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A B S T R A C T   

Current approaches to analysing EEG hyperscanning data in the developmental literature typically consider 
interpersonal entrainment between interacting physiological systems as a time-invariant property. This approach 
obscures crucial information about how entrainment between interacting systems is established and maintained 
over time. Here, we describe methods, and present computational algorithms, that will allow researchers to 
address this gap in the literature. We focus on how two different approaches to measuring entrainment, namely 
concurrent (e.g., power correlations, phase locking) and sequential (e.g., Granger causality) measures, can be 
applied to three aspects of the brain signal: amplitude, power, and phase. We guide the reader through worked 
examples using simulated data on how to leverage these methods to measure changes in interbrain entrainment. 
For each, we aim to provide a detailed explanation of the interpretation and application of these analyses when 
studying neural entrainment during early social interactions.   

1. Introduction 

Behavioural evidence suggests that social factors influence how in-
fants pay attention (Yu and Smith, 2016) and learn (Kuhl et al., 2003) 
during early life. But we currently understand little about how these 
interpersonal influences are instantiated in the brain (Wass et al., 2020; 
Redcay and Schilbach, 2019; Redcay and Warnell, 2018; Hoehl et al., 
2021). Hyperscanning is a method of simultaneously acquiring neural 
activity from two or more individuals that allows insights into these 
questions (Dumas et al., 2010; Schilbach et al., 2013). Hyperscanning 
approaches are often paralleled with an emphasis on using more 
free-flowing ’naturalistic’ study designs that record brain activity during 
real-life interactions – rather than studying neural responses to repeti-
tive and unecological, trial-based tasks administered via a computer. 

Recently, research with non-human animals (e.g., Kingsbury et al., 
2019; Zhang and Yartsev, 2019) and human adults (Liu et al., 2018; 
Redcay and Schilbach, 2019), as well as research with children/infants 
using fNIRS (Nguyen et al., 2021; Piazza et al., 2021; Reindl et al., 2018) 
and electroencephalography (EEG; Leong et al., 2017; Wass et al., 2018) 

has started to use hyperscanning to uncover complex patterns of inter-
brain entrainment (IBE) during social interaction. Research relying on 
EEG with child/infant populations has shown that bidirectional 
Granger-causal influences between infants’ and adults’ neural activity 
are greater in theta (3–6 Hz) and alpha frequency bands (6–9 Hz) during 
moments of mutual than non-mutual/ averted gaze (Leong et al., 2017). 
We also know that patterns of IBE in the theta and alpha bands are 
higher when adults model positive emotions during social interaction 
than when adults model negative emotions (Santamaria et al., 2020). 
These findings suggest that - consistent with fNIRS studies that have 
shown IBE patterns over longer temporal scales (e.g., Piazza et al., 2021; 
Nguyen et al., 2020, 2021) - IBE may also be discernible at the more 
fine-grained, sub-second scale studied using EEG. 

All these approaches used thus far, however, share one fundamental 
limitation. Hyper-scanning researchers typically calculate the amount of 
IBE observed between two interacting partners averaged across whole 
experimental conditions (Pérez et al., 2017; Leong et al., 2017) and even 
whole interactions (e.g., Kinreich et al., 2017). They then compare IBE 
values between different conditions, or correlate IBE estimates with an 
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outcome variable (e.g., learning) (Leong et al., 2019). For example, 
Leong et al. (2017) compared the amount of observed entrainment 
across all moments of direct vs averted gaze during 5-min social in-
teractions: they collapsed all of their data down to a single IBE value per 
signal frequency band. A similar approach was taken by Pérez et al. 
(2017), who compared IBE values estimated separately for different 
frequency bands and topographical locations, but again without 
consideration of how IBE varied over time, and how it may have 
developed over the course of the interaction. 

Effectively, therefore, these approaches produce an index of IBE that 
includes information on how entrainment varies by frequency (e.g. 
Leong et al., 2017) and by scalp topography (e.g. Santamaria et al., 
2020) – but which excludes information on how IBE fluctuates over 
time. This omission, we argue, fundamentally hinders our understand-
ing of how real-life infant-adult social interactions are substantiated in 
the brain. The same observation largely holds for most of the hyper-
scanning research in adult populations, where similar points have been 
raised concerning the limitations of current approaches (e.g., Novembre 
and Iannetti, 2020; Moreau and Dumas, 2021). 

1.1. The importance of the (missing) temporal dimension 

Studies using event-related potentials (ERPs) have shown that even 
young infants’ brains show millisecond-level sensitivity to ostensive 
signals (e.g., Farroni et al., 2002; Hoehl and Striano, 2008, 2010, 
Quadrelli et al., 2019). But this research is all unidirectional: it examines 
how the recipient of an ostensive signal is influenced by the ‘sender’ of 
the signal. Very little research has examined the fine-grained temporal 
dynamics of early social interaction from a bidirectional perspective: by 
examining how ostensive cues affect the inter-relationship between both 
partners’ brain activity (Wass et al., 2020). 

For example, one early study found that, in the 3–9 Hz range, neural 
activity in one partner consistently predicted the other partner’s neural 
activity more strongly during direct compared with indirect gaze (Leong 
et al., 2017). But how is it mechanistically possible for two brains to 
influence each other over such fine-grained temporal scales? To answer 
this question, it would be useful to know how IBE varies over time within 
periods of direct gaze. This would improve our understanding of how, 
mechanistically, IBE is established and maintained:  

I. First, it is possible that, during social interactions, certain shared 
behavioural events such as the onsets of periods of direct gaze 
could drive changes in IBE (see e.g., section 2.2.1, 2.2.2). Here, 
changes in IBE would result from transient intra brain changes in 
spectral power (e.g., Grossmann et al., 2007) and/or phase (e.g., 
Rousselet et al., 2007) in both the ‘sender’ and the ‘receiver’ of 
the social cue. For example, this mechanism could be similar to 
what has been documented for neural entrainment to speech (e. 
g., Doelling et al., 2014), whereby the onset of the stimulus/ 
behavioural event drives phasic changes in the brain and leading 
to increases in entrainment. Beyond speech or vocalisations, 
mutual gaze onsets, or touch could also act as salient “edges” that 
create responses in multiple brains at the same time, leading to 
event-related increases in IBE. According to this model, IBE 
would be strongly event-locked, peaking immediately after the 
onset of the behavioural event and decreasing thereafter. The 
extent of event-locked changes in IBE around behavioural events 
might also be mediated by other factors including attention (e.g., 
Golumbic et al., 2013), comprehension (e.g., Pérez et al., 2019), 
and environmental factors such partner familiarity (e.g., Reindl 
et al., 2021, in press).  

II. Second, it is possible that turn-taking during social interactions 
could drive changes in IBE. Here, response preparation or antic-
ipation (e.g., Hamilton, 2021; Hirsch et al., 2017; Kirkland, 2020) 
and/or mutual sensorimotor predictions (Dikker et al., 2014; 
Shamay-Tsoory et al., 2019; Hamilton, 2021) could lead to 

concurrent transient changes in either power or phase in both 
partners (e.g., Mandel et al., 2016; Bögels, 2020), causing 
changes in IBE that might peak around these ‘handover’ moments 
and decrease before and after (e.g., Fig. 2d). This mechanism 
might also be influenced by factors such as the amount (e.g., 
Nguyen et al., 2021) and (perceived) quality (e.g., Bloom, 1988) 
of turn-taking.  

III. Third, it is possible that continuous, deterministic intra brain 
changes, that are not locked to discrete behavioural events but 
depend on dynamic, gradual changes in the shared environment, 
lead to gradual, continuous changes in IBE. This mechanism might 
be driven by intra brain responses to shared cognition and/or 
mental representations. For example, Simony et al. (2016) showed 
that IBE was increased when participants had a shared under-
standing of a story (Simony et al., 2016). This mechanism it might 
also take the form of direct ‘neural mimicry’. For example, Kings-
bury et al. (2019) used in vivo electrophysiological recordings to 
show populations of cells in the dorsomedial PFC that show similar 
activity when performing an action as when watching it be per-
formed by someone else (Kingsbury et al., 2019). Again, these 
changes might take the form of changes in power: increases in 
spectral power throughout an event (e.g., a look/ episode of 
attention) can increase signal-to-noise ratios and cause changes in 
sequential IBE (as we show in Section 3.2.1). This is conceivable as, 
for example, infant theta power increases through an attentional 
episode (e.g., Jones et al., 2020). Alternatively, gradual changes in 
frequency, such as the adjustment of the peak frequency of neural 
oscillations, could lead to increases in concurrent IBE (Section 
3.2.2). This is conceivable as, for example, peak alpha frequency 
can be modulated by task demands (e.g., Samaha and Postle, 2015; 
Wutz et al., 2018), and recent accounts have theorised that 
cross-spectrum frequency adjustment at stimulus onset might be a 
mechanism behind how ERPs are generated (e.g., Burgess, 2012). 
According to this model, entrainment would increase gradually 
during a social episode. 

Differentiating between these and other hypotheses is essential to 
understanding how IBE is achieved and maintained. The aim of this 
paper is to present algorithms that will allow researchers to address this. 
In Section 1.2 we present an overview of key differences between child 
and adult EEG that are relevant when conducting hyperscanning 
developmental research. In Section 2, we present several measures for 
estimating concurrent (2.2.1, 2.2.2) and sequential (2.2.3, 2.2.4) IBE. 
Then, in Section 3, we illustrate the ability of each metric to capture IBE 
using simulated data. 

1.2. Key differences between child and adult EEG 

Researchers analysing EEG recorded from infants and children, and 
EEG recorded using naturalistic paradigms, face several additional 
challenges as compared to adult EEG researchers that use screen-based 
paradigms (Noreika et al., 2020). 

Firstly, due to increased movements during the recording. This is 
challenging because signals generated from movements, such as smiling, 
vocalisations, eye movements, as well as from the neural processing of 
each of these behaviours, will contribute to the scalp EEG in a complex 
way (Georgieva et al., 2020). Although issues of source separation are not 
new to EEG research, it is known that ICA alone fails to separate different 
sources in data containing high amounts of movement-related activity (e. 
g., Plöchl et al., 2012; Dimigen, 2020). This effect is heightened with in-
fant ICA decompositions, for which it is typically harder to identify which 
components contain predominately artifactual signals and which contain 
predominately neural signals, compared to ICA decompositions from adult 
EEG data (Marriott Haresign et al., 2021 in press). For example, even 
simple artifacts such as blink artifacts can be more clearly differentiated 
from the ongoing EEG in adult data, allegedly because these movements 
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are more stereotypical and/or produce artefacts of relatively higher 
amplitude in adults than in infants (Marriott Haresign et al., 2021 in 
press). This is even more problematic for naturalistic data, during which 
eye movements would necessarily be less stereotypical than those pro-
duced by participants during screen-based tasks. 

Secondly, in a traditional, experimenter-designed paradigm, neural 
responses are examined relative to experimental events. Although evi-
dence suggests that artifacts in traditional experimenter-designed par-
adigms are still present, and systematically related to experimental 
events (Yuval-Greenberg et al., 2008), the fact that the experiment (and 
so the artifacts) follows a consistent structure means that artifacts are 
relatively easier to deal with. But in a naturalistic paradigm, the events 
(e.g., eye gaze onsets) are often less systematically related to the artifacts 
in the data, as there is no clear and consistent temporal structure be-
tween spontaneous events and specific artifacts. The future study of IBE 
using naturalistic paradigms will need to control for the contributions of 
non-neural signals in the EEG. It may also treat these non-neural signals 
as data sources, by looking at entrainment between these 
movement-related signals, e.g., entrainment between EMG associated 
with facial affect and vocalisations. 

An additional challenge is posed by the intrinsic differences in EEG 
activity that are observed in recordings from children/ infants compared 
to adults. For example, we know that the speed at which the brain will 
process information depends on its maturation (e.g., Taylor et al., 2004) 
and that the canonical frequency bands in child/infant EEG are typically 
slower than that of adult EEG. For example, peaks in the power density 
spectrum associated with alpha activity typically observed in the 8–12 
Hz range in adults can be seen clearly in one-year-old infant EEG be-
tween 6 and 9 Hz and are lower still in younger infants (Marshall et al., 
2002). This presents a unique problem for developmental researchers 
interested in phase entrainment between infant and adult EEG. One 
solution to this problem might be to use cross-frequency entrainment 
methods (Noreika et al., 2020) for example cross-frequency phase 
coupling (see section 2.2.2.2 for further discussion). It is also known that 
the amplitude of slower oscillations is larger in infant EEG than in 
adults’, which could arguably affect amplitude-amplitude or 
amplitude-phase coupling. 

2. Methods for identifying different types of entrainment 
between infant and adult EEG data 

In this section we present an overview of the different ways of 
measuring IBE (Section 2.1) and describe how they can be applied to 
different aspects of the brain signal (amplitude/ power and phase) 
(Section 2.2). In Section 3 (applied methods) we will guide the reader 
through application of these methods, using simulated EEG hyper-
scanning data. 

2.1. Overview of different ways of measuring inter-brain entrainment 
(IBE) 

Although the term ‘entrainment’ is sometimes used only to describe 
only sequential relationships between two signals, here we use it in a 
broader sense, to describe any temporally coordinated relationship be-
tween two signals. Inter-brain entrainment (IBE) can, then, be measured in 
two ways. First, concurrent IBE (see Fig. 1) indexes a zero-lag, simulta-
neous relationship: ‘at times when A is high, B is also high’ or (for a 
negative relationship): ‘at times when A is high, B is low’. Concurrent IBE 
is often referred to using the term ‘synchrony’, and is undirected: A->B is 
indistinguishable from B->A. Second, sequential IBE indexes a lagged, or 
temporally oriented relationship: ‘changes in A forward-predict changes in 
B′. Sequential IBE is directed, and as such, unlike concurrent coupling, it 
can be asymmetrical: it can be true that A forward predicts B without it 
being true that B forwards-predicts A, and vice versa. 

IBE can also be measured across both the temporal and the frequency 
domain, and thus across multiple aspects of the brain signal: amplitude, 
power, and phase (see Fig. 1). Power is proportional equal to the 
amplitude squared and so the two measures are closely related. How-
ever, some of the measures we describe (e.g., power correlations, see 
section 2.2.1) can be applied equally to amplitude and/or power, 
whereas others (e.g., time domain granger causality, see section 2.2.3) 
are applied on amplitude and not power and therefore we feel that it is 
important to distinguish between the two. 

Currently, most fNIRS and fMRI hyperscanning studies measure co- 
fluctuations in the amplitude of the signal – which depending on the 
method, measures blood oxygenation/deoxygenation (fNIRS), the BOLD 

Fig. 1. Schematic illustration of the two-entrainment metrics, concurrent and sequential, that we consider in the paper, along with the three aspects of the brain 
signal: amplitude, power and phase. 
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signal (fMRI) or voltage (for EEG). Currently, most EEG hyperscanning 
studies examine phase IBE. There appears, however, to be no reason why 
these trends should not change in the future. 

2.1.1. Measuring concurrent IBE of amplitude and power: correlations 
Examining concurrent IBE through correlations is one of the simplest 

and most flexible techniques. Zero-lag concurrent IBE can simply be 
measured by calculating correlation coefficients between two time se-
ries. Spearman’s correlation is generally favoured due to its invariance 
to non-normally distributed and outlier prone data (Cohen, 2014). The 
same analysis can be applied either to the amplitude of the brain signal 
or to the power in particular frequency bands. The accompanying code 
for this section allows the reader to compute single-trial correlations 
(Spearman’s rho) at each time-frequency point, between pairs of elec-
trodes (e.g., using data from Cz from person one and Cz from person 
two). 

2.1.2. Measuring concurrent IBE of phase: ITC and Phase Locking Value 
(PLV) 

Phase locking can be estimated in three ways to detect transient 
phase changes/shifts (often event-locked), or stable phase-coupling 
across time. First, point-wise phase consistency (e.g., inter trial coher-
ence, ITC) across repeated events can be estimated over time and elec-
trodes within a single brain (see SM section 8). This produces one 
estimate of phase consistency per time-point which represents the phase 
distribution across trials for that time-point and is suitable for detecting 
transient or discrete event-locked phase changes. 

Second point-wise phase locking (e.g., Lachaux et al., 1999) can be 
estimated according to: 

PLVn =
1
N

⃒
⃒
⃒
⃒

∑N

k=1
ei(ϕ(t,k)−ψ(t,k))|, (1)  

Where N is the number of trials, ϕ(t, k) is the phase on trial k, at time t, 
in channel ϕ and ψ(t, k) at channel ψ . This produces one estimate of 
phase consistency per time-point which represents the phase locking 
across trials for that time-point and is suitable for detecting transient or 
highly event-locked changes phase locking. PLVn varies between 0 and 1 
where 1 indicates perfect phase locking over trials and 0 indicates no 
phase locking over trials. 

Third, phase locking can be also measured within a single trial over a 
defined temporal window (e.g., Tass et al., 1998). This is useful for 
estimating whether two oscillations are stably phase-coupling to each 
other during that window. Phase locking withing a temporal window 
can be measured according to: 

PLVt =
1
T

⃒
⃒
⃒
⃒

∑T

n=1
ei(ϕ(t,n)−ψ(t,n))|, (2)  

Where T is the number of observations or time samples within the 
window, ϕ(t, n) is the phase on observation n, at time t, in channel ϕ 
and ψ(t, n) at channel ψ . PLVt varies between 0 and 1, where 1 indicates 
perfect phase locking over time and 0 indicates no phase locking over 
time. Both measures can either be computed between a single brain and 
an external stimulus with a pseudo-periodic structure (e.g., speech), or 
estimated at the interpersonal level, between two or more brains. Here 
the focus is on the latter, though mathematically they are identical. The 
accompanying code allows for analysis of phase locking within (sliding 
window) and across trials (for each sample). This will allow researchers 
to look at how changes in IBE fluctuate over time. 

It is worth noting any two signals with a common dominant fre-
quency (e.g., two brains with high power in the alpha band) will show 
relatively consistent variation in phase over time – and hence high phase 
locking between the signals. This has been used to argue that PLV is 
particularly prone to detecting spurious hyper connections (Burgess, 
2013). However, this is only a problem in a few scenarios. Real EEG data 

- even after narrow-band filtering - will still have random variations in 
the phase of the signal over time such that PLV between narrowband 
filtered signals will also change over time. So, two alpha oscillators will 
show consistently high PLV only where there is little to no random 
variations in the phase of both signals over time, which is not a very 
reasonable assumption for real EEG data. In addition, this problem can 
be at least partially circumvented by relying on permutation techniques. 
For instance, PLV between two brains can be measured over 
time-scrambled and real data: if the phase locking is purely attributable 
to the fact that both brains oscillate at the same rhythm in a rather 
constant way, the time-scrambled data and the real data will show 
similar levels of phase-locking. On the contrary, if a substantial part of 
the phase-locking depends on the real-time interaction between the two 
partners, real data will show higher phase locking than scrambled data. 

2.1.2.1. Side note on power and PLV: induced versus evoked responses. 
When analysing any event locked changes in EEG power and/or phase- 
based entrainment it is important to consider whether these are evoked 
or induced responses. Evoked responses are additive signals super-
imposed upon the background/ongoing EEG; induced responses are 
changes in power and/or phase that happen within the background/ 
ongoing EEG. In other words, evoked responses are transient changes 
that do not relate to background oscillatory activity, while induced re-
sponses entirely depend on the adjustment of background oscillators to 
incoming stimuli. Whilst changes in power/phase resulting from 
stimulus-locked evoked signals could give the appearance of increased 
entrainment between two brains, this is interpretationally quite 
different to potential changes due to induced neural activity driving 
increases in entrainment. For example, if increases in spectral power 
from two signals are driven purely by evoked and not induced responses 
then it is incorrect to examine phase resetting as a potential mechanism 
behind IBE (or phase-locking more generally) and incorrect to use the 
term neural IBE to refer to these mechanisms (e.g., Keitel et al., 2021). 

This problem is further complicated because, as Muthukumar-
aswamy et al. (2011) show, transient increases in power can lower error 
in phase estimation and give the appearance of heightened phase lock-
ing (see also, Burgess, 2013). Separating increases in power from 
genuine increases in phase locking is difficult and continually debated 
(e.g., Sauseng et al., 2007). As a consequence, the best practice for re-
searchers using event-related phase-locking is to always show accom-
panying power plots and examine power and phase simultaneously. 

2.1.2.2. Side note on cross-frequency PLV: dealing with different canonical 
frequencies. As described above (Section 1.2) the canonical frequency 
bands in infant EEG are typically slower compared to adult EEG. It may, 
therefore, be more appropriate for researchers measuring the quantity of 
phase-locking between infant and adult EEG to use cross-frequency 
phase locking. Cross frequency phase entrainment or PLV m:n is calcu-
lated similarly to PLV as follows: 

PLVmn =
1
N

⃒
⃒
⃒
⃒

∑N

k=1
ei(Δϕk(fn ,fm ,t,k))|, (3)  

Where, N is the number of trials and Δϕk
ʀ
fn, fm, t, k

)
is calculated as 

follows: 

Δϕk(fn, fm, t) =
(n + m

2⋅m
⋅ϕ(fm, t, k) −

m + n
2⋅n

⋅ψ(fn, t, k)
)

, (4)  

Where n and m are the centre frequencies of the two signals and should 
be integer values satisfying the equation m∙fn = n∙fm, and ϕ

ʀ
fm, t

)
, is the 

phase angle at channel ϕ, at time t, on trial k, and channel ψ . Note that as 
we have described in section 2.2.2 PLV can be applied over trials (1) or 
in a time window within a given trial (2). The same applies for cross 
frequency PLV, although here we only describe the equation for esti-
mating cross frequency PLV over trials (3). Cross frequency phase 
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locking shares the same underlying interpretation as standard phase 
locking. In accompanying articles in the special edition (Kayhan et al., 
2021, in press), we have provided readers with a full pipeline for 
computing cross-frequency phase-locking within (sliding window) and 
across trials (for each sample). 

2.1.3. Measuring sequential IBE of amplitude and power – Granger 
Causality (GC) 

The simplest way to measure sequential IBE is simply to repeat the 
Spearman’s correlation described in section 2.2.1 while shifting one 
time series forwards or backwards in time relative to the other. For 
example, if we find that the correlation between two time series x and y 
is stronger when time series x is backward shifted with respect to time 
series y, compared with when the simultaneous (‘zero-lag’) correlation 
between the two-time series is examined, then this indicates that 
changes in x tend to predict changes in y. 

Granger Causality is closely related to this approach, but as well as 
looking at the time-lagged relationship between two time series, it also 
increases the sensitivity of the prediction by considering how one time- 
series forwards predict itself over time (known as the autocorrelation). 
Given two-time series x and y, Granger Causality is a measure of the 
extent to which time series x can be predicted by previous samples of y 
above and beyond how well time series x can be predicted by previous 
samples of x alone. 

GC is defined through the log of ratios of error terms between the 
bivariate and univariate regressive models, following: 

GC = 1n

(
var(ex)

var
ʀ
exy

)

)

, (5)  

Where ex is the error term obtained from the univariate autoregressive 
model fit and exy is the error term obtained from the bivariate regressive 
model fit. Again, the same approach can be adopted to look either at the 
amplitude of the brain signal, or at the power within frequency bands. 
Time frequency (spectral) GC involves computing the dot product be-
tween the regressive coefficients and complex sine waves, (analogous to 
the Fourier transform) and then applying those results to the error 
variance via the transfer function (Cohen, 2014). 

Finally, Partially Directed Coherence (PDC) is a frequency domain 
formulation of GC (Sameshima and Baccala, 2014), measured from the 
coefficients derived from the autoregressive modelling process 
described above. PDC has also been used to investigate IBE across adult - 
infant dyads (e.g., Leong et al., 2017; Santamaria et al., 2020). PDC 
along with other methods of frequency domain entrainment based on 
autoregressive modelling can be implemented using the extended 
multivariate autoregressive modelling toolbox (Faes et al., 2013). 

2.1.3.1. Side note on EEG data stationarity and GC. Stationarity refers to 
whether the statistical properties of data change over time. For example, 
EEG data that contain low-frequency drifts over time can cause data to 
become nonstationary as the mean of the data is changing over time. 
Non-stationarity may take various forms. One form of non-stationarity 
manifest itself through unit root processes - where the data may 
exhibit a stochastic trend or “random drift”. This form of non- 
stationarity is common in financial time series (e.g., stock prices), but 
less common in neuroimaging data (because neurophysiological pro-
cesses are generally physically constrained). Many stationarity tests 
(including the KPSS test which is implemented within the MVGC toolbox 
(Barnett and Seth, 2014)) only test for unit-root stationarity. However, 
unit-root is not the only kind of non-stationarity; there is also 

"structurally varying" non-stationarity, which may be more common in 
ERP or more generally task-related data. Here, the statistical properties 
of the time series, e.g., mean/standard deviation over time, the amount 
of periodicity in the data, change over time, either in a structur-
ed/deterministic or stochastic way (unit root tests may or may not fail on 
this form of non-stationarity). This implies that the Granger causality 
itself may change over time. Overall stationarity in neuroscience for GC 
is an ongoing problem (e.g., see Barnett et al., 2018a; 2018b). Current 
common approaches to address non-stationarity in EEG data include 
polynomial detrending (Seth et al., 2015), and/or subtraction of the 
averaged ERP from single-trial data (e.g., Wang et al., 2008), but these 
are limited. Another viable solution to address nonstationary EEG data is 
to segment the data into shorter time windows in which the data would 
be stationary enough to perform GC analysis, although this approach 
needs more empirical testing. 

2.1.3.2. Side note on model order and GC. A crucial parameter to 
consider when using GC analysis is model order. Model order determines 
the number of previous samples of a time series that will be used in the 
(bivariate) autoregressive model fit. For instance, if your data is sampled 
at 1000 Hz, a model order of 5 means that the model will use a weighted 
sum of the previous 5 ms of data. The model order used will in part 
determine the frequency precision of the spectral GC estimates. In our 
example using only 5 ms of data, we would only base our GC estimate on 
1/50th of a cycle of 4 Hz activity. To better capture low-frequency dy-
namics, it can therefore often be useful to downsample the data prior to 
analysis. For example, if we resampled our data from 512 Hz to 128 Hz, 
still using a model order of 5 would mean we now consider the previous 
39 ms of data in the model fit. Alternatively, one could increase the 
model order, but models with higher orders typically require longer time 
segments and more trials as there are more parameters that need to be 
estimated (Cohen, 2014). Further considering lower frequency dy-
namics is a good reason to lean towards the highest model order that is 
appropriate for the data. In our example increasing the model order to 
15 would result in us considering the previous 120 ms (at 128 Hz), 
almost half a cycle of 4 Hz activity. This example illustrates the fact that 
the model order used can have important consequences on the estima-
tion of GC. Some routines exist to help guide the estimation of model 
order, the most common being Bayes information criterion (BIC) and 
Akiake information criterion (AIC). Both are implemented within the 
MVGC toolbox (Barnett and Seth, 2014). 

2.1.3.3. Side note on spectral power and GC. The relationship between 
spectral power and spectral GC is still uncertain, for example at present 
it is unclear how changes in spectral power affect GC estimates and 
anecdotal evidence suggest that it is not uncommon to find correlations 
between spectral power and (spectral) Granger Causality. Empirical 
research has shown that increases in event-locked spectral power cor-
responding to ERPs co-occur with increases in spectral GC (e.g., Wang 
et al., 2008), but whether these changes in power caused the changes in 
GC or vice versa is uncertain. It will be important for future research to 
fully explore this relationship (e.g., Winkler et al., 2015). For example, 
does the strength of the GC scales linearly with the amount of spectral 
power? And how is this relationship affected by the sampling rate, signal 
to noise ratios and so on? 

2.1.4. Measuring sequential IBE of phase – Phase Transfer Entropy (PTE) 
Phase transfer entropy (PTE) allows researchers to measure 

sequential IBE of phase. It is calculated using the following equation:  

Phase TEx→y = H(θy(t), θy(t
′

)) + H(θy(t′), θx(t
′

)) − H(θy(t′)) − H(θy(t), θy(t
′

), θx(t
′

)), (6)   

I. Marriott Haresign et al.                                                                                                                                                                                                                     



Developmental Cognitive Neuroscience 54 (2022) 101093

6

Where θ(t) is the phase of signal X(t), t′ = t – δ, and θx(t′

) and θy(t′

) are 
the previous states of the phase angle time series of x and y, with a given 
lag of δ. Given two-time series x and y, like GC, transfer entropy (TE) 
estimates whether including the past of x influences our ability to pre-
dict y and vice versa. However, unlike GC, TE does this by comparing 
conditional probabilities (Lobier et al., 2014). E.g., if a signal X ‘causes’/ 
‘disambiguates’ a signal Y, then the probability density of the future of Y 
conditioned on its past should be different from the probability density 
of the future of Y conditioned on the pasts of both X and Y. As transfer 
entropy is based on the same underlying principles as GC, it has been 
shown that results obtained using GC and PTE are identical for Gaussian 
variables (e.g., Barnett et al., 2009; Barnett and Bossomaier, 2012). 
Therefore, results from phase transfer entropy analyses may be inter-
preted as reflecting directed information flow between two phase angle 
time series. 

Whilst Phase Transfer Entropy has not been widely used within 
cognitive neuroscience as a framework for analysing entrainment pat-
terns between two systems, it has many advantages and useful proper-
ties. For example, as entropy is not based on the temporal structure of 
the data, it can be computed over time and trials, whereas other mea-
sures such as PLV can only be computed over time or trials, not both. 
This is a major advantage as including data from time and trials 
simultaneously means that entropy can be computed in shorter time 
windows than other window-based entrainment measures (e.g., GC), 
thus retaining a greater degree of the original temporal precision of the 
data whilst still having sufficiently high signal to noise ratios (Cohen, 
2014). 

2.2. Cautionary note on the importance of the temporal scale 

Many of the metrics described above are highly sensitive to the 
temporal scale of the analysis. For example, if we observed a transient 
increase in spectral power in two signals (x and y), where the peak of y 
occurred a few hundred milliseconds after the peak of x. When using a 
fine temporal scale (e.g., estimating entrainment in a 200 ms sliding 
window), we would not detect changes in concurrent IBE, but if we were 
to use a larger time window (e.g., estimating entrainment in a 1 s sliding 
window) it is possible to observe changes in concurrent IBE (e.g., see 
Fig. 6). This we illustrate using simulated data in Section 3.3. This is 
because, although downsampling can be a useful step in some analysis 
(e.g., for GC, see section 2.2.3.2), downsampling can create artifacts by 
spreading the signal in time that can lead to the detection of spurious 
entrainment. 

3. Simulations and applied methods for measuring IBE and 
differentiating event-locked from non-event-locked changes 

In this section we present simulations in which we artificially 
introduced a given relationship between two time series. We then 
compute the metrics described above to assess how well each metric 
reflects this relationship. The purpose of this is to guide the reader 
through application of the various metrics. Throughout the section, we 
also discuss how different signal changes can manifest either as tran-
sient, event-locked changes (Section 3.1) or as more continuous, non- 
event-locked changes (Section 3.2). In Sections 3.4 and 3.5 we 
describe methods to quantify whether observed event-locked changes in 
IBE differ significantly from chance. 

3.1. Simulations - event-locked changes in child-adult neural entrainment 

3.1.1. Amplitude and power 
At its most simple level, computing the correlation coefficients for 

time-frequency amplitude/power does not involve any algorithms more 
complex than a Spearman’s correlation. In the accompanying code, we 
provide routines for computing concurrent amplitude/power entrain-
ment. However, for the remainder of this section we will focus on GC, 

which is a more appropriate complex measure for assessing entrainment 
in EEG data: as detailed above, it not only assesses the potential 
contribution of one signal to another over time (e.g., the extent to which 
time series x can be predicted by previous samples of y), but also con-
siders autocorrelations between each signal (e.g., the extent to which x 
can be predicted by previous samples of x alone). 

To illustrate how event-locked neural responses might give rise to 
changes in sequential amplitude/power IBE, we simulated two ERP-like 
signals (x and y) (see Fig. 2). Signal y was generated from previous 
samples of x plus noise (see SM Section 2 and 7 for full details). From this 
simulation, it can be seen that the sequential IBE between x and y 
observable in the raw data (Fig. 2a) manifests as strong x->y GC in-
fluences but not y->x GC influences, as expected (Fig. 2d). When the 
same analysis is applied to the power of the signal (Fig. 2b, 2c), the 
predicted results are again observed. Spectral x->y GC influences are 
observed across a range of lower frequencies (Fig. 2e), but no spectral y- 
>x effects are observed (Fig. 2f). In the accompanying code for this 
section, we provide the user with routines for implementation of time 
domain and spectral GC (i.e., sequential IBE based on amplitude/power) 
for measuring event locked changes in EEG hyperscanning data. The 
user is also able to easily specify more advanced parameters such as the 
time window size and model order used for the time-varying GC 
estimates. 

3.1.2. Phase 
To illustrate how event-locked neural responses might give rise to 

changes in concurrent phase-based IBE, we simulated 100 trials of two 
partially phase-locked signals (x and y) with a concurrent phase reset/ 
modulation + 200 ms after an event (time 0) (see Fig. 3a) (see SM 
Section 4 for more details). From this simulation, it can be seen that, 
during the time window following the manipulation at + 200 ms, the 
phase angles of the two time series converge (Fig. 3a) as expected. The 
phase locking values of the two time series also converge (Fig. 3c) as 
expected. 

To illustrate the sequential phase IBE, we simulated 100 trials of x 
and y again in the same way, but here the phase modulation in y 
occurred 200 ms later than in signal x (see Fig. 3b) (see SM Section 5 for 
more details). From this simulation it can be seen that when phase 
modulations in one signal occur later/ earlier than phase modulations in 
another signal (e.g., x in Fig. 3b becomes phase-locked at +200 ms, and 
y in Fig. 3b becomes phase-locked at +400 ms) and that these modu-
lations are correlated, then this relationship (or form of sequential IBE) 
can be captured using directed phase IBE methods such as phase transfer 
entropy – illustrated by the increase in PTE in the time window between 
phase modulations of x and y (~+200–400 ms) (Fig. 3d). Also note from 
the simulation that as y becomes phase locked (or entrains to x) at 
+ 400 ms this causes an increase in PTE from y to x. This is because both 
signals were generated from pure sine waves plus noise and so when y 
also becomes phase locked at + 400 ms, the activity in y is also now 
predictive of the activity in x. 

In the accompanying code for this section, we provide the user with 
routines for full implementations of inter-individual, time-frequency 
PLV and PTE (i.e., sequential IBE based on phase). The user can easily 
specify parameters such as time window size for PLV/PTE as well as the 
model order for PTE. 

3.2. Simulations – non-event-locked changes 

3.2.1. Amplitude and power 
To illustrate how gradual changes in amplitude/power IBE that are 

not time-locked to the onset of an event might arise, we simulated two 
oscillatory signals (x and y) where y was generated from previous 
samples of x plus white noise (see Fig. 4a). To simulate a gradual change 
in GC we reduced this noise parameter over time (see SM Section 3 and 7 
for more details). From this simulation, it can be seen that, as expected, 
the x->y GC influence increases during the time window, but no changes 
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in y->x GC influences are observed (Fig. 4b). 
In the accompanying code for this section, we show how the same 

code from the previous Section (3.1.1) can be leveraged to look at 
questions regarding non-event locked changes in inter brain IBE. No new 
algorithms are implemented here. 

3.2.2. Phase 
To illustrate how gradual changes in phase IBE might arise that are 

not time-locked to the onset of an event, we simulated two oscillatory 
signals (x and y) with slow drifts in peak frequency over time (signal x 
linearly increased in peak frequency from 6 to 9 Hz and signal y 
decreased from 12 to 9 Hz) (see Fig. 5). Full details of how we simulated 
this data, and the time-frequency decomposition can be found in the 
supplementary materials (SM 6 and 7). From this simulation, it can be 
seen that the closer the signals become in peak frequency the more 
consistent the relationship between phase angles over time is, and thus 

Fig. 2. Simulated data showing one mechanism that could give rise to increases in interbrain granger causality between parents and infants. (a) shows the two 
correlated (single-trial amplitude) transient signals x and y. Y was generated from previous samples of x with a lag of 100 ms, such that (d) there is a substantial event 
locked increase in GC from x to y but no GC influence from y to x. (b) shows time-frequency power from signal x from panel a. (c) shows time-frequency power from 
signal y from panel a. (e) shows spectral GC from y to x and (g) from x to y. 

Fig. 3. Simulated data showing how event 
locked phase modulations could give rise to 
phase-based IBE between two brains. (a) Time 
series data x and y were subjected to a phase 
reset at + 200 ms so that they become purely 
phase locked. Note grey lines show single trial 
data while blue and green lines indicate data 
averaged over trials. The increased consistency 
in phase angle circa + 200 ms between x and y 
yields (c) a notable increase in the phase- 
locking between x and y ~200 ms. (b) Simu-
lated data showing a situation in which the 
phase modulations in one signal (x) predict the 
phase modulations in another signal (y) and 
how this lagged/ directed relationship in phase 
can be captured (d) using phase transfer 
entropy.   
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the higher the phase-locking value between x and y is. 
In the accompanying code for this section, we show how the same 

code from the previous Section 3.1.2 can be leveraged to look at ques-
tions regarding non-event locked changes in inter brain entrainment. No 
new algorithms are implemented here. 

3.3. Simulation- cautionary note on the importance of the temporal scale 

In this section we highlight how the temporal scale of the analysis 
influences concurrent IBE estimates. To illustrate this, we simulated two 
signals that show an event-locked transient increase in spectral power 
which peaks 300 ms later in signal y compared with signal x (Fig. 6a, 
6b). Details of the time-frequency decomposition can be found in SM 7. 
To compute concurrent IBE, we performed two calculations: first, we 
calculated Spearman’s correlations between the power of time series x 
and y at each time-frequency point independently (see Fig. 6e). Second, 
we down sampled the data using a 0.5 s sliding window with 200 ms of 
overlap between successive windows (Fig. 6c, 6d) before repeating the 

same analysis (Fig. 6f). When using a fine temporal scale, we detect no 
changes in concurrent IBE, but when using a larger time window 
(reduced temporal precision) we do (Fig. 6f). This illustrates how the 
pre-processing of data prior to IBE analyses can alter the results. 

3.4. Quantifying event-locked changes in child adult neural entrainment 

In this final section we consider the question of statistical signifi-
cance. If we know that specific events occurred in the data, how can we 
test whether statistically significant changes in IBE occurred relative to 
these events? 

3.4.1. Amplitude and power 
Significant changes in GC can be evaluated with F-statistics, which is 

implemented through the MVGC toolbox (Barnett and Seth, 2014). 
Statistical significance can also be obtained via nonparametric permu-
tation testing, which can be applied to power correlations, time domain 
and spectral GC (Maris and Oostenveld, 2007). The benefit of the latter 
measure is that it also deals with the problem of multiple comparisons. 
For measuring changes in GC that are strongly time/event locked, 
permuting the order of the time segments within trials is generally 
recommended over permuting the trial order whilst leaving the time 
segments intact (Cohen, 2014). 

3.4.2. Phase 
Assuming a von Mises distribution (normal distribution for circular 

data) statistical significance of ITC and PLV can be evaluated against a p- 
value, approximated against the null hypothesis using the Rayleigh’s 
test which can be implemented using the Circstat toolbox (Berens, 
2009). Statistical significance can also be assessed against a threshold 
ITC/PLV value (Cohen, 2014). Any values which exceed this resulting 
threshold can be considered significant. Alternatively, the significance 
of time-frequency varying ITC and PLV as well as PTE (when computed 
in a sliding window within trials) can also be assessed using nonpara-
metric permutation testing (e.g., Maris and Oostenveld, 2007). 

3.5. Correcting for multiple comparisons when measuring changes in 
parent-child neural entrainment 

When analysing EEG data, we are typically interested in how a given 
effect varies as a product of time, frequency, and topography. This 
makes exploratory EEG analysis susceptible to the problem of multiple 
comparisons: increasing the number of statistical inferences drawn from 
the data will also increase the likelihood of obtaining a significant result. 
There are several approaches to correct for this problem. For example, if 
you are only testing a limited number of regions/frequencies of interest 
it is appropriate to use the Bonferroni correction method. For more 

Fig. 4. Simulated data showing one mechanism that could give rise to increases in interbrain granger causality between parents and infants. (a) shows two oscillatory 
signals. Y was generated as a product of previous samples of x with a lag of 25 ms. We decreased the amount of noise in x over time to simulate (b) a gradual increase 
in GC from x to y throughout the segment. 

Fig. 5. Simulated data showing one mechanism that could give rise to increases 
interbrain phase locking between parents and infants. (a) Time series data x and 
y both exhibit slow trends in frequency over time toward a common peak fre-
quency. (c) signal x increases from 6 to 9hz over the time course whereas time 
series y decreases from 12 to 9hz. The closer the signals become in peak fre-
quency (b) the more consistent the relationship between phase angles over time 
is, (d) yielding a gradual increase in PLV between x and y over time. 
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complex comparisons involving a large number of channels and time- 
frequency points, Bonferroni correction is not appropriate. In these sit-
uations, correction for multiple comparisons should be made using pixel 
or cluster-based permutation statistics (Maris and Oostenveld, 2007). 
For a more detailed discussion of which correction methods to use when 
we refer the author to Cohen (2014), chapter 33). 

4. Discussion 

Procambarus clarkia, a breed of freshwater crayfish, exhibit only a 
small range of social behaviours, primarily focussed on dominance/ 
subordination, yet their physiological systems are capable of supporting 
these interactions as well as intra-individual interactions with their 
environment with a remarkable level of temporal fidelity (e.g., Schapker 
et al., 2002). The way that humans interact with their environment and 
each other is infinitely more complex and multi-layered (Hasson and 
Frith, 2016; Hoehl et al., 2021; Murray et al., 2016). However, most 
researchers who study interacting humans during social engagement 
typically do so using methods that measure how entrainment varies by 
frequency/topography and between different experimental conditions 
(or participants), but which obscure how entrainment varies over time. 
In this article, we have argued that this omission prevents us from 
developing a mechanistic understanding of how neural entrainment is 
established and maintained. 

In this article, we presented algorithms that allow researchers to 
measure how entrainment between two brains (or more generally 
physiological systems) varies as a function of time. We have differenti-
ated between two types of entrainment (Section 2.2): concurrent (‘when 
A is high, B is high’) and sequential entrainment (‘changes in A forward- 
predict changes in B′). And we have described how these measures can 
be applied to three aspects of the neural signal: amplitude, power and 
phase (Section 2.2, see Fig. 1). 

We hope that this guided simulation study and tutorial will help 
facilitate further research into the possible mechanisms underpinning 
child-adult neural entrainment. For example, measuring changes in 
concurrent entrainment of amplitude and power using correlations 
(section 2.2.1), or of phase using PLV (section 2.2.2) might be used to 
explore the possibility that certain behavioural events during social in-
teractions could lead to local increases in IBE, for example around mo-
ments of mutual gaze onsets or vocalisations (see Section 1.1). 

Further measuring changes in sequential entrainment of amplitude 

and power using GC (section 2.2.3), or of phase using PLV (section 2.2.2) 
or PTE (section 2.2.4), might be used to explore the possibility that 
response preparation or anticipation and mutual prediction might lead 
to changes in sequential IBE (see Section 1.1). This could in theory 
involve concurrent, transient changes in either power or phase in both 
partners (e.g., Mandel et al., 2016; Bögels, 2020), that would drive 
changes in sequential IBE. 

Lastly, the same methods described above might be used to explore 
the possibility that continuous intra brain changes, that are not locked to 
behavioural events, could also lead to gradual changes in IBE. This 
might be substantiated for example, through shared cognition and/or 
mental representations or through direct ‘neural mimicry’, even in the 
absence of explicit turn-taking (Hamilton, 2021; Kingsbury et al., 2019). 
These concepts are discussed further in Section 1.1. Alternatively, 
gradual changes in phase, such as the adjustment of the peak frequency 
of neural oscillations, could lead to increases in concurrent IBE of phase 
(Section 3.2.2), through, for example, concomitant modulations of peak 
alpha frequency in response to task demands (e.g., Samaha and Postle, 
2015; Wutz et al., 2018). 

Overall, the study of child-adult neural entrainment is still in its in-
fancy and many very basic questions regarding how changes in inter 
brain entrainment are substantiated at the neural level, and are medi-
ated through behaviour, remain unanswered. It is our hope that the 
material presented in this paper will aid researchers in addressing these 
fundamental questions. 

4.1. Outstanding issues 

There are, of course, many outstanding issues with the analysis of 
EEG hyperscanning data. Substantial questions remain about how suc-
cessfully artifacts can be removed from brain data (Section 2.1); in un-
derstanding the relationship between power changes and IBE (sections 
2.2.2.1 and 2.2.3.3) and the problems associated with non-stationarity 
in EEG data and Granger Causal analyses (section 2.2.3.1); and so on. 

Two further outstanding issues should be noted. First, we are often 
considering events that have different periodic structures, and that un-
fold over different time scales. For example, researchers might want to 
examine the relationship between eye gaze shifts (which take place 
every ~300 ms – i.e., at ~3 Hz), changes in autonomic arousal (between 
~0.01and ~0.5 Hz) and changes in EEG (between ~2 Hz-~30 Hz). 
Although we have presented some methods for looking at this – such as 

Fig. 6. Simulation illustrating the importance 
of using an appropriate time window for 
calculating concurrent entrainment. Panel a 
shows the time-frequency power of signal x. 
Panel b shows the time-frequency power of 
signal y. Panel c shows the down sampled 
(using moving window average) time-frequency 
power of signal x. Panel d shows the down 
sampled, time-frequency power of signal x. 
Panel e shows concurrent IBE (spearman’s cor-
relation of single trial power (PC) between x 
and y) computed at each time-frequency point 
(i.e., original temporal scale of data). Panel f 
shows the same concurrent IBE but computed 
on the down sampled data. The AOIs on panel f 
indicate regions of significant correlations.   
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temporal correlations in power at different frequencies (section 2.2.1) 
and cross-frequency PLV (section 2.2.2.2) – we have not discussed other 
approaches, such as phase-amplitude coupling (Canolty and Knight, 
2010; Tort et al., 2010) that would also be useful. 

Second, we have concentrated exclusivity on IBE in relation to 
bivariate behaviours (e.g., mutual gaze). Unlike the ways in which social 
information processing is typically studied (i.e., using repeated, discrete 
and unecological screen-based stimulus), real social interactions involve 
highly layered and complex sequences of multimodal events that can 
unfold over multiple time scales in a continuous and interdependent 
way. For example, consider the multimodal pathways to joint attention 
as illustrated by Yu and Smith (2016), in which sequences of social in-
teractions between parents and infants often involve initiating and 
responding to various postural and gestural movements, as well as visual 
(gaze) information and vocalisations, presented in combination. Future 
work will require more advanced data analysis and the collection of 
larger datasets, to explore IBE in relation to more complex multivariate 
behavioural datasets (for example those modelling gaze, touch, affect 
and vocal data simultaneously). 

5. Conclusion 

The focus on fine-grained neural responses that we advocated in this 
paper has the potential to provide valuable new insights into the neural 
processes that support dynamic social interaction, beyond what is 
possible using the current/ standard approaches adopted in EEG 
hyperscanning studies. It is our hope that the considerations that we 
highlighted, and the methods that we described, will pave the way for 
future studies which will analyse in more depth the rich temporal dy-
namics of neural activity, bringing us closer to the true complexity of 
brain functioning. 

Implementation 

All MATLAB functions for the implementation of the various algo-
rithms presented here for event locked entrainment analysis of EEG 
hyperscanning data, including a sample dual EEG dataset, as well as, 
code for generating the simulated data can be found here [https://gith 
ub.com/Ira-marriott/Using-dual-EEG-to-analyse-event-locked-chan 
ges-in-child-adult-neural-entrainment-.git]. 
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