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Abstract— Autism Spectrum Disorder (ASD) is a neurode-
velopmental disorder that affects social communication and
interaction. Early diagnosis of ASD can mitigate the severity
and help with ideal treatment direction. Computer vision-based
methods with traditional machine learning and deep learning
are employed in the literature for automatic diagnosis. Recently,
deep learning with a facial image-based ASD classification has
gained interest due to its ease of collection and non-invasiveness.
We observed that the existing approaches utilized either local
or global features of facial images to diagnose ASD. However,
its important to consider both local and global features to
obtain fine-grained details and larger contextual information
for accurate detection and classification. This paper proposes
a sequencer-based patch-wise Local Feature Extractor along
with a Global Feature Extractor. Finally, the features from
these modules are aggregated to obtain the final feature for
the classification of ASD. Experiments on a publicly available
Autism Facial Image Dataset demonstrate that our proposed
framework achieves state-of-the-art performance. We achieved
accuracy, precision, recall, and Fl-score of 94.7%, 94.0%,
95.3%, and 94.6 %, respectively.

Index Terms— Autism Spectrum Disorder, ASD, Vision-
transformer, classification, LSTM, Local feature extraction, and
Global feature extraction.

I. INTRODUCTION

Autism spectrum disorders (ASD) are a diverse group
of neuropsychiatric conditions. They are characterized by
some degree of difficulty with impairments in social com-
munication, personal interaction, academic functioning, and
restricted and repetitive behaviors [1]. Notably, people with
ASD may behave, communicate, and learn in ways different
from most others. The Autism and Developmental Disabili-
ties Monitoring Network of the Centers for Disease Control
and Prevention estimated that about one in 44 children had
been identified with ASD in the United States [2], while
the prevalence rate of ASD is one out of 100 worldwide
[3]. Due to the complexity of the disorder, its challenging to
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examine the exact cause of ASD [4]. However, a combination
of genetic, environmental, and neurological factors [5] may
contribute to the development of ASD.

To improve cognitive, social, and language development
outcomes, individuals with ASD must receive an early diag-
nosis and intervention [6]. Diagnosis can be performed both
manually and automatically. Manual diagnosis by clinicians
entails a combination of standardized tools and behavioral
observations that can aid in identifying ASD. The Child-
hood Autism Rating Scale [7], Autism Spectrum Disorder-
Observation for Children [8], and other manual diagnoses
are available. This process, however, can be time-consuming
and relies heavily on the clinician’s expertise and experience,
which can lead to inconsistency in diagnosis. Furthermore,
in some areas, the availability of trained clinicians may be
limited, resulting in delayed diagnosis and treatment.

On the other hand, the researcher employed different
computer vision with traditional machine learning (ML)
and deep learning (DL)-based techniques to automatically
diagnose ASD [9]. For example, features are extracted from
magnetic resonance imaging (MRI) [10], eye gaze data
[9], body behavior [11], and facial image [12]. Compared
with other modalities, facial images that offer details on
various facets of facial morphology (including symmetry,
shape, and size) are used in ASD classification [13]. It can
capture a wealth of information on facial morphology and
can be collected relatively easily and non-invasively without
subjects’ cooperation. This paper will consider detecting and
classifying ASD using facial images.

DL with facial image-based detection and classification
technique has recently gained increasing attention, and differ-
ent models have been developed [14]-[16]. The approaches
in [14] looked into different Convolution Neural Network
(CNN)-based models for facial analysis to detect and classify
ASD. They found some existing pre-trained models using
extremely large-scale image datasets and fine-tuning the
autism facial image datasets to classify ASD and Typically
Developed (TD). For example, the MobileNet [15] obtained
94.6% accuracy in classifying ASD and TD on the Autism
Facial Image Dataset (AFID) dataset. Besides these, Cao et
al. [16] utilized the Vision Transformer model to predict
ASD using facial images with the patch-based method. We
can observe that all existing methods used either patch-based
local or global features. However, its important to consider
both local and global features to obtain fine-grained details
and larger contextual information for accurate detection and



classification.

In this paper, we propose a deep learning-based model
consisting of patch-based local and global feature extractors
that extract local and global features of facial images to clas-
sify an individual with ASD and TD. The main contributions
are summarized as follows:

o An LSTM-based sequencer block is utilized to extract
patch-based local features, while CNN is employed to
extract global contextual features. The extracted features
from these modules are aggregated to produce robust
discriminant features for ASD and TD classification.

e The proposed framework has been evaluated on a
publicly available Autism Facial Image Dataset. The
experimental results exhibit that it can achieve state-
of-the-art performance.

II. RELATED WORK

Traditional Machine Learning (ML)-based Ap-
proaches: Ganesan et al. [17] utilized VGG-16 for feature
extraction, while support vector machine was employed to
classify ASD and TD using the extracted feature. They
demonstrated that it achieved an accuracy of 90.0% on
a publicly available AFID dataset [18]. Again, Del et al.
[19] analyzed facial expressions produced by ASD and TD
children using traditional machine learning-based methods.
A conditional local neural field was used to recognize and
track facial landmarks. They conducted the experiment on a
small dataset, including five for each ASD and TD group of
children, and found that the lower part of the face is more
important in distinguishing between ASD and TD.

Deep Learning (DL)-based Approaches: Besides the
traditional ML-based approach, the researcher explored deep
learning (DL)-based approaches to detect and classify ASD
from facial images. For example, Akter et al. [20] proposed
a system that employed 17 classifiers, seven of which are
deep and previously learned transfer learning-based models,
and the rest of which are ML-based models. They evaluated
their models on the publicly available AFID dataset. Among
the various methods they experimented with, MobileNet-V1
achieved the highest test accuracy, which was 92.1%. Sim-
ilarly, Alsaade and Alzahrani [21] also explored pre-trained
Xception [22], VGG-19, and NASNETMobile models for
the ASD classification. They conclude that the Xception
achieved the best accuracy at 91.0% on the same dataset.
In addition, Lu and Perkowski et al. [23] explored VGG-16
[24] on their own collected dataset East Asian dataset, and
they demonstrated that it achieved an accuracy of 95.0%.

Vision transformer-based patch-wise feature extraction is
becoming popular in computer vision due to its ability to
extract local fine-grained details [25]. In autism research,
Cao et al. [16] proposed ViTASD, which considers the Vision
Transformer (ViT) [26] as the backbone and added a Gaus-
sian layer for feature extraction and achieved an accuracy of
93.2% and 94.5% on the AFID dataset, by employing the
pre-trained model of extreme large-scale dataset ImageNet
[27] and AffectNet [28] datasets, respectively.

We can observe that existing studies utilized either patch-
based or pre-trained CNN-based models for feature extrac-
tion. Therefore, we employed patch-based local and global
feature extraction in this paper to classify ASD and TD.

III. PROPOSED METHOD

The proposed framework comprises two modules: (i)
Local Feature Extractor (LFE), which extracts the pattern
of the feature locally based on the patch of the image using
Bi-directional long short-term memory (BiLSTM), and (ii)
Global Feature Extractor (GFE) extracts the global features
using a conventional CNN-based model. The detailed archi-
tecture of the proposed framework is shown in Fig. 1.

A. Local Feature Extractor

In the proposed framework, the LFE is used to determine
the linear correlation in the order of the patches. Motivated
by the Vision Transformer [26], the input image is divided
into several distinct, non-overlapping patches, allowing the
network to concentrate on the image’s smaller details while
enhancing performance and lowering processing costs. Tat-
sunam et al. [29] proposed a sequencer method where the
sequencer architecture used long short-term memory (LSTM)
rather than self-attention for sequence modeling. Our pro-
posed LFE module is based on that sequencer method.

Similar to [29], we employed BILSTM2D and multi-
layer perception to build a sequencer block for the LFE
module. Here, the BiLSTM2D layer mixes up the spatial
information more economically for high-resolution images
than the transformer layer [26] and multi-layer perception
for channel-fusion, which typically consists of one or more
fully connected layers, where each neuron in one layer is
connected to every neuron in the adjacent layer [30]. An
illustration of a sequencer block is shown in Fig. 2.

The BIiLSTM2D comprises two BiLSTM, namely, hori-
zontal and vertical BILSTM. Each BiLSTM includes two
standard LSTMs, one of which processes data in the forward
direction while the other in reverse order, to produce a
comprehensive representation of the input sequence. The
advantage of the BILSTM is that it can record data from pre-
vious and future sequence contexts, enhancing the network’s
capacity to represent intricate connections and patterns in
the input data. The vertical BILSTM can take the number of
tokens in the vertical direction, while the horizontal BILSTM
for the horizontal direction. For input image I, and I}
and I, € RT*WXC are the set of sequences respectively
for the horizontal and vertical BiLSTM. B,.,. and By,
€ RHXW>2D correspond to the output of horizontal and
vertical BiLSTM and are concatenated and processed point-
wisely in a fully connected layer to produce the final output.
Where H and W are the numbers of sequences in the
vertical and horizontal direction, respectively, and C' and
D are the number of channels and hidden dimensions. The
mathematical expression of BILSTM2D is given by:

Bver = BiLSTMuer(Iv)a (1)



Local Feature Extractor I/

o I

Sequence: Patch Sequence: PW
Block Merging Block

Linear

Sequencer PW
Block

Linear

s
. [e2 (o2 [ed
|

Convo+Pool ConvotPool

= Pool

Convo+Pool
= Convo

Fig. 1.
are aggregated for the classification of individuals having ASD and TD.

Bhor = BiLSTMhor(Ih)a (2)
B= CO?’LCCLt(BUe,-, Bho7')7 3)
Output = FC(B), 4)

where, F'C(") is fully connected layers with weight W €
RCX 4D.

The number of sequencer blocks may generate differ-
ent versions of the LFE: sequencer-18, sequencer-24, and
sequencer-36, where the number of sequencer blocks is 18,
24, and 36, respectively. The output of the last sequencer
block is processed by the global average pooling, which
decreases the dimensionality of feature maps by computing
the average value of each feature map and producing a single
scalar value for each channel. For more information about
sequencer blocks, please refer to [29].

B. Global Feature Extractor

The GFE refers to the high-level, abstract representations
of the image that capture the overall context or information
of the entire image. Although other pre-trained CNN-based
models for image classification exist in the literature, such
as ResNet in [31], MobileNet in [20], and Xception in [21],
we chose the modified architecture of VGG-16 [24] as the
baseline for the GFE due to its high accuracy. Unlike LSTM,
which operates linearly, convolution transfers relationships
around its neighbors, which may impact prediction.

In a filter mask, the convolution provides a relationship
with its neighbor and moves throughout all spatial points.
Then, pooling assists in downsampling the input feature
maps’ spatial dimensions while retaining key information.
It uses 3x3 filters and max pooling to extract high-level
features. The architecture consists of 13 convolutional layers
and five max-pooling layers. We update the VGG-16 archi-
tecture by replacing the last layer with a dimension equal to
the final output dimension of the local extractor for point-
wise addition.

Finally, the output of the LFE is aggregated with the
features extracted from GFE. We have experimented with
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Proposed framework of the sequencer-based local patch-wise feature extractor, along with the CNN-based global features extractor. Both features

different combinations to aggregate the features, such as
pointwise addition, multiplication, and concatenation. How-
ever, pointwise addition provides a better result than other
combinations. Later, we employed a fully connected and
classifier layer for classification.

IV. EXPERIMENTS
A. Dataset and Evaluation Metrics

AFID [18] is the only publicly available dataset including
facial images for autism research. The images were col-
lected from various websites and Facebook pages with equal
distribution of ASD and TD. The dataset contains about
89.0% White ethnic group of children, while the remaining
data are from others, with ages ranging from 2 to 14. The
gender distribution in the autistic class (male vs. female)
was roughly 3:1. The detailed training, validation, and testing
protocol is shown in Table L.

TABLE I
ABOUT AUTISM FACIAL IMAGE DATASET (AFID) [18].

Type | Train | Validation | Test | Total

Image ASD 1,268 50 150 1468

TD 1,268 50 150 1468
Percentage [%] | ASD 43.2 1.7 5.1 50
TD 43.2 1.7 5.1 50

Several evaluation criteria, including accuracy, precision,
recall, and Fl-score, are employed to validate the proposed
framework.

B. Implementation Details

We conducted all experiments on a single NVIDIA
GeForce RTX 2080 Ti GPU running on a Linux operating
system. We used Python 3.9.2 [32] and PyTorch 1.10.0
[33] along with timm [34] for all our implementations. We
also employed the pre-trained weight using a large-scale
ImageNet dataset ! to fine-tune the model. It has 1000 classes
and contains 1,281,167 training images and 50,000 validation
images. For regularization and data augmentation, random

https://www.image-net.org/download.php
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respectively, to extract eatures.

erasing [35], mixup [36], drop-path, smoothing [37], cut-mix
[38], label smoothing and different kinds of horizontal and
vertical flipping were considered.

Furthermore, we used Cross-Entropy as a loss function and
the AdamW as an optimizer with a learning rate ranging from
1xe™2 to 1xe~®, the momentum of 0.90-0.99, and weight
decay of 1xe=5. We also used a Droupout rate of 0.2. We
trained our model for 310 epochs, where ten were used for
cool-down and warm-up.

C. Comparison with State-of-the-Art Approaches

We compare the result of our proposed framework with the
latest classification method considering the DL-based along
with ViT-based approaches on the publicly available AFID
image dataset, including MobileNet in [39], [20], and [14],
ViTASD in [16], Xception in [21] and [40] VGG-16 in [41]
and ResNet in [31]. The experimental results are shown in
Table II, and the corresponding confusion matrix in Fig. 3.
It can be observed that the proposed framework achieves the
best accuracy compared to state-of-the-art approaches.
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Fig. 3. Confusion matrices for the proposed framework on AFID dataset.

We observed that the proposed framework outperformed
previous state-of-the-art approaches. For example, the accu-
racy based on MobileNet is 92.1% [20] and 94.6% [14],
while our proposed framework achieved 94.7%; that is,
the proposed framework improves accuracy at 2.6% and

Core components of the sequencer block. In this block, the BILSTM2D uses two BiLSTM, which run over horizontal and vertical directions

0.1%, respectively. Furthermore, our proposed framework
also outperforms the existing Vision Transformer (ViT)-
based approach by a great margin. For example, ViTASD
[16] achieved 93.2%accuracy with their pre-trained model
on the ImageNet dataset, while our proposed framework
achieved 94.7% using the pre-trained model of the same.

D. Ablation Study

This paper’s proposed framework includes two key mod-
ules: LFE and GFE. Furthermore, patch-based LFE em-
ploys the sequencer LSTM model [29] consisting of three
sequencer versions based on the numbers of sequencer
blocks (i.e., sequencer-18, sequencer-24, and sequencer-36).
Therefore, we design different ablation studies to analyze the
contribution of each module. All experiments are conducted
with the pre-trained model of the ImageNet dataset. The
experimental results are shown in Table III. We can see
that sequencer-24 achieved better accuracy than sequencer-
18. However, accuracy slightly deteriorates from that of
sequencer-36. We think that a large number of sequencer
blocks overfit due to the small sample of the AFID dataset.
Therefore, we choose sequencer-24 architecture in the LFE
module. Regarding the GFE alone, we evaluated the accuracy
of the VGG-16 model separately, achieving an accuracy of
86.3%. We conclude that aggregating the extracted features
from LFE and GFE improves the overall accuracy, as demon-
strated in Table II and Fig. 3.

V. CONCLUSION AND FUTURE CHALLENGE

We demonstrate that deep learning-based algorithms can
analyze and interpret facial features to identify individuals
with autism spectrum disorder (ASD). We proposed a method
for the detection and classification of ASD using local and
global feature representation of facial images. It sheds light
on the possibility of automated detection and diagnosis of
ASD. A vision-transformer (ViT)-based technique sequencer
was exploited as Local Feature Extractor along with the mod-
ified VGG-16 model for Global Feature Extractor. Addition-
ally, this paper illustrates that combining local and global fa-
cial features can increase the accuracy of ASD classification.
Despite the proposed methods’ great accuracy, certain things
could still be improved. For instance, the proposed method



TABLE I
COMPARISON OF THE STATE-OF-THE-ART CLASSIFICATION METHODS ON AUTISM FACIAL IMAGE DATASET (AFID). ’-’ INDICATE THE INFORMATION
IS NOT AVAILABLE ON THE RESPECTIVE METHOD.

Author Method Accuracy [%] | Precision [%] | Recall [%] | F1-score [%]
Alsaade et al. [21] Xception 91.0 - 88.4 -
Elshoky et al. [41] VGG-16 89.0 - - -
Mujeeb et al. [40] Xception 90.0 92.0 88.5 -

Akter et al. [20] MobileNet 92.1 - - -
Jahanara et al. [31] | ResNet50 84.0 - - -
Hosseini et al. [14] | MobileNet 94.6 - - -

Cao et al. [16] ViTASD 93.1 - - -
This study Proposed 94.7 94.0 95.3 94.6
TABLE III

STUDY OF THE EFFECTIVENESS OF THE NUMBER OF THE SEQUENCER BLOCKS OF LOCAL FEATURE EXTRACTOR (LFE) ALONG WITH GLOBAL
FEATURE EXTRACTOR (GFE).

Model Pre-trained | Accuracy [%] | Precision [%] Recall [%] | Fl-score [%]
Sequencer-18 ImageNet 92.3 91.5 93.3 90.0
Sequencer-24 ImageNet 93.0 92.1 94.0 90.0
Sequencer-36 ImageNet 92.3 89.4 96.0 90.0

VGG-16 ImageNet 88.3 91.0 88.4 89.6

considered two different kinds of feature extractors. It may
be added other features to analyze the accuracy. Furthermore,
the proposed framework was validated on a single publicly
available dataset. It would be another challenge and future
direction to collect a real facial dataset of individuals with
autism to validate our proposed framework. Furthermore, the
model’s accuracy could be improved by fine-tuning the pre-
trained model using the AffectNet dataset, which comprises
the largest facial image dataset. Training on this dataset can
capture more details about facial features like the distance
between different key points, nose, eye, ear, and cheeks than
those trained on other datasets.
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