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Abstract—In this research, we introduce two types of 
Artificial Intelligence (AI) models for classifying chest X-rays, 
binary and categorical. These models were trained and 
validated utilizing Convolutional Neural Network (CNNs) and 
transfer learning techniques. The binary classification model 
performed well in classifying normal and abnormal X-rays. The 
categorical classification model showed good abilities to 
recognize pathological states such as cardiomegaly and 
infiltration. However, it faced challenges when radiographic 
patterns overlapped. We used a dataset of 2,463 chest X-ray 
images with various pathological conditions and improved CNN 
architectures with two validation approaches to ensure 
robustness and reliability. This study contributes to the growing 
literature on AI in medical imaging, showing enhanced clinical 
outcomes with robust performance and predictive capabilities. 
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I. INTRODUCTION 
 Medical imaging is a critical component of modern 
healthcare. The chest X-ray provides significant insights into 
the diagnosis and treatment of a variety of respiratory and 
cardiothoracic pathologies [1]. Interpreting chest X-rays is 
still challenging due to their complicated image details and 
requires a significant amount of knowledge. Inconsistencies 
and errors during interpretation could be triggered by a variety 
of human factors such as fatigue, mental stress, and different 
levels of skills and experience [2]. These factors emphasize 
the need for supplementary diagnostic tools for radiologists 
and physicians to ensure accurate diagnoses. 

 Prior studies have verified that AI has the potential to 
strengthen the efficiency and precision of medical image 
processing [3]. CNN has demonstrated significant potential in 
analyzing and classifying medical images with high precision 
[4]. Some studies have shown that AI systems assist 
radiologists by providing automated, accurate and consistent 
analysis of medical images, reducing physicians’ workload 
and speeding up the diagnostic process [5].  

The primary problem of this research is to address the 
variability and potential errors in interpreting chest X-rays 
caused by human factors. Misdiagnoses and inconsistent 
readings can lead to inappropriate treatments and bad 
outcomes for patients. We hypothesize that AI models can 
improve the accuracy and consistency of identifying and 
classifying chest X-rays. By automating diagnostic processes, 
AI models can assist radiologists and physicians in better 
clinical decision-making. In this study, we aim to develop AI 
models utilizing advanced CNN architectures and transfer 
learning techniques, focusing on VGG-16 [6]. The specific 
selection of VGG-16 comes from its proven effectiveness in 
feature extraction for image classification tasks. Even though 
VGG-16 is an older design, in some image classification tasks 

it performed well compared to more complicated designs like 
Resnet or EfficientNet. It is easy to construct and understand 
because of its 2D Convolutional (Conv2D) layer structure, 
which includes max-pooling layers and fixed filter sizes. 
Compared to the residual connection of ResNet or the 
compound scaling strategies of EfficientNet, this simplicity 
leads to fewer operation layers and lowers computational 
complexity. Additionally, VGG-16 works well with smaller 
batch sizes and less memory. It is also easier to fine-tune for 
transfer learning applications, especially when dealing with 
smaller datasets and limited hardware resources. While 
ResNet and EfficientNet can achieve higher accuracy through 
more sophisticated operations, VGG-16 offers a practical 
balance between accuracy and computational efficiency [7]. 
This literature shows that VGG-16 is a better choice for small 
datasets and lower computational power. The uniform 
structure and deep layers of VGG-16 facilitate the extraction 
of fine-grained features, which makes it an excellent choice 
for identifying subtle differences in medical images such as 
chest X-rays [7]. 

The aim of this research is to develop and validate two AI 
models: one for binary classification and another for 
categorical classification of chest X-rays. Our techniques 
employ cutting-edge deep learning methodologies to achieve 
high classification accuracy in both past preliminary 
assessments and more extensive diagnostic tasks.  This binary 
classification model will greatly reduce the load on 
radiologists by classifying normal and abnormal X-rays. The 
categorical classification model aims to discriminate between 
multiple conditions with great precision in pneumonia, 
atelectasis, pneumothorax, mass, infiltration, nodule, 
cardiomegaly, effusion, and normal. 

This work serves as a contribution to the AI field on 
optimizing diagnostic workflows. It is the first full clinical 
evaluation of such models to set a benchmark for AI-driven 
medical diagnostics in the future. The above AI models are 
being evaluated and validated under rigorous conditions. After 
those evaluation processes, the practical efficacy of these AI 
models become apparent, which improves patient 
management and health outcomes. 

II. METHODOLOGY 
This research uses chest X-ray images collected from Sri 

Lankan hospitals and publicly available datasets including the 
National Institute of  Health (NIH) datasets [8], MIMIC 
dataset [9] and the chest X-ray 8 dataset [8]. As shown in Fig. 
2, 2463 chest X-ray images were collected, representing 8 
cardiothoracic pathological conditions and a diverse range of 
demographic backgrounds. This variety of datasets is critical 
for constructing an AI model that can generalize across 
multiple demographic patient groups ensuring greater 
efficiency while avoiding demographic biases [10]. As shown 
in Fig. 1, the dataset includes eight types of cardiothoracic 



pathological conditions such as pneumothorax, pneumonia, 
atelectasis, infiltrate, mass, nodule, cardiomegaly, and 
effusion, along with normal cases. The pathological 
conditions were classified and labelled according to 
radiologists’ reports and existing labels from the public 
datasets. It is crucial to accurately depict these pathological 
conditions in the dataset to train AI models effectively [11]. 

The methodology started with key steps, the first of which 
was data preparation. The entire dataset was resized to 150 
x150 pixels size [12]. To normalize the input dataset, we 
employed several processing steps. These steps involved 
rescaling to normalize values of pixels, as well as using 
augmentation strategies such as zoom, rotation, shear, width 
and height shifts, and horizontal flips using the 
ImageDataGenerator library from Keras. These preprocessing 
techniques prepared the dataset for model training and 
improved the model robustness by mimicking various 
scanning conditions [13]. 

As shown in Fig. 3, the dataset was segmented into validation, 
training, and testing with percentages of 15%, 75%, 10% 
respectively [14]. This distribution ensures the training set is 
sufficient for effectively training the models, while providing 
enough data for the validation and testing to assess the 
model’s performance and reduce overfitting [15]. Dataset 
splitting is a common practice in machine learning for 
healthcare applications, as it ensures an adequate dataset for 
validation and testing. It helps models evaluate performance 
and make predictions on unseen images [16]. 

 In this study, two AI models were created: binary and 
categorical classification models. The binary classification 
model was created using a custom CNN architecture. The 
model architecture includes multiple Conv2D layers 
increasing filter size of 32, 64 and 128. Each Conv2D layer is 
followed by a MaxPooling2D layer, which decreases spatial 
dimensions. After the convolutional and pooling operation, a 
Flattened layer is used to turn 3D feature maps into 1D feature 
vectors, which can then be processed by fully connected 
layers. To prevent overfitting during training, a dropout layer 
is applied after flattening the data. The final phase of the 
architecture involves fully connected Dense layers. 
Nonlinearity is incorporated into the model using a hidden 
Dense layer with Rectified Linear Unit (ReLU). The output 
layer creates a probability score between 0 and 1 using 
sigmoid activation [17]. Input chest X-ray images can 
potentially be classified into normal or abnormal utilizing this 
binary classification model architecture. 

 

According to the block diagram of Fig. 4, a categorical 
classification model was developed encompassing VGG-16 
pre-trained architecture to classify chest X-rays into 8 
pathological conditions along with a normal condition. The 
VGG-16 model was employed as a feature extractor, which 
was pretrained on the ImageNet dataset. To capture 
hierarchical image features, it omitted fully connected layers 
and instead relied on deep convolutional layers.  

 

 Fig. 1.   Main pathological conditions of the dataset [7]. 
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Fig. 3.   Block diagram of binary classification model. 

Fig.4.   Block diagram of categorical classification model. 

Fig.2.   The distribution of Thoracic Condition in Dataset. 



These Convolutional layers are grouped into five blocks, 
increasing filter sizes (32, 64, 128, 256 and 512). Blocks 1 and 
2 contain two Conv2D layers with 64 and 128 kernels, while 
blocks 3,4, and 5 each contain three Conv2D layers with 256, 
512 filters. Custom fully connected layers were added after 
feature extraction. This includes a Flatten layer, which is 
followed by a Dense layer consisting of 512 units and ReLU 
activation [18]. A 0.5 dropout rate was added to the Dropout 
layer to prevent overfitting. To classify chest X-rays into their 
respective pathological conditions, a final dense layer has 
been equipped with Softmax activation. In order to overcome 
issues of the sparse gradient on noisy problems, the model 
architecture was built using Adam optimizer and trained with 
categorical cross entropy loss. 

The categorical classification model also trained using 224 
x 224 pixels to further assess model’s accuracy. The higher 
resolution enables the model to capture the finer details in 
radiographic images especially for subtle conditions that are 
difficult to distinguish at lower resolutions. Furthermore, 
SMOTE (Synthetic Minority Oversampling Technique) was 
utilized to balance the dataset by creating synthetic samples 
for under presented classes [19] including Pneumothorax, 
Mass, and Nodule. This strategy helped solve class imbalance, 
which is typical problem in medical imaging datasets and 
frequently limits the model’s capability to generalize well. 

Both AI models were trained using TensorFlow and Keras. 
The binary categorization model was trained with a batch size 
of 20 over 30 epochs. Similarly, the categorical classification 
model used the same framework and was trained with a 32-
batch size over 10 epochs. An artificial data augmentation 
technique was utilized to enhance the dataset to meet real-
world varied image conditions [20].  

These metrics were utilized to evaluate model 
performances, including accuracy, precision, specificity, 
recall, F1 Score, ROC (Receiver Operating Characteristic), 
and AUC (Area Under Curve). Cross-validation techniques 
such as K-fold cross validation, were utilized to assess the 
model performance across multiple subsets of the dataset [20]. 
An independent test dataset was utilized to evaluate model 
performance on unseen chest X-ray images. The research was 
conducted ensuring ethical compliance throughout, and 
patient data privacy was protected in the process according to 
General Data Protection Regulation (GDPR) and Health 
Insurance Portability and Accountability Act (HIPAA) 
standards [22]. 

III. RESULTS AND FINDINGS 
This section presents findings and results from analyzing 

two AI models that were developed to classify chest X-rays: 
binary and categorical. To evaluate their performances, we 
monitored real-time accuracy and loss throughout each epoch 
of training and validation phases. In addition, evaluated the 
models on previously undisclosed dataset and conducted a 
detailed statistical analysis of models’ performances.  

The main goal was to assess each model’s capability to 
accurately identify an X-ray into a predetermined category. 
The binary classification model was supposed to classify 
between normal and abnormal categories, while the 
categorical model was to categorize a single chest x-ray image 
under one of eight pathological conditions or normal. To 
ensure consistency in performance evaluation both models 
were evaluated using the same methodology. We assessed 

each model’s diagnostic capabilities and limitations using 
several evaluation statistics, which were mentioned in the 
methodology section. The results are discussed extensively in 
next subsections, which also discuss the impact of these 
findings for medical imaging technologies and include data 
visualization to demonstrate model effectiveness. 

A. Binary Classification Model 
This subsection presents findings of the binary 

categorization model, developed to differentiate chest X-rays 
into normal and abnormal. The assessment focuses on metrics 
for performance during the training, validation and testing 
phases, as well as the analysis of metrics for unseen chest X-
ray images. The methods used were exactly those described in 
the methodology for training CNNs on the chest X-ray dataset. 
The binary model was trained under 30 training epochs, which 
showed significant improvement in accuracy as well as loss 
reduction on both phases of training and validation. As shown 
in Fig. 5 and Fig. 6, the model accuracy of training phase was 
74.54% with a corresponding loss 0.5332. During the training 
phase, Accuracy gradually improved to 98.48% and loss was 
reduced to 0.0346 by the 30th epoch. Meanwhile, validation 
accuracy increased significantly, starting at 61.25% and 
reaching 99.31%, showing the model robust performances and 
predictive capabilities.  Upon model prediction on the test set, 
the binary categorization model reached 99.42% accuracy and 
1.85% loss. These results show the model’s capability to 
accurately classify chest X-rays into normal and abnormal. 

Fig.5.  The validation and training accuracy of binary classification 
model. (X: Epochs, Y: Accuracy) 

Fig. 6.  Graphical representation of training and validation loss of 
binary classification model. (X: Epochs, Y: Loss) 



In this research, a sample of 10 unseen chest x-ray image 
sample was used to evaluate model prediction and 
performance. This test was performed to evaluate model 
generalizability in real-world circumstances. The models’ 
predictions (y_pred) were compared with true labels (y_true). 
The performance was statistically assessed using the 
confusion matrix as shown in Fig. 7, which gave statistical 
insights into the model’s accuracy by counting TN (True 
Negatives), FP (False Positives), TP (True Positives), and FN 
(False Negatives). In addition, the model evaluation metrics 
described in the methodology section were derived from the 
confusion matrix. These metrics provided an in-depth 
understanding of the model’s capability in classifying unseen 
data. 

According to the matrix in Fig. 7, the following metrics 
were calculated. As shown in TABLE 1, binary classification 
models’ practical applicability for unseen data achieved an 
accuracy rate of 90%. Fig. 10 illustrates, ROC curve which 
has an AUC of 0.96, indicating excellent prediction between 
normal (without any pathological condition) and abnormal 
(with pathological condition) cases. Furthermore, Cohen’s 
kappa score of 0.80, indicating the amount of agreement 
among prediction and true classification, validates the model’s 
accuracy for diagnosis.  

 
 

TABLE I.  CALCULATION OF EVALUATION METRICS FOR A 
BINARY CLASSIFICATION MODEL. 

B.Categorical Classification Model 
 This section highlights the findings and results of   the 
model developed to predict different clinical conditions and 
identify normal images from chest X-rays. Using VGG-16 
pre-trained model architecture, the categorical classification 
model was trained and validated on a different group of chest 
X-rays, classifying them into nine categories. 

 As shown in Fig. 9 and Fig. 10, the model was trained over 
twenty epochs, beginning with starting accuracy of 61.36% 
and an initial loss of 2.773, indicating the challenge of 
differentiating between various categories. After the training 
phase, the model had an accuracy of 71.8% and loss of 0.747 
for validation. This progressive increase in accuracy and 
progressive decrease in loss throughout epochs indicates its 
ability to train and respond to subtle differences in the dataset. 
The model obtained 69.3% accuracy on the test dataset, which 
included 518 images from 8 pathological conditions and 
normal images. As shown in Table 3, model prediction was 
evaluated using a comprehensive statistical approach to 
determine the F1 score, precision, recall, and sensitivity, in 
addition a confusion matrix and ROC curve analysis for each 
pathological condition classes.  

As shown in Fig. 11, the confusion matrix provides 
inconsistent results, with accurate predictions in certain 
pathologies and certain misclassification in other pathological 
conditions. As an example, ‘Atelectasis’ was incorrectly 
classified as normal while ‘pneumothorax’ was misidentified 
as ‘Effusion’, indicating a probable overlap in radiological 
features or inadequate training data for the model for these 
pathological conditions. Fig. 12 illustrates that the ROC 
curves for each class showed different outcomes. ‘Infiltrate’ 
and ‘Cardiomegaly’ achieved exceptional AUC values of 
1.00, showing excellent classification. However, 
classification such as ‘pneumothorax’ and ‘effusion’ showed 
lower AUC values (0.50 and 0.44 respectively) reflecting 
model’s limitation in these classes. 

The categorical classification model showed significantly 
better results after applying SMOTE to correct class 
imbalance and increasing the image resolution to 224 x 224. 
After 20 epochs, the training accuracy had improved to 
73.25% with a validation accuracy of 71.18%. Training loss 
and validation loss were 0.7489 and 0.7420, respectively. This 
modification enhanced the model’s capability to learn more 
from the same dataset, increasing its capability to classify 
different pathological conditions. In addition, the model 
improved its test accuracy to 70.84%.  

Metrics Calculation 
Accuracy Accuracy =

TP + TN
(TP + TN + FP + FN)

 

=
5 + 4

(5 + 4 + 0 + 1)
= 90% 

Precision 
Precision =  

TP
TP + FP

=
5

5 + 0
= 1 = 100% 

Recall 
Recall =  

TP
TP + FN

=
5

5 + 1
= 83.33% 

Specificity Specificity =  
TN

TN + FP
=

4
4 + 0

= 100% 

F1 Score 
F1 score = 2 ×

Precision × Recall
Precesion + Recall

= 2 ×
1 × 0.833
1 + 0.833

≈ 90.9% 

Fig. 7.   Confusion matrix of the binary classification model. 

Fig. 8.   ROC curve: binary classification. 



 

TABLE II.  CALCULATION OF EVALUATION METRICS FOR A 
CATEGORICAL CLASSIFICATION MODEL 

 

IV. DISCUSSION 
The aim of this research was to apply cutting-edge CNN 

architecture to enhance the categorization of chest X-rays into 
distinct pathological conditions to enhance diagnostic 
accuracy and precision in medical imaging. This study 
demonstrates how to employ both binary and categorical 
classification model to maximize detection of normal and 
abnormal data while accurately predicting specific pulmonary 
conditions.  

 The binary classification model achieved a high level of 
performance classifying normal and abnormal chest X-rays, 
archiving an accuracy of 98.48% in the training phase and 
99.31% in the validation phase after 30 epochs. It achieved a 
test accuracy of 99.42%. When evaluated with unseen data, 
key metrics were calculated as follows: precision of 100%, 
recall of 83.33% and F1 score of approximately 90%, thus 
showing strong diagnostic capabilities. The VGG-16 
architecture-based categorical classification model, 
evaluation metrics were calculated at 61.36% yielding a 
validation accuracy of 71.18%, and test accuracy of 69.31%. 
Even though it was effective in certain classes such as 
‘cardiomegaly’ and ‘infiltrate’, there was variability in others 
providing some improvement in differentiation between 
closely related pathologies.  

The findings highlight some of the possibilities and 
limitations of existing AI techniques for medical image 
analysis. The binary classification model with high accuracy 
and minimal loss suggests that it is suitable for clinical use. 
The categorical classification model, while useful in some 
areas, needs extensive refinement particularly in the situation 
of overlapping conditions. The complexities of multi-class 
categorization and potential dataset imbalances contribute to 
these challenges. 

Metric Value 
Accuracy 55.56% 
Precision 43% 
Sensitivity 56% 
F1 Score 46% 

Fig 9. The validation and training accuracy of categorical 
classification model. (X: Epochs, Y: Accuracy). 

 
 

Fig 10. The validation and training loss of categorical classification 
model. (X: Epochs, Y-a: Loss). 

Fig. 11. Confusion matrix of the categorical classification model. 

Fig. 12.   ROC curve of categorical classification model. 

 



Key strengths of this research include diverse data 
collection, advanced CNN architecture and sound validation 
techniques followed to enhance reliability and model 
robustness. However associated challenges such as dataset 
representativeness, overfitting and computational demand 
remain. To address the data imbalance challenge, techniques 
like SMOTE were used which considerably improved 
classification performance for underrepresented classes like 
pneumothorax, mass and nodule. This illustrates the need to 
correct class imbalance in medical imaging datasets to 
minimize biases in model predictions. Even though the dataset 
size of 2463 images are one of major limitation, since it could 
not have been enough for high performance multi class 
classification. The limited dataset makes overfitting even if we 
used techniques like data augmentation, SMOTE, dropout and 
early stopping. To increase model generalizability future 
research should collect larger and more balanced dataset. 

While the findings indicate that AI models have potential 
to transform clinical practice improving the speed and 
accuracy of diagnostics, thus reducing radiologists’ workload 
and allowing for early detection of pathological conditions. 
For effective clinical integration, it is essential to provide 
smooth integration with current IT systems such as PACs 
(Picture Archiving & Communication System) as well as 
maintain trust among users through transparent and 
interpretable AI models. Visual interpretation of model’s 
decision-making process could potentially be provided by 
employing methods like GRAD-CAM (Gradient Weighted 
Class Activation Mapping). It allows physicians to get a better 
understand how AI model comes to its findings. This 
transparency is critical for health care providers to establish 
confidence in AI- assisted diagnosis.   

Furthermore, addressing ethical issues such as bias, 
fairness and transparency in the AI model is essential for 
ensuring inclusive healthcare outcomes for all patients. 
Despite the dataset of this research is diverse, it may not be 
representing every demographic group. This gap might raise 
improper biases, and it leads to reducing the validity of clinical 
applications. Following that, the primary focus should be on 
developing datasets that are more varied, inclusive and 
properly represent all communities. The incorporation of 
fairness criteria will also help to examine how the AI models 
generalize across diverse subgroups, ensuring that the AI 
system’s predictions are accurate and useful for all patients, 
regardless of their background. 

Future research should be conducted on increasing the 
diversifying training dataset, advancing machine learning 
algorithms, and improving validation processes. Other 
opportunities for future advancements are the extending AI 
application to other diagnostic medical images such as US 
(Ultrasound Scanner) images, CT (Computed Tomography 
images and MRI (Magnetic Resonance Imaging) images. By 
addressing the limitations of current study design and 
exploring new methods, future research on AI integration in 
healthcare settings will be enhanced significantly. It leads to 
better patient outcomes and more effective health care 
delivery. 

V. CONCLUSION 
The development models for the processing of chest X-ray 

images provided a significant step in medical diagnostic 
integration. The binary classification model classified chest 
X-ray images highly accurately and robustly distinguished 

normal from abnormal X-rays. While the categorical 
classification model predicted pre-specified pulmonary 
conditions such as ‘cardiomegaly’ and ‘infiltration’. The 
CNNs demonstrated high diagnostic accuracy and adaptability 
with new datasets, suggesting possible wide application to a 
variety of clinical contexts. Hence AI serves as a 
supplementary tool for radiologists, reducing workload, 
speeding up diagnosis process, while providing more accurate 
results for patient.  

When integration AI into clinical practice, hurdles include 
system compatibility, ethical consideration and data 
protection, ethical consideration and cultural adaptation 
within the medical profession. These are the areas where 
future research must focus. To increase the acceptance of AI 
applications across all imaging modalities, we must improve 
the variety of training datasets and better model 
interpretability and transparency.   

With advancement in machine learning together with 
computational hardware, the AI models will become more 
complex and take on much more complex tasks, transforming 
medical imaging techniques. The broader adoption of AI in 
clinical settings has a promising future in relation to the 
delivery of efficient, personalized and patient centered 
healthcare. Addressing the ethical, technological and practical 
challenges that exist is essential for successful integration. 

Furthermore, this study adds certain insights into the role 
of AI in medical image interpretation and sets some grounds 
for further innovation and studies. The combination of ethical 
and practical considerations will improve diagnoses and 
treatment in medicine, resulting in improved health outcomes 
and more efficient health care delivery. 

VI. RECOMMENDATIONS 
Several strategic enhancements are recommended to 

improve the future research and application of AI algorithms 
in diagnostic medical imaging, especially for chest X-rays. An 
expanded dataset should include a large variety of images that 
represent different pathological conditions. This is necessary 
for comprehensive learning and preventing bias, which may 
impact diagnostic accuracy [23]. Enhancing the quality of 
image annotation by localizing the affected area will help the 
model recognize associate features and improve diagnostic 
precision.  

Incorporating full radiological reports for each image will 
provide invaluable contextual information, boosting training 
data and helping AI models to better align with the human 
diagnostic process [24]. Utilizing GRAD-CAM would assist 
in understanding how AI models read images by highlighting 
specific regions that affect prediction and helping model 
evaluation [25]. Improving partnership with medical experts 
guarantees that AI tools are clinically relevant and effectively 
integrated into medical work flows. High-end computational 
resources are critical for managing the complexity of AI 
structures of AI and the computation intensity of training 
procedures, enabling robust model training and exploration of 
advanced AI architectures. 

Lastly, there must be a considerable focus on ethical 
implications and regulatory standards. Developing clear 
guidelines regarding the moral implementation of AI in 
medical settings. Ethical use of AI in healthcare, as well as the 
strict protection of patient data. Implementing these 
recommendations will enhance scope, accuracy, and clinical 



significance of AI in medical imaging, resulting in better 
patient care and health care efficiency. 
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