
ADLARS: An Architecture Description Language for
Software Product Lines

R. Bashroush, T.J. Brown, I. Spence, P. Kilpatrick
Queens University Belfast,

School of Computer Science,
18 Malone Road, Belfast BT7 1NN, UK

{r.bashroush, tj.brown, i.spence, p.kilpatrick}@qub.ac.uk

Abstract

Software Product Line (SPL) Engineering has

emerged to become a mature domain for maximizing
reuse within the context of a family of related software
products. Within the process of SPL, the variability
and commonality among the different products within
the scope of a family is captured and modeled into a
system’s ‘feature model’. Currently, there are no
Architecture Description Languages (ADLs) that
support the relationship between the feature model
domain and the system architecture domain, leaving a
gap which significantly increases the complexity of
analyzing the system’s architecture and insuring that it
complies with its set feature model and variability
requirements. In this paper we present ADLARS, an
Architecture Description Language that supports the
relationship between the system’s feature model and
the architectural structures in an attempt to alleviate
the aforementioned problem. The link between the two
spaces also allows the automatic generation of product
architectures from the family reference architecture.

1. Introduction

The Software Product Line Engineering process
[1-3] (SPL) is aimed at maximizing reuse within a
family of related products by analyzing and modeling
the commonality and variability (variability
management [4-6]) among the different products
within a family. Among researchers and practitioners
of software product line engineering, this form of
commonality-variability analysis is frequently
performed in terms of feature-oriented domain analysis
[7, 8].

A reference architecture is then constructed for the
family from which different product architectures are
derived based on the feature set selected. The reference

architecture is one of the major characteristics that
distinguish SPL from traditional vertical reuse
techniques [9] as it introduces variability at the
architectural level.

Architecture Description Languages (ADLs) are
usually used to describe the system architecture. There
are a number of ADLs varying in focus and formality.
Examples are Acme [10], Meta-H [11], Koala [12],
Rapide [13] and Wright [14]. However, none of the
existing ADLs supports the relationship between the
system’s feature model and its architecture.

In this paper we present ADLARS, an Architecture
Description Language for Real-time Software Product
Lines, which was designed within our research group
for use in the definition of product line reference
architectures. ADLARS is oriented towards real-time
systems but it can be used with other application
domains. It has both a textual and a visual notation.
The language is intended for use within a product line
engineering process in which feature-oriented domain
modeling is also used. ADLARS architecture
descriptions reference features from the feature model
and build feature dependent task and component
templates which capture the relationships between
product features and architectural structure. Feature
modeling techniques are still evolving [15-17], but
there are core aspects that are common to all
approaches. ADLARS assumes that features will be
categorized as mandatory (or Kernel), optional or
alternative.

In the next section we present the rationale and
background information about ADLARS. Section 3
covers the details of the language, visiting the different
sections of the ADLARS notation. A discussion is
presented in section 4. Finally, a summary section
rounds off the paper.

2. Rationale

The basic concept of an architecture description
language, as a notation for describing the structure and
interconnections within a software system, is not new,
and quite a number of ADLs have been designed [10-
14, 18]. Although they all share the aims of abstracting
away from implementation detail and capturing the
higher level architecture of software systems, there is
some diversity in terms of what they provide. Many
have emerged from research related to software
architecture in the general sense. Few ADLs have been
designed specifically for use in the context of
engineering software product lines, although some,
such as Koala [12] are in regular industrial use.

The central distinguishing feature about ADLARS
is its emphasis on capturing architectural relationships.
The most important relationships targeted are those
between product features and software architecture.
The assumption is made that a feature model for the
application domain will be available as a precursor to
the architecture design process. Another important
feature of ADLARS is the comprehensive description
of the Task component interfaces to allow for a better
architecture consistency checks.

ADLARS is intended to allow the architect to
describe the manner in which the software structure

and interfaces change in response to variations in the
product feature set. An ADLARS architecture
description therefore acts as a bridge between the
requirements space and the solution space. In the
former, different products within a family provide
different feature combinations. In the latter,
components are combined and customized in differing
ways, to provide the feature combinations that
characterize individual products.

3. ADLARS Structure

ADLARS describes the structural aspects of
architectures in terms of a three-level view, which is
illustrated in Figure 1. This is augmented by a
behavioural partitioning into what are called
interaction themes. Within an interaction theme, all
interaction, communication and behaviour is related to
one particular theme or purpose. Commonly occurring
themes may include, for example, system configuration
or system management. There will typically be
multiple interaction themes in an ADLARS definition,
and individual component or task instances may
participate in several themes.

THE SYSTEM-LEVEL VIEW

Systems are collections of tasks interacting via event messages.
Color coding can be used to indicate different categories of task.
Line color and thickness conveys information on the kinds of
event being exchanged

THE TASK-LEVEL VIEW

Each Task design provides information on the task’s event alphabet and
internal component architecture. Incoming events will often be handled by
functionality provided by internal components. These may generate
secondary events which are posted to other tasks. Color coding can again
be used to distinguish event and component categories.

THE COMPONENT-LEVEL VIEW

Component designs illustrate the sub-component architecture,
interfaces and internal linkages. Interfaces are shown in terms
of provided and required services with a semi-circle to represent
a required service and a circle to represent a provided service.
Color coding is also used with the nested sub-components

Figure 1. Three-level conceptual view of ADLARS architectures

At the top level, architectures are viewed as a
collection of task instances that execute concurrently
and communicate asynchronously. Task instances are
created from task templates, which are defined in terms
of their input interface and internal component
architectures. Within the definition of a task template,
we enumerate the associated mandatory, optional and
alternative features, and their relationships to
contained components and supported messages.
Creating a task instance from a task template requires
provision of the actual feature sub-set that the instance
is required to support. The relationships captured
within the task template definition enable the internal
structure of the instance to be readily derived.

The component level view represents the lowest
level within an ADLARS description. Components are
passive software units, characterized by the interfaces
that they provide and require. They can be of any size
and may contain nested sub-components, to any level
of nesting. Once again we define component templates
and enumerate the mandatory, optional and alternative
features with which they are associated. Component

instances, like task instances, are created by providing
actual feature sub-sets.

ADLARS also provides a system environment,
which is a structured dictionary of names and terms
with supporting textual explanations.

In the following we present the four main parts of
the ADLARS description which are:

1. Component Template
2. Task Template
3. System Description
4. System Environment

3.1. Component Template

A component template definition embodies a
collection of possible component configurations and
directly relates these to features occurring in the
feature model. Visually, a component template with
nested sub-components may appear as in Figure 2.

Features associated with the component are
represented as color-coded ellipses with different
colors for mandatory, optional and alternative features,
respectively.

Sc_1

Sc_2Op_1

M_1

M_2

Al_1

Al_2
Sc_3

Sc_4

Figure 2. Visual representation of a complex component with nested sub-components

Features can be linked to related sub-components.
For example optional feature Op_1 is linked to Sc_2.
Sc_2’s surround color indicates that it is an optional
sub-component, only included in instances of the
component which are required to support the optional
feature. Alternative feature groups are shown with a
linking bar. Interfaces are illustrated using circles (to
indicate provided services) and semi-circles (to
indicate required services) in a style adopted from
UML 2.0. The (semi-)circle color indicates whether the
interface element is always supported by component
instances, sometimes supported, or is one of a number
of alternative interface features.

On the other hand, ADLARS has a textual notation
that combines both formal elements and informal
elements consisting of free text descriptions. These
informal elements are targeted at the needs of non-
technical stakeholders, but could also be extracted to
form part of the documentation of the architecture, for
example during review-based assessment processes.
Also, comments (free text) are allowed anywhere in
the architecture description using a comment notation
similar to the one used with Java and C/C++ (“//” for
single line comments, and “/*” “*/” for multiple line
comments) . In the following, the different sections of
the component template are described.

Component Template Component_Template_One

{

This starts a new Component Template with the

name Component_Template_One

interaction themes : { interactionTheme1,

interactionTheme2,

interactionTheme3};

This is the first section of the component which

shows the different interaction themes
Component_Template_One is taking part in.

collaborators: { c1, c2, c3 };

By explicitly listing the component collaborators,

we can add more input to the analysis of inter-
component dependencies within a given component.

features:

{ mandatory: {f1, pf2(int a, byte b), f3};

 optional: {f4, f5, f6};

 alternatives: {(f7, f8), (f9, f10, f11)};

}

Features can be available or not, based on which
functionality is included or not. Also, features can
carry values or parameters (parameterised features).
So, a non-parameterised feature relates to the
availability of some system functionality, i.e. the
availability of some components and sub-components.
On the other hand, a parameterised feature, in addition
to the above, would have a parameterized value(s) that
is used to customise dependent Component(s).

One can have mandatory (Kernel), optional, or
alternative features. Feature dependencies are captured
at a previous stage (at the feature modelling stage).

In the example above, we see the mandatory
features f1, pf2 and f3, where pf2 is a parameterised
feature, and when available would also provide two
values to customise the dependent functionality, an
integer a and a byte b.

(f7, f8) is a set of alternative features where only
one feature can be selected at a time. Similarly for (f9 ,
f10 , f11) .

sub-components :

{

 contents :

 {

 inst c1() : componentTemplate1;

 inst c2() : componentTemplate2;

 when (supported(f4)) {

 inst c3(): componentTemplate3;

}

 alt

 {

 (supported(f7) || supported(f11)) {

 inst c4() : componentTemplate4; }

 (unsupported(pf10)) {

 inst c5(pf10) : componentTemplate5;}

 otherwise {

 inst c6() : componentTemplate6; }

 }

 }

 arrangement :

 { initialize c1 to stateName1,

 c2 to stateName2;

 when(supported(f1))

façade(c1,c2);

 }

}

The sub-components section shows what sub
components to be included within the Component
based on the features selected, and in what way
components are connected (in the arrangement sub
section).

In the contents sub-section, features are explicitly
related to sub-components using boolean algebra
which provides good flexibility in expressing the
relationship between features and components. A
feature can be supported or unsupported, enabling us
to relate components not only to feature availability,
but also absence. This could be useful when expressing
negative features (relating functionality to the absence
of a feature rather than only the presence of it). This
could be of particular importance to commercial
product lines where the low-end products (with limited
features) must not have access to the features available
for the high-end versions.

In the example above, c1 is a kernel component
(available in all products within this family) of type
componentTemplate1. Similarly for component c2. c3,
on the other hand, is only available when feature f4 is
selected and so on.

The arrangements sub-section provides a robust
mechanism for connecting together sub-components
using standard or user defined design patterns. In the
example above, components c1 and c2 are connected
using the façade pattern. For basic component
connectivity, ADLARS syntax can be used; however,
for more advanced and complex compositions, a
dedicated language (called PATTERNAL) is used to
create custom connections and patterns. PATTERNAL
is currently being developed within our research
group.

interface :

{

 transition states :

 {

 stateName1 : "relevant information" ;

 stateName2 : "relevant information" ;

 }

 services :

 {

 provided : { {sc1}::service1, service2,

service3);

 required : { service3, service6 };

 }

 behaviour :

 {

 stateName1 :

 {
// provides service1 and goes to stateName2

 service1 > stateName2;

// relating components to state transition

 {sc1, sc2} :: service2 > stateName2;

 service3; // remains at the same state

 }

 stateName2 :

 {

service4 ;

service3 > stateName1;

 {sc2} :: service5 > stateName1;

 }

 }

 }

Finally, a component template’s interface is
described in terms of the services it provides/requires.
An interface can be in different states (transition states)
which could affect the services the component can
provide/require. The interface states are described in
the ‘transition states’ section, the services
required/provided are listed in the ‘services’ section
and described in more details in the ‘system
environment’ section (see later). The transitions among
the states and the services required/provided in each
state are described in the ‘behaviour’ section.
Whenever a service name is pre-qualified with a sub-
component name, this means that the service is only
available if the sub-component is available. This is an
indirect way to correlate service availability with
system features (as the availability of the sub-
component is directly dependent on available features).

In the behaviour section of the example above, we
notice that if the component interface is in stateName1,
it can only provide service1 (and transition to
stateName2), service3 (without changing state), and
service2 if the two optional sub-components sc1 and
sc2 are available (and then transition to stateName2).
Similarly, with stateName2 we can provide the
mentioned services and transition accordingly (also
notice the dependency of service5 on the presence of
the optional sc2).

3.2. Task Template

Task template definitions have many similarities

with component template definitions. Interaction
themes, collaborators and features supported are
specified in a similar way. Like component templates,
a task template has an associated characteristic feature
set. Likewise, the definition of the internal component
contents has the same form as that of the sub-
component contents section within a component
template definition.

Task template definitions differ in having a major
section concerned with the definition of the task’s
event alphabet. This is the repertoire of event messages
that the task expects to receive and is prepared to
handle. The event alphabet definition section
comprises sub-sections defining the task template’s
input alphabet and its output alphabet.

As ADLARS was defined with real-time systems in
mind, where time is as important as functionality,
detailed information of event timing is captured as well
as the recovery procedure.

Below is an example of a Task Template interface:

input alphabet :

{

 ieventName1 :

 {

 data :

 {

 byte : (40 ~ 1500) : "information …";

 string : 64 : "information …";

 }

 sink component : c1;

 implications : "description …";

 occurrence : periodic(500);

 deadline : n/a;

 response :

 {

 c1 >> {oeventName1};

 }

 recovery :

 {

 margin : 2 ms;

 action : c3 >> {oeventName2};

 }

 }

 ieventName2 :

 {

 data : n/a;

 sink component : c3;

 implications : "description …";

 occurrence : random;

 deadline : 2000;

 response :

 {

 c1 >> {oeventName1};

 c3 >> {oeventName2};

 }

 }

}

output alphabet :

{

 oeventName1 :

 {

 data :

 {

 byte : (0 ~ 1025) : "information…";

 string : 128 : "information…";

 }

 source component : c2;

 occurrence : triggered(500);

 deadline : n/a;

 }

 {c3}::oeventName2 :

 {

 data :

 {

 byte : (0 ~ 1025) : "information…";

 string : 128 : "information…";

 }

 occurrence : random;

 source component : c3;

 deadline : n/a;

 }

 }

Input and output events may be pre-qualified by a
set of components to indicate that task instances can
only handle these events when the specified
components are present. In the example above, the
output event oeventName2 is only supported when
component c3 is available.

The events are also dependent on the system feature
set. Even though we don't see it explicitly, events
implicitly relate to the feature set via the dependability
on components (as shown above).

Events often carry data and an important aspect of
the definition of an input event is the decomposition of
its data. Since it is common, in real-time embedded
applications, to pack information into the minimum
space required, individual bits may be significant and
we allow data fields to be described in terms of groups
of bits. Variable length fields are also allowed. Also
included is a definition of the expected pattern of
occurrence of events: random, periodic, triggered, or at
specific regular time intervals. Events may have
associated deadlines and this information is also
stored. Finally, we provide a linkage between arriving
events and the internal subcomponents (sink
component) within the task. Execution of event
handling functionality may cause output events to be
generated and the names of these events are also
indicated (source component). More detailed
information about output events is provided in the
output alphabet section.

In the example above, we notice that the arrival of
the input event ieventName1 would be responded to by
the generation of oeventName1 (by c1). If
ieventName1 doesn’t arrive within 2 ms (specified in
the recovery subsection - margin) from the expected
arrival time, a recovery procedure is executed (in this
case, the generation of oeventName2 by c3).

3.3. System Description

A system description layer forms the top level in an
ADLARS architecture description. A system
description contains a definition of all the tasks in the
system, along with any customizing feature sets that
they require. It also contains a listing of connections
and the event names that pass along the connections.

There may be multiple task instances derived from
the same task template, and multiple event
communications between any two tasks. Color coding
is used to identify event categories.

In the following, we present the contents of the
system description layer with inline explanation of
each section or keyword:

system description ("My_System") {

Defining a new system called My_System.

TaskTemplate1 task1Inst1(f1, f2),

 task1Inst2(), task1Inst3(f3);

TaskTemplate2 task2Inst1(f1,f5);

Creating different Tasks from Task Templates by

choosing the right feature set.

synchronized TaskTemplate3 task3Inst1();

The synchronized keyword means a synchronized

communication with the Task instance (task3Inst1 in
the above example), i.e. a one by one communication
with other tasks (similar to the concept of
synchronization in Java multithreaded applications).

After creating the Task instances from Task
Templates, we proceed to create the product
architecture (sometimes referred to as system
configuration) by connecting the different Tasks using
the appropriate system alphabet which is defined in the
system environment section (explained next). To
connect two different Tasks you need to specify the
Task name and event type as shown below.

connect(task1Inst1, task3Inst1)

using (eventType1);

connect(task1Inst2, task2Inst1)

using (eventType2);

It is also possible to create blocks of synchronized
communication rather than synchronized Tasks only as
shown below.

synchronize {

 connect(task1Inst1, task3Inst1)

 using (eventType1);

 connect(task1Inst2, task2Inst1)

 using (eventType2);

}

In real-time systems, as in many other application

domains, the order of initializing and loading the
different Tasks is very important and needs to be
captured within the architecture. After creating and
connecting the system Tasks as shown above, the
architect can now specify how tasks are initialized and
loaded:

init(task1Inst1);

wait(100);

init(task2Inst1);

wait(100);

run(task1Inst1, task2Inst1);

3.4. System Environment

The System Environment section of ADLARS
contains the information that is relevant to the system
as a whole rather than specific Task or Component
Templates. The System environment contains five sub-
sections:

- Features

- Event types

- Service definition

- Interaction themes

- Polices

Starting with the features section, it provides a

listing of all the features available in the system feature
model (all optional, mandatory and alternative
features) along with a brief textual description of each
feature (for system documentation purposes). Within
an industry, different groups working on different
stages of the product development lifecycle might refer
to the same feature with different names, even groups
working on the same stage of the development process,
but within different departments might still refer to the
same feature with different names. That is why we
introduced the alternative names property in the
feature definition section to keep track of the feature
and alleviate unwanted repetition.

features

{

 feature1: {

 description: "feature description...";

alternative names:

 {Model1.Name1, Model2.Name2 };

 }

 feature2: {

 description: "feature description...";

 alternative names:

{Model1.Name2, Model2.Name5 };

 }

 // etc.

}

The event types section defines the different events
exchanged within the system:

event types

{

 signal : ident(8);

 message : [ident(8), data(24)];

 long_message : [ident(16), data(112)];

}

The service definition section defines the different

services used in the system. Services are abstractions
of function names. Each service is defined by a unique
name, textual description, the function name it
abstracts, and a list of the services required along with
a textual description of each as shown below.

service definition

{

 serviceName1:

 {

 description: "service description";

 invocation: "int functionName(int x,

double y)";

 service requirements :

 {

 "int requiredFunction1(double x)" :

 "required function description";

 "double requiredFunction2()" :

 "required function description";

 }

 }

 // and so on

}

The interaction themes section contains the
definition of the different interaction themes available
in the system. An interaction theme is defined by a
unique name and a textual description:

interaction themes

{

 interactionTheme1 : "textual description";

 interactionTheme2 : "textual Description";

}

Finally, an optional set of policies employed by the
system can be defined in this section. The policy
definition is a simple free textual description which is
used primarily for architecture documentation
purposes.

policies

{

 policy1 : "policy description...";

 policy2 : "policy description...";

}

4. Discussion

ADLARS is a work in progress rather than a

finished product and this paper has provided just an
outline of the language. Its intended application is the
definition of flexible architectures for families of
software systems. It is an intermediate design notation,
for use along with feature-oriented domain modeling.
Compared to other notations, its main innovation is the
emphasis on capturing the relationships between
features and architecture. At its core is the relational
model which links features with architectural structure,
interfaces or event alphabets, and customizing
parameters. Task or component template definitions
embody a set of such relationships.

It is worth considering how the language may be
used within a product line engineering process. It is
envisaged that an ADLARS reference architecture for
an intended product family would be designed and
specified as part of the domain engineering process.
This would come after domain modeling so that the
complete feature model would be available. Task and
component templates would be defined at this stage,
complete with feature dependencies. At the application
engineering phase, creating instances from templates
requires only the appropriate feature set, which may be
obtained as a simple set intersection operation using
the specific feature set for the intended product. Thus
capturing feature relationships in the reference
architecture description, as ADLARS does, makes the
task of deriving product-specific architectures, entirely
straightforward.

Much work remains to refine aspects of the
ADLARS language and provide supporting tools. In
the longer term, it is intended to further extend the
language to provide better support for the use of
generic architectural entities such as design patterns.
Patterns play a major role in framework architectures,
which must be regarded as a form of product line

architecture. Also, more work is to be done on the real-
time aspects of the language and to clearly demonstrate
how real-time analysis techniques such as Rate
Monotonic Analysis (RMA) could be applied to
ADLARS described architectures.

5. Summary

ADLARS is an architecture description language
that has been designed to support the description of
families of software systems. It has facilities which
allow the relationships between the system features
and its architecture to be explicitly defined.

The language views Software Architectures to be
existing in a three dimensional space: concurrency,
structure and behavior, and provides the necessary
capabilities to capture these dimensions.

Concurrency is conveyed in Tasks. Tasks are
concurrently executing units that communicate through
event passing. Tasks usually contain information like:
Interaction themes, Features supported, Components
and Input/Output alphabets. Interaction themes [19]
are used to partition a Task’s interface (or port) into
multiple planes each of which is concerned with a
specific theme. There are several benefits for using
interaction themes such as separation of concerns,
reuse, controlled propagation of changes etc. The
Features supported section contains a list of features
from the candidate architecture’s feature model.
Features are classified into mandatory (always
supported by the Task) optional (may or may not be
supported by the Task), and alternative (alternative
features). The Components section is used to describe
the passive internal components which produce the
functionality that is invoked by the Task in response to
arriving events. The Input/Output alphabets section of
the Task lists the accepted and generated events by the
task with their corresponding rates of occurrence.

Structure, on the other hand, is described by
Components which form the basic building blocks of
ADLARS architectures. Component descriptions
provide information on the related interaction themes
to supported features, sub-component architecture, and
interface. As for interaction themes and features
supported, they contain similar information to the
interaction themes and features supported sections in
Tasks. The Sub-components section is similar to
components in Tasks. The Arrangements section
describes the way sub-components are connected
within a component with the capability of making use
of existing design patterns like façade, service-
provider etc. The interface section describes the

interface of a component in terms of services
provided/required.

And finally, behavior is captured within interaction
themes. As we previously mentioned, each interaction
theme bundles a part of the system’s interactions that
are concerned with a specific behavior.

6. Acknowledgments

The authors would like to thank the SEW-29
reviewers for their valuable comments.

7. References

[1] L. Bass, P. Clements, and R. Kazman, Software

Architecture in Practice. Reading, MA: Addison-
Wesley, 1998.

[2] P. Clements and L. Northrop, "A Framework for
Software Product Line Practice, Version 3.0," Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA 2000.

[3] M. Davis, "Reengineering and the Product Line
Approach to Software Development," Boeing Defense
& Space Group, Seattle, WA 1996.

[4] F. Bachmann, M. Goedicke, J. C. S. d. P. Leite, R. L.
Nord, K. Pohl, B. Ramesh, and A. Vilbig. A Meta-
model for Representing Variability in Product Family
Development. Proceedings of the 5th International
Workshop on Software Product-Family Engineering
PFE 2003,, Siena, Italy, November 2003.

[5] M. Becker. Mapping Variabilities onto Product Family
Assets. Proceedings of the International Colloquium of
the Sonderforschungsbereich 501, University of
Kaiserslautern, Germany, March 2003.

[6] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H.
Obbink, and K. Pohl. Variability Issues in Software
Product Lines. Proceedings of the 4th International
Workshop on Product Family Engineering, Berlin,
Germany, 2002.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Patterson, "Feature Oriented Domain Analysis
(FODA) feasibility study," Software Engineering
Institute, Carnegie Mellon University CMU/SEI-90-TR-
21, 1990.

[8] P. Clements and L. M. Northrop, "A Framework for
Software Product Line Practice - version 2," Software
Engineering Institute, Carnegie-Mellon University 1999.

[9] J. Sodhi and P. Sodhi, Software Reuse: Domain Analysis
and Design Process: McGraw Hill, 1999.

[10] D. Garlan, R. Monroe, and D. Wile, "Acme:
Architectural Description of Component-Based
Systems," in Foundations of Component-Based Systems,
G. T. Leavens and M. Sitaraman, Eds.: Cambridge
University Press, 2000, pp. 47-68.

[11] S. Vestal, "MetaH Reference Manual," Honeywell
Technology Center, Minneapolis, MN 1994.

[12] R. v. Ommering, F. v. d. Linden, J. Kramer, and J.
Magee, "The Koala Component Model for Consumer
Electronics Software," IEEE Computer, pp. 78-85,
March 2000.

[13] D. C. Luckham. Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Orderings
of Events. Proceedings of DIMACS Partial Order
Methods Workshop IV, Princeton University, July 1996.

[14] R. J. Allen, "A Formal Approach to Software
Architecture." Pittsburgh, PA: Carnegie Mellon
University, May 1997.

[15] K. C. Kang, S. Kim, J. Lee, and K. Lee, "Feature-
Oriented Engineering of PBX Software for Adaptability
and Reusability," Software Practice and Experience,
vol. 29(10), pp. 875-896, 1999.

[16] K. Lee, K. C. Kang, W. Chae, and B. B. Choi, "Feature-
based approach to object-oriented engineering of
applications for reuse," Software Practice and
Experience, vol. 30, pp. 1025-1046, 2000.

[17] D. Fey, R. Fajta, and A. Boros. Feature Modeling: A
Meta-model to Enhance Usability and Usefulness.
Proceedings of the 2nd International Conference on
Software Product Lines (SPLC2), San Diego, USA,
August 2002.

[18] N. Medvidovic and R. N. Taylor, "A classification and
Comparison Framework for Software Architecture
Description Languages," IEEE Transactions on
Software Engineering, vol. 26, 2000.

[19] M. Jazayeri, A. Ran, and F. v. d. Linden, Software
Architecture for Product Families: Principles and
Practice: Addison Wesley Longman, 2000.

