
Research Article
Conditional Tabular Generative Adversarial Net for Enhancing
Ensemble Classifiers in Sepsis Diagnosis

Ahmed Alfakeeh ,1 Mhd Saeed Sharif ,2 Abin Daniel Zorto,2 and Thiago Pillonetto2

1Research and Consultation Institute, King AbdulAziz University, Jeddah, Saudi Arabia
2School of Architecture Computing and Engineering (ACE), UEL, University Way, London E16 2RD, UK

Correspondence should be addressed to Mhd Saeed Sharif; s.sharif@uel.ac.uk

Received 4 July 2023; Revised 27 October 2023; Accepted 7 November 2023; Published 25 November 2023

Academic Editor: Jyotismita Chaki

Copyright © 2023 Ahmed Alfakeeh et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Antibiotic-resistant bacteria have proliferated at an alarming rate as a result of the extensive use of antibiotics and the paucity of
newmedication research.Te possibility that an antibiotic-resistant bacterial infection would progress to sepsis is one of the major
collateral problems afecting people with this condition. 31,000 lives were lost due to sepsis in England with costs about two billion
pounds annually. Tis research aims to develop and evaluate several classifcation approaches to improve predicting sepsis and
reduce the tendency of underdiagnosis in computer-aided predictive tools. Tis research employs medical datasets for patients
diagnosed with sepsis, and it analyses the efcacy of ensemble machine learning techniques compared to nonensemble machine
learning techniques and the signifcance of data balancing and conditional tabular generative adversarial nets for data aug-
mentation in producing reliable diagnosis. Te average F Score obtained by the nonensemble models trained in this paper is 0.83
compared to the ensemble techniques average of 0.94. Nonensemble techniques, such as Decision Tree, achieved an F score of
0.90, an AUC of 0.90, and an accuracy of 90%. Histogram-basedgradient boosting classifcation tree achieved an F score of 0.96, an
AUC of 0.96, and an accuracy of 95%, surpassing the other models tested. Additionally, when compared to the current state-of-
the-art sepsis prediction models, the models developed in this study demonstrated higher average performance in all metrics,
indicating reduced bias and improved robustness through data balancing and conditional tabular generative adversarial nets for
data augmentation.Te study revealed that data balancing and augmentation on the ensemble machine learning algorithms boost
the efcacy of clinical predictive models and can help clinics decide which data types are most important when examining patients
and diagnosing sepsis early through intelligent human-machine interface.

1. Introduction

Sepsis is a severe illness which is developed when the human
body’s reaction to septicity leads to tissue damage and organ
failure. For prompt and efcient treatment of sepsis, early
detection is essential since the mortality rate rises consid-
erably with delayed diagnosis [1]. However, sepsis may be
difcult to diagnose due to its broad and often mild
symptoms and comorbidities [1]. Traditionally, sepsis has
been diagnosed by clinical evaluation, laboratory testing,
and imaging investigations. Research has been conducted in
monitoring patients with sepsis using wearable sensor
monitors in low- and middle-income countries [2]. Despite
the fact that these techniques may give useful information,

they may not always be adequate to provide an accurate
diagnosis [3]. By examining a higher number of charac-
teristics and using the power of data-driven decision-
making, machine learning techniques, such as ensemble
classifers, have the potential to increase the accuracy of
sepsis diagnosis [4]. Ensemble classifers combine the pre-
dictions of numerous separate classifers to provide a more
accurate and dependable forecast [5]. Nonetheless, an im-
balance in the class distribution in the data might impair the
performance of ensemble classifers [6]. Data balancing
strategies, such as oversampling and under sampling [7],
modify the number of samples in each class to enhance the
classifer’s capacity to learn from the data [8]. Tis research
work will discuss the preparation of raw data, the generation
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of training and testing data, as well as the implementation,
training, and visualization of a sepsis predictionmodel based
on various methodologies.

Tis work is organized according to the following sec-
tions: Section 2 will analyze the related literature review on
sepsis, its risk factors, and biomarkers. In addition, research
on ensemble classifers in the medical area will be examined.
In Section 3, the utilized dataset, its modifcations, and its
limits and limitations will be addressed in more depth. We
provide details of the employed machine learning strategies
to solve the classifcation issue and describe the models’
architecture. In Section 4, the results and comments will be
dissected and analyzed to ofer a fuller picture of the fndings
of the research. In Section 5, based on the study’s results,
a variety of conclusions and recommendations will be
presented.

2. Related Work

Several research studies have investigated the use of machine
learning techniques, especially ensemble classifers, in the
diagnosis of sepsis. For instance, Fleuren et al. [9] conducted
a comprehensive assessment of machine learning algorithms
for sepsis detection and discovered that ensemble classifers
performed the best among the methods evaluated. Several
variables may infuence the efcacy of machine learning
approaches for sepsis detection, including the amount of
data used for training, the model’s complexity, and the
presence of noise or missing values in the data. Data bal-
ancing strategies, such as oversampling and undersampling,
have been suggested as a means of addressing class imbal-
ance and enhancing the performance of machine learning
systems for sepsis detection [7].

Mohan et al. [10] examined data from individuals di-
agnosed with sepsis who were monitored from the time they
were admitted until either they passed away or were dis-
charged from the intensive care unit over a two-year period.
Teir purpose was to aid in the development of improved
algorithms by providing observation that resulted in mor-
tality from septic shock. Machine learning was utilized by
Mao et al. [11]. To develop a prediction model utilizing just
six routinely assessed and monitored vital indicators in
medical institutes.

2.1. Risk Factors of Septic Shock. Studies have not shown that
demographic factors have a major role in septic shock di-
agnosis. Age, gender, and length of stay are the three most
signifcant demographic variables included in the data. In
the majority of instances, age may be utilized as a signifcant
predictor of sepsis risk [12].

2.2. Biomarkers of Septic Shock. Tere have been several
studies that have investigated the use of biomarkers for the
diagnosis and prognosis of septic shock. For example, Lu
et al. [13] developed a predictive model that used a combi-
nation of biomarker parameters to predict the risk of death
in patients with septic shock. Te scientists showed that the
model had excellent discrimination and calibration and may

be used to identify trauma patients at high risk for sepsis.
Dellinger et al. [14] identifed several biomarkers that have
been proposed as indicators of septic shock, including
procalcitonin, interleukin-6, and lactate. Tese biomarkers
have been shown to be associated with the severity and
prognosis of septic shock and may be useful for identifying
patients at high risk of developing the condition.

Other studies have investigated the use of biomarkers in
combination with clinical and laboratory parameters to
improve the accuracy of septic shock diagnosis. To aid in the
diagnosis of sepsis, researchers have developed a Lateral
Flow Solid-Phase RPA for Sepsis-Related Pathogen De-
tection [15]. Quantitative identifcation of lactate using
optical spectroscopy to help in continuous monitoring of
serum lactate levels as a precondition for sepsis-prone pa-
tients requiring intensive care [16].

2.3. Ensemble Classifers. Ensemble classifers are classifers
which create a collection of hypotheses before combining
them through weighted or unweighted voting [17]. Te
outcome of merging the separate selections is an im-
provement in overall performance and a more precise
categorization [18].

Tere are three issues that diminish the performance of
single classifers: statistical, computational, and represen-
tational; these issues are handled by merging the fndings
and obtaining a better approximation [17].

Te computational issue arises when the classifcation
algorithm employs local optimization approaches that might
get stalled at local minima (optima), preventing the process
from discovering the optimal hypothesis [18].

2.4. Ensemble Classifers inMedicine. Lavanya and Rani [19]
created a bagging-based ensemble classifer that was con-
structed from a collection of decision trees to increase the
prediction accuracy of breast cancer detection. For the di-
agnosis of cardiac autonomic neuropathy, Kelarev et al. [20]
utilized ensemble classifcation, and notably the Random
Forest (RF), to produce a model with better abilities in
prediction than those built on single classifers.

For the purpose of predicting cancer survival, Gupta
et al. [21] developed three models, each consisting of 400
SVM ensembles. Te research found that using ensemble
classifers might improve prediction over traditional tech-
niques [21]. Yao et al. [22] introduced a Random Forests-
based ensemble classifcationmethod for predicting protein-
protein interaction (PPI) networks.

2.5. Conditional Tabular Generative Adversarial Networks.
Data generation plays a crucial role in various domains,
including computer vision, natural language processing, and
healthcare. Traditional approaches often rely on hand-crafted
rules or statistical methods, which may not capture the
complex underlying patterns of the data. Conditional Gen-
erative Adversarial Networks (cGANs) ofer a promising
solution by utilizing deep learning techniques to generate
synthetic data that possesses desired characteristics [23].

2 Applied Computational Intelligence and Soft Computing



Conditional Tabular Generative Adversarial Nets (CTGAN)
is a powerful technique in the feld of generative adversarial
networks (GANs) that specifcally focuses on generating syn-
thetic tabular data [24]. GANs have gained signifcant attention
in recent years for their ability to generate realistic data that
closely resembles the distribution of the training data. However,
traditional GANs are not well-suited for tabular data generation
due to the structured nature of such data. CTGAN addresses
this limitation by incorporating conditional generation,
allowing users to specify the desired attributes or conditions of
the synthetic data [25]. Tis enables CTGAN to generate
synthetic tabular data that not only resembles the distribution of
the training data but also follows specifc attributes or condi-
tions set by the user [25]. Tis makes CTGAN a more suitable
option for generating tabular data compared to traditional
GANs. With the ability to generate realistic and customizable
synthetic data, CTGAN opens up possibilities for various ap-
plications such as data augmentation, privacy preservation, and
data analysis.

3. Materials and Methods

Te proposedmedical approach for sepsis analysis is illustrated
in Figure 1. Te acquired datasets go through the cleaning
stage, where the missing parameters are identifed, and missing
data points are rectifed. Following the dimensionality re-
duction, the data are split into training and testing datasets
where several approaches will be evaluated. Diferent experi-
ments have been performed to achieve the best approach
structure that can generate the best performance.

3.1. Nonensemble Machine Learning Algorithms

3.1.1. Multinomial Logistic Regression. Multinomial re-
gression is a variant of the binary regression model, in which
both use logit analysis or logistic regression (LR) to get their
conclusions. Logit analysis is a complement to linear re-
gression and is especially benefcial when the response is
a categorical variable.

For a binary target variable Y and an Independent
Variable X, consider the following:

Let π(x) � p(Y � 1|X � x) � 1 − p(Y � 0|X � x), the
logit of this probability may be expressed in linear form
using the logistic regression model.

log
π(x)

1 − π(x)
􏼠 􏼡 � α + βx,

with odds � exp(α + βx).

(1)

Tevalue of β is determined by the gradient of the S-shaped
curve of (x). Te curve is rising when β is positive, while the
curve is descending when β is negative. Te gradient’s strength
is inversely proportional to the strength of β [26].

3.1.2. Support Vector Machine for Classifcation. To classify
data, SVMs seek the hyperplane in a high-dimensional space
that most clearly divides the classes [27]. Support vectors are

the locations that are closest to the hyperplane, and the
distance between the support vectors and the hyperplane is
known as the margin [27].

SVMs are particularly efective in cases where the number
of dimensions is greater than that of the samples [27]. With
the help of the hyperplane, the data may be projected into
a lower-dimensional space, where the SVM can locate
a separation border that was previously inaccessible [27]. Te
usage of support vector machines (SVMs) has spread across
several felds, from text classifcation to picture classifcation
to bioinformatics [27].

Knowledge included in the collection of correctly iden-
tifed points. If

mind xi, x( 􏼁 � d xn, x( 􏼁, i � 1, 2, · · · , n. (2)

3.1.3. Multilayer Perceptron. An MLP is a neural network
with numerous layers of linked “neurons,” which are
computational elements that take in data, analyze it, and
output a result [28]. Each neuron in the MLP’s levels gets
input from all the neurons in the layer below it and sends its
output to all the neurons in the layer above it because the
MLP’s layers are completely linked [28].

We will call

x′≈ε x1, x2, · · · , xn􏼈 􏼉. (3)

MLPs are often used for supervised learning tasks like
classifcation and regression [29]. As part of their training,
MLPs use optimization algorithms like stochastic gradient
descent to fne-tune the weights of the connections between
neurons in order to reduce the error between the expected
and actual output [29]. Multiple-layer perceptrons, or MLPs,
have been put to use in several felds, such as computer
vision, NLP, and robotics [29].

3.1.4. Quadratic Discriminant Analysis (QDA). QDA is
based on another technique known as Linear Discriminant
Analysis (LDA), which is based on the assumptions that the
data are normally distributed and that the classes have
identical covariance matrices [30]. Diferent class covariance
matrices are acceptable in QDA, which may sometimes lead
to better performance [30].

Te purpose of QDA is to discover the decision
boundary that optimally divides the classes based on
their means and covariances [30]. Te quadratic dis-
criminant function, which is a function of the sample
features and the class means and covariances, determines
the quadratic decision boundary, as opposed to the linear
decision boundary used in LDA [30]. QDA has been
employed in a broad variety of applications, including
text classifcation, picture classifcation, and predictive
modelling [30].

3.1.5. Nearest Neighbor Classifcation. In a collection of n
pairings where (x1, θ2), . . . , (x1, θ2) is predetermined, xi
takes values in an X metric space where d is defned, and θi
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takes values in the 1, 2, . . . , M{ } set. Every θi is regarded as
the indication of the class that the ith instance is a member of,
and each xi indicates the outcome of a set of tests conducted
on the individual.

Given a new pair, (x, θ) in which only the measurement
x may be observed, and it is wanted to estimate θ using the
nearest neighbor to x·x is determined to belong to the category
θn
′ of its nearest neighbor xn

′. If θn
′ ≠ θ. An error has occurred.

Only the nearest neighbors classifcation is used by theNN rule.
Te remaining n− 1 classifcations θi are disregarded.

3.1.6. Decision Tree. A decision tree is a tree constructed
using training data, where each leaf node denotes a label of
a class and each internal node denotes a feature of the data.
Te classifcation is based on the feature values and the class
labels of the training data. Decision trees are a popular
machine learning method due to their interpretability and
the ease with which they can be implemented [31].

3.2. Nonensemble Model Parameters. Table 1 illustrates the
hyperparameter information for the nonensemble models in
which we can see there have been no changes from the
default parameters.

3.3. Ensemble Machine Learning Algorithms

3.3.1. Random Forest. A random forest is a kind of ensemble
machine-learning technique in which numerous decision
trees work together to produce an outcome that is the average
of the classes produced by the individual trees [32]. Te
individual decision trees are trained on diferent parts of the
training set and use a random subset of the features to make
predictions, resulting in a diverse set of trees that are able to
capture diferent patterns in the data [32]. Te use of multiple
trees allows the random forest to make more accurate pre-
dictions than any individual tree would be able to make on its
own [32]. Te algorithm’s error rate is proportional to the
classifcation strength of each tree and the correlation between
any two trees. Reducing the number of randomly selected

qualities afects both the strength of each tree and the con-
nection across trees, but increasing the number of randomly
selected factors has the opposite efect [32].

3.3.2. Extra Trees Classifer. Extra trees, or extremely ran-
domized trees, are a variant of the random forest algorithm
[33]. Like random forests, extra trees are an ensemble
method that consists of multiple decision trees. However,
the decision trees in an extra trees’ classifer are trained using
random thresholds for each feature, rather than using the
best split found during the training process as in a standard
decision tree [33]. Tis results in a greater diversity of trees
in the ensemble, which can lead to improved generalization
performance [33].

3.3.3. AdaBoost Decision Tree. AdaBoost works by iteratively
training weak classifers and giving more weight to the in-
stances that were misclassifed in the previous iterations [34].
Weak classifers are typically decision trees with a single split,
known as decision stumps and the fnal strong classifer is the
weighted sum of the weak classifers, with the weight of each
weak classifer being proportional to its accuracy [34]. Ada-
Boost has been shown to be a powerful and efective method
for improving the performance of decision trees, especially
when dealing with imbalanced or noisy datasets [34].

3.3.4. Bagging Classifer. According to Breiman [35], in the
bagging machine learning ensemble approach, many models
are trained on various randomly chosen portions of the
dataset and the models are then combined to create a pre-
diction. Bagging is intended to lower the model’s variance by
training the individual models in parallel and then com-
bining their predictions. Tis can lead to improved gener-
alization performance, especially when the training data are
noisy or has a high variance. Bagging can be applied to any
machine learning algorithm, but it is particularly efective for
decision tree-based models, which have a tendency to overft
the training data.

Dataset
Parameters Data Cleaning Dimensionality

Reduction

Training Data Testing Data

Fitting all
Models to

training data Tweaking
Hyper

Parameters

Selecting best
Model

Final Fine
tuning of
Selected
Model

Evaluating on
Testing Data

Figure 1: Te developed approach for sepsis analysis.
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3.3.5. Gradient Boosting Classifer. Te goal of gradient
boosting is to sequentially add weak learners to the ensemble,
in a way that corrects the mistakes of the previous models.
Tis is done by ftting the new model to the residual errors of
the previous model, rather than to the original response. Te
fnal model is the weighted sum of the individual trees, with
the weight of each tree being determined by the loss function.
Gradient boosting has been shown to be a powerful and
efective method for improving decision tree-based model
performance, and it has seen extensive usage [36].

3.3.6. Histogram Gradient Boosting Classifer. Tis classifer
uses histograms to approximate the leaf values of the trees in
the ensemble, rather than using exact leaf values as in tra-
ditional gradient boosting. Tis allows histogram gradient
boosting to handle categorical features and large datasets
more efciently than traditional gradient boosting. In ad-
dition, histogram gradient boosting is more resistant to
overftting and can achieve higher predictive accuracy with
fewer trees. Histogram gradient boosting has been shown to
be a fast and efective method for improving the perfor-
mance of decision tree-based models and has been used in
a wide range of applications [37].

3.3.7. Stacked Classifer. A stacked classifer (SC) is a strat-
egy for reducing the biases of estimators by merging them
[38]. Specifcally, the estimators’ outputs are stacked and fed
into a single estimator to produce a fnal prediction. Cross-
validation is used to train this fnal estimator [38]. Te
estimators used in this classifer will be composed of the
ensemble classifers used in this research with its fnal es-
timator being the logistic regressor model.

3.3.8. Voting Classifer. Using the results of many base
classifers, a voting classifer makes a combined prediction
[18]. Te fnal prediction is produced either by majority vote
or by averaging the predictions of the basic classifers, which
may be trained using various algorithms and/or trained on
separate subsets of the training data [18]. When the base
classifers are varied and have varying strengths, a voting
classifer may be utilized to increase the performance of
a single classifer in a straightforward and efective manner
[18]. Te estimators used in this classifer will be composed
of the ensemble classifers used in this research with its fnal
estimator being the logistic regressor model.

3.4. Ensemble Model Parameters. Table 2 illustrates the
hyperparameter information for the ensemble models.

3.5. Dataset. Te MIMIC-III dataset is a large database
containing detailed information on patient demographics,
vital signs, medications, laboratory test results, and clinical
notes, among other things [39]. Te MIMIC-III dataset is
widely used in research on critical care and has been used to
develop machine learning models for a variety of tasks [39].

Te sepsis MIMIC-III dataset is a subset of the MIMIC-
III dataset that includes only patients with a diagnosis of
sepsis [1]. Te sepsis MIMIC-III dataset includes detailed
information on the clinical course of the sepsis, including the
timing and dosage of interventions, as well as the patient’s
outcomes [1]. Te sepsis MIMIC-III dataset is often used.

In research on sepsis, this has been used to develop
machine learning models for predicting patient outcomes
and identifying sepsis in real time [1].

Patients were monitored from the moment they entered
the ICU, when t� 0 until they were removed from the ICU
or died. Te database comprised 4,683 people aged 15 and
above who had sepsis or severe sepsis. Tese patients had
8,696 admissions, 2,585 of which were due to septic shock.
Te data shown in Figure 2 illustrate the duration of time the
patients examined in this dataset were present, while Table 3
shows a summary describing the dataset.

3.5.1. Dataset Limitations. Te dataset is imbalanced with
2932 patients with a sepsis diagnosis, whereas there are over
37000 patients without a sepsis diagnosis. A comprehensive
analysis of the dataset revealed that certain attributes are
totally empty, indicating that if they are not eliminated, the
training set will be misled or an improperly functioning
model would be generated; an example of this is shown in
Figure 3.

3.5.2. Dataset Manipulation and Delimitation. Tis dataset
contains 2932 diagnosed sepsis patients compared to 37404
patients without a diagnosis. Tis is resolved by augmenting
the sepsis patient data by generating 2068 sepsis patients and
then taking the frst 5000 nondiagnosed patients and ig-
noring the remaining 32404 to prevent the dataset from
prioritizing nondiagnosed patients during training.

Researchers often encounter the difculty of missing
data. Tis dataset includes components with real number
values, and missing data, which will be flled in using an
interpolation function that substitutes NaN values with
values that have no infuence on the fnal result but optimize
the model. Te sum of all attributes will be used to calculate
the fraction of missing data, and this parameter will be
adjusted to generate the most efective models.

Te possibility of removing attributes from the training
process will also be considered based on their correlation to
the target variable as well as their frequency of use in current
research as shown in Figure 4.

Table 1: Non-ensemble model parameters.

Models Hyperparameters
LR —
SVC —
MLP —
QDA —
KNN —
DT —
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Table 2: Ensemble model parameters.

Models Hyperparameters
RFC Criterion� “entropy,” max_features� 10
ETC —
ADA —
BC —
GBC Learning_rate� 1
HGBC Learning_rate� 1
SC Estimators� estimators
VC Estimators� estimators
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Figure 2: Duration of stay (a) all patients left, (b) sepsis patients, and (c) nonsepsis patients.

Table 3: Description of the dataset.

Datasets A B Total
Patients 20,336 20,000 40,336
Septic patients 1,790 1,142 2,932
Prevalence 8.80% 5.70% 7.25%
Rows 739,663 684,508 1,424,171
Entries 5,536,849 4,950,064 10,486,913
Density of entries 20.60% 19.10% 19.85%

Patient p000043 missing vital sign values

Resp

DBP

MAP
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Temp
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Figure 3: Missing vitals for a patient.
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3.5.3. F Score Recall and AUC for Model Selection. Te F
score is a class-balanced accuracy metric since it represents
the weighted harmonic mean of precision and recall.
When false negatives and false positives are important in
the prediction process, the F1 score is utilized. Current
research shows that most sepsis prediction models for this
dataset are more adept at predicting nondiagnosed pa-
tients than diagnosed patients [4]. Tis is due to un-
balanced classes and the fact that most instances in the data
are classifed as nonsepsis patients leading the accuracy of
nonsepsis predicted cases to dominate the overall accuracy
measure.

Recall is an important metric for measuring a model’s
ability to detect positive samples in which the higher the
recall, the more positive samples are detected. For the
purpose of machine learning in clinical settings, it can be
argued that true positives are more important than true
negatives as an undetected true positive can lead to a fatality,
whereas an undetected true negative is not fatal.

AUC represents the area under the ROC (Receiver
Operating Characteristic) curve, which plots the true pos-
itive rate against the false positive rate at diferent classif-
cation thresholds [40].

3.5.4. Methodology Comparison. Te three works compared
in this paper focus on predicting and diagnosing sepsis, but
they difer in their approaches, methodologies, and evalua-
tion metrics. While this research aims to improve sepsis
prediction and reduce underdiagnosis through the use of
machine learning algorithms, it evaluates ensemble and
nonensemble machine learning techniques, employs data
balancing and augmentation through the use of CTGAN, and
reports F score, AUC, and accuracy as evaluation metrics. El-
Rashidy et al. [41] proposed a multistage model for sepsis
prediction that combines NSGA-II, artifcial neural net-
works, and deep learning models. It utilizes NSGA-II and
neural networks to extract the optimal feature subset from

0 5 10 15 20 25 30

Heart rate

Temperature

Oxygen saturation

Age

Mean arterial blood pressure

Creatinine

Platelet count

Bilirubin

Bicarbonate

Lactate

Hemoglobin

PaCO2

Glasgow coma score

Potassium

Hematocrit

Phosphate

Calcium

Albumin

Wound type

Surgical specialty

Charlson comorbidity index

Alkaline phosphatase

Usage Frequency

Figure 4: Dataset features and their usage frequency in current research [9].
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patient data. Te model consists of a deep learning classi-
fcation model and a multitask regression model to predict
sepsis, onset time, and blood pressure. It uses the MIMIC-III
real-world dataset and reports accuracy, specifcity, sensi-
tivity, AUC, and RMSE as evaluation metrics. Darwiche and
Mukherjee [4] focus on developing an improved method for
predicting septic shock. It trains an ensemble classifer using
the MIMIC-III database and incorporates the Cox Hazard
model to obtain a risk score. Te Random Forest ensemble
classifer is trained using this score and other features.
Specifc evaluation metrics are not mentioned, but the
predictive accuracy of the proposed CERF method is com-
pared to existing methods. Overall, each study presents
a unique approach to sepsis prediction and diagnosis,
showcasing diferent techniques and evaluation criteria.

4. Results

4.1. Correlation of Sepsis Factors. After quantitative analysis
using the pandas Python library, we analyzed the dataset and
produced Table 4 which shows us the 15 variables with the
highest correlation to a sepsis diagnosis. Tese correlation
values can give more insight into the type of data to be
collected for processing in order to aid diagnosis [42]. Ta-
ble 5 illustrates that the results attained by selecting the top
15 correlated attributes for training produces lower per-
formance versus selecting for all attributes. Tus, for the
training and tuning of the fnal selected model, we used
models trained on all attributes regardless of correlation.Te
missing values in the data are also flled with the mean value
of each attribute so as to make the data more quantitatively
meaningful.

4.1.1. Machine Learning Model Evaluation and Performance
Analysis. Te code performs the training and testing of
machine learning models to predict and evaluate sepsis. It
uses a popular library called scikit-learn, which is widely
used for machine learning in Python. Te dataset is divided
into two parts: a training set and a testing set.Te training set
is utilized in conjunction with 10-fold cross-validation to
train the models. Tis approach enables a more efcient
utilization of the available data, as all observations are
utilized for both training and validation purposes [43].
Additionally, it is less susceptible to variations in the precise
manner in which the data are partitioned, in comparison to
alternative methods [44]. Te testing set is used to evaluate
the model’s performance.

Te code follows these steps:

(1) Te dataset is prepared and split into input features
(such as patient information) and the target variable
(whether a patient has sepsis or not).

(2) Using CTGAN, the data are augmented to provide
more data for training and testing.

(3) A portion of the dataset is set aside for testing the
trained models.

(4) Diferent machine learning models, such as logistic
regression, decision trees, and ensemble models, are

trained using the training data. During the training
process, the models are subjected to 10-fold cross-
validation in order to mitigate potential sources of
unreliability and bias.Tis approach aims to enhance
the model’s ability to discern meaningful patterns
from the available data and generate dependable
predictions.

(5) After training the models, their performance is
evaluated using various metrics, including accuracy
(how often the model is correct), sensitivity (how
well the model detects positive cases), specifcity
(how well the model detects negative cases), and F
score (a combined measure of precision and recall).
Tese metrics help assess how well the models can
predict sepsis.

(6) Te evaluation results, such as accuracy, sensitivity,
and specifcity, are recorded for further analysis.

4.2. Model Performance. Table 6 displays that the Decision
Tree model, with an accuracy of 90%, an AUC of 0.90, and an
F score of 0.90, is the best-performing model among the
nonensemble strategies.

With an F score of 0.95, an AUC of 0.95, and an accuracy
of 95%, Table 7 demonstrates that the stacking classifer
model is the best-performing model among the ensemble
strategies.

4.3. FurtherTesting andTuning. Te results of further testing
and tuning for the histogram-based Gradient Boosting
Classifcation Tree model are presented in Tables 8 and 9.
Te tables show the performance metrics, including F score,
accuracy, recall, and AUC, for diferent values of the L-rate
and regularization (L2) parameters, respectively.

Table 4: Attribute correlation to sepsis diagnosis.

Variables Correlation
ICULOS 0.39
Calcium 0.26
BUN 0.22
HR 0.21
Resp 0.20
Creatinine 0.18
Temp 0.17
Hgb 0.17
Fibrinogen 0.16
PTT 0.14
Bilirubin_total 0.14
Hct 0.12
HospAdmTime 0.11
WBC 0.10
DBP 0.10

Table 5: Average model performance comparison.

Correlation F score Accuracy Recall AUC
Top 15 0.89 88 0.89 0.89
All included 0.89 89 0.89 0.89
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Table 9 shows the best-performing model from the en-
semble techniques is the Histogram-based Gradient Boosting
Classifcation Tree model with an F Score, accuracy, recall,
and AUC of 0.96, 95, 0.96, and 0.96 respectively.

Figure 5 shows the confusion matrix for the selected
model in which we can see that the model is accurate at
predicting sepsis and nonsepsis patients.

Te fndings suggest that there is a possibility of en-
hancing the performance of themodel by themodifcation of
these hyperparameters. Additionally, it may be benefcial to
prioritize minimizing instances of nondetection of sepsis
patients, even if it leads to an increase in the diagnosis of
sepsis patients, as failure to do so could have severe con-
sequences. Tese fndings emphasize the importance of
thorough testing and tuning of model hyperparameters to
optimize the performance of the histogram-based gradient;
the best performance is the HGBC model with 95% in ac-
curacy, an F score of 0.96, a Recall of 0.96, and an AUC of
0.96. Based on these results, the selected model for this paper
is the HGBC model.

Boosting Classifcation Tree model. Further exploration
and fne-tuning of these parameters can lead to improved
accuracy, F score, recall, and AUC, thus enhancing the
model’s predictive capabilities and overall efectiveness.

4.4. Average Performance Comparison. Figure 6 illustrates
the average performance of the models created in this paper
compared to the CERF models created by Darwiche and
Mukherjee [4] and the ensemble DNN models by El-Rashidy
[41]. Te models in this paper produce a higher average F

Table 6: Nonensemble model performance results.

Model F score Accuracy Recall AUC
LR 0.80 80 0.80 0.80
SVC 0.79 79 0.79 0.79
MLP 0.89 87 0.89 0.89
QDA 0.82 82 0.82 0.82
KNN 0.81 80 0.81 0.81
DT 0.90 90 0.90 0.90
Average 0.84 83 0.84 0.84

Table 7: Ensemble model performance results.

Models F score Accuracy Recall AUC
RFC 0.95 94 0.95 0.95
ETC 0.93 92 0.93 0.92
ADA 0.94 93 0.94 0.94
BC 0.93 93 0.93 0.93
GBC 0.93 93 0.93 0.93
HGBC 0.92 92 0.92 0.92
SC 0.95 95 0.95 0.95
VC 0.94 94 0.94 0.94
Average 0.94 93 0.94 0.94

Table 8: Histogram-based gradient boosting classifcation tree
L-rate tuning.

L-rate F score Accuracy Recall AUC
0.10 0.95 95 0.95 0.95
0.20 0.95 95 0.95 0.95
0.30 0.95 95 0.95 0.95
0.40 0.95 95 0.95 0.95
0.50 0.95 95 0.95 0.95
0.60 0.95 95 0.95 0.95
0.70 0.94 94 0.94 0.94
0.80 0.95 93 0.95 0.95
0.90 0.93 93 0.93 0.93

Table 9: Histogram-based gradient boosting classifcation tree
regularization tuning.

Models F score Accuracy Recall AUC
1 0.96 95 0.96 0.96
2 0.95 95 0.95 0.95
3 0.95 95 0.95 0.95
4 0.95 95 0.95 0.95
5 0.95 95 0.95 0.95
6 0.95 95 0.95 0.95
7 0.96 95 0.96 0.96
8 0.96 95 0.96 0.96
9 0.95 95 0.95 0.95
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Figure 5: Confusion matrix.
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Figure 6: Average performance.
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scores, AUC, and recall showing the ability of the machine
learning models to produce more robust predictions with
a lower risk of bias in prediction. Tis paper’s strengths lie in
its robust performance, potential novelty in reintroducing
machine learning techniques, and rigorous experimental
evaluation. However, potential weaknesses include the need
for further generalizability testing on diverse datasets and
real-world scenarios, limited comparisons with existing state-
of-the-art methods, and a potential lack of interpretability in
the proposed models.

Te DTand HGBCmodels are the only models in Table 10
comparison using CTGAN for data augmentation with.

5. Conclusion

Te developed ensemble machine learning-based algorithm
holds substantial importance in the clinical sector. By
achieving improved efcacy in predictive models, it ad-
dresses the critical need for accurate disease diagnosis and
prognosis. Tis algorithm can potentially revolutionize
medical practices by assisting clinicians in making more
informed decisions and providing better patient care.

Te research study highlights the necessity of employing
generative data-balancing techniques such as CTGAN in the
training process. Imbalanced datasets can lead to biased
models and underdiagnosis of illnesses, which can have
severe consequences in certain situations. By demonstrating
the efectiveness of data balancing and augmentation, the
research emphasizes the need for mitigating bias and en-
suring accurate predictions in healthcare applications.

Te HGBC model with 95% accuracy, an F score of 0.96,
a recall of 0.96, and an AUC of 0.96 had the highest per-
formance on the sepsis data. Based on these results, the
selected model for this paper is the HGBC model, which
combines multiple base classifers to improve overall pre-
diction performance. Te fndings provide valuable insights
for researchers and practitioners in selecting the most ef-
fective model for sepsis prediction.

We suggest that future work should focus on gathering
more data on risk factors to improve disease diagnosis.
Additionally, parameter tuning is identifed as a crucial step
to enhance the efectiveness of the models. By exploring
diferent datasets, processing techniques, and algorithms,
the research encourages further validation and fne-tuning
of predictive models in order to optimize their performance.

Te research holds the potential to signifcantly impact
clinical practice by providing an efective computer-aided
medical prediction approach. Te developed algorithm,
coupled with intelligent human-machine interfaces, can aid
clinicians in early disease detection and improve patient

outcomes. Te research lays the foundation for further
advancements in computer-aided diagnostics and person-
alized medicine.

Nomenclature

α: Intercept of linear equation
β: Gradient of linear equation
X: Independent variable
xi: Distance of the i th instance
Y: Binary target variable
θi: Class of the i th instance
ADA: AdaBoost decision tree
AUC: Area under curve
BC: Bagging classifer
BUN: Blood urea nitrogen
CERF: Cox enhanced random forest
DBP: Diastolic blood pressure
DT: Decision tree
ETC: Extra trees classifer
GAN: Generative adversarial network
GBC: Gradient boosting classifer
Hct: Hematocrit
Hgb: Hemoglobin
HGBC: Histogram gradient boosting classifer
HR: Heart rate
ICULOS: Intensive care unit length of stay
KNN: K nearest neighbors
LDA: Linear discriminant analysis
LR: Logistic regression
MLP: Multilayer perceptron
NSGA-II: Non-dominated sorting genetic algorithm II
PTT: Partial thromboplastin time
QDA: Quadratic discriminant analysis
Resp: Respiratory rate
RFC: Random forest classifer
RMSE: Root mean square error
SC: Stacked classifer
SVC: Support vector classifer
SVM: Support vector machine
VC: Voting classifer
WBC: White blood cell count.
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Table 10: Best model performance comparison.

Techniques F score Accuracy Recall AUC
DT 0.90 90 0.90 0.90
HGBC 0.96 95 0.96 0.96
NSGA-II [41] — 91 0.92 0.91
CERF [4] 0.9 95 0.89 —
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