 2.16 1.80

where #̂ is the number of test samples, x̂:
=̂

and ŷ:
=̂

are the
location of =̂Cℎ user within the : Cℎ iteration, and [8G]:=̂ and
[8H]:=̂ are the estimated location of the =̂Cℎ user within the
: Cℎ iteration. In our experiments, we choose  = 10 and
#̂ = (250 − #) (75/Sample), where “Sample” is the number
of available samples for each user. We reported the MAE of
different experiment setup in Table I, for a different number
of RPs, APs, and samples. To reduce the effect of small-scale
fading, the RSS samples obtained from multiple times can
be averaged out [4]. Here, all of the 75 training samples are
averaged out. The number of samples in Table I refers to the
available samples for each user that are also averaged out.
Since the environment area is 120<2, for 40, 80, and 150
RPs, we have one RP per 3, 1.5, and 0.8 <2, respectively.
With the same reasoning, when the number of APs is 9, 5,
and 3, we have one AP per 13.3, 24, and 40 <2, respectively.
In the following, we use (RP, AP, Sample) to describe Table I.
For instance, (40, 5, 3) refers to 40 RPs, 5 APs, and 3 available
samples for users. It can be seen that when the number of RPs
and APs is limited, 2D-GPR is more effective than other PRAs.
The best record of 2D-GPR compared with other PRAs occurs
in (40, 5, 15). It means that when there is one RP per 3<2

and one AP per 24<2 the proposed method is more effective.
On the other side, in ideal scenarios where the number of
RPs and APs are enough (e.g., (150, 9, 15)), all PRAs have
similar performance, particularly 2D-GPR and CGPR. This
observation does not reduce the strength of the proposed 2D-
GPR algorithm, because several studies on PRAs show that
they are saturated by increasing the number of training data
[1], [12].

In Fig 2 we have illustrated the boxplot of  times iteration
for a low RPs and APs density scenario (40, 5, 15), and a high
RPs and APs density scenario (150, 9, 15) where the horizontal
lines in this figure show the median error. As can be seen,
2D-GPR in the low-density scenario has less median error
and variance. On the other hand, in the high-density scenario,
2D-GPR is similar to CGPR and a little bit better than CRF
and CSVR. It can be concluded that in large scale areas with
low densities of RPs and APs, our proposed method is more
effective. Besides, the proposed method is preferable due to
its less calculation cost compared with CGPR.

V. CONCLUSION

We proposed a novel fingerprint-based positioning method,
named 2D-GPR, which is an evolved version of CGPR for a
two-dimensional scenario. We conducted several experiments
with different experiment setups, and numerical results proved
the superiority of this algorithm over baseline algorithms,
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Fig. 2. Boxplot for two scenarios of Table I where (a) is a low RPs and APs
density scenario (40, 5, 15) and (b) is a high RPs and APs density scenario
(150, 5, 15).

especially when the densities of RPs and APs are limited.
The proposed method also has less complexity compared with
CGPR.
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