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Abstract

Autism Spectrum Disorder (ASD) is a neurodevel-
opmental disorder that affects individuals’ social inter-
action, communication, and behavior. Early diagnosis
and intervention are critical for the well-being and de-
velopment of children with ASD. Available methods for
diagnosing ASD are unpredictable (or with limited ac-
curacy) or require significant time and resources. We
aim to enhance the precision of ASD diagnosis by uti-
lizing facial expressions, a readily accessible and lim-
ited time-consuming approach. This paper presents
ASD Ensemble Vision Network (ASD-EVNet) for rec-
ognizing ASD based on facial expressions. The model
utilizes three Vision Transformer (ViT) architectures,
pre-trained on imageNet-21K and fine-tuned on the
ASD dataset. We also develop an extensive collec-
tion of facial expression-based ASD dataset for chil-
dren (FADC). The ensemble learning model was then
created by combining the predictions of the three ViT
models and feeding it to a classifier. Our experiments
demonstrate that the proposed ensemble learning model
outperforms and achieves state-of-the-art results in de-
tecting ASD based on facial expressions.

1 Introduction

The computer-assisted diagnosis uses computer-
based techniques to analyze data and provide diagnos-
tic information. It is becoming increasingly popular
because of providing a rapid and accurate diagnostic
process. Following its emergence, it has shown its effi-
cacy in diagnosing Autism Spectrum Disorder (ASD).

However, deep learning techniques for pediatric
ASD analysis have made only slight progress due to
ASD being a diverse neuro-developmental condition
with complicated cognitive traits. Consequently, gath-
ering ASD patients’ data is considerably arduous. One
in every 68 children has ASD [1]. Given the widespread
presence of ASD cases in children, the need for more
sophisticated early diagnosis techniques is significant.

Several studies focused on screening protocols (e.g.,
ADOS, ADI-R, ASQ, STAT), traditional machine
learning techniques, and CNNs for ASD diagnosis [2–8].
However, screening approaches are not deterministic
and can only assist general practitioners in identify-
ing prospective ASD cases with compromised accura-

cies. Recent studies introduced behavioral analysis to
address these issues. They tracked the eye gaze of pa-
tients over 3 seconds after showing them a wide variety
of pictures [9–12]. The idea is that ASD patients tend
to show atypical attention to key visual information as-
pects. Nevertheless, these approaches fail to reach ac-
ceptable accuracy. To tackle it, neural network-based
methods achieve remarkable accuracy. However, col-
lecting neuroimaging data is time-consuming and re-
quires high-end material and a clinical team [13,14].

Facial expressions are crucial in social communica-
tion and convey emotions and intentions. Individuals
with ASD often have difficulties interpreting and pro-
ducing facial expressions, leading to difficulties in social
interactions. Analysis of facial expressions could pro-
vide valuable information for the ASD diagnosis. Mul-
tiple CNN architectures for ASD children classification
are proposed in [16] with 91% accuracy. This exhibits
that neural networks can extract key features that sep-
arate ASD and neuro-typical children. Cao et al. [17]
noted that despite vision Transformers (ViT) requiring
a relatively large amount of data, it could outperform
CNNs with the help of pre-trained weights. He shows
that ViT large (ViT-L) pre-trained on ImageNet-21K
can achieve an accuracy of 93.50% on ASD dataset
[15]. However, their methods are computationally ex-
pensive, and improved performance is required. In
this research, we develop a new ASD children dataset
based on their facial expressions. Then, we propose
ASD-EVNet, a novel ensemble vision network for facial
expression-based ASD recognition. Our method pro-
vides more accurate and reliable predictions by com-
bining multiple transformer-based models. The sum-
mary of our contributions is given below:

• We introduce an ASD-EVNet – a novel Vision
Transformer-based ensemble network for ASD
recognition. It exploits three ViT architectures: a
modified ViT, a modified Swin Transformer, and
a lightweight MobileViT.

• We develop a facial expression-based ASD dataset
consisting of 8000 images. To the best of our
knowledge, this is the largest dataset of its kind.

• An extensive ablation study has been conducted to
validate our proposed method for ASD recognition
that achieved state-of-the-art performance.



Figure 1: An overview of the proposed ASD-EVNet method. The input image is taken from the ASD dataset [15].

2 Methodology

Our proposed ASD-EVNet network utilizes three
Vision Transformer models to recognize ASD based
on their facial expressions, as shown in Figure 1. We
modify vanilla ViT-B as mViT-B, a SwinTransformer-
B as mSwinT-B, and a lightweight MobileVit-s model.
These models underwent training and refinement us-
ing two facial expression datasets. Instead of relying
on traditional voting techniques, the predictions gen-
erated by each ViT model are integrated using the Sup-
port Vector Machine (SVM).

2.1 Ensemble Vision Network

In a ViT architecture, an image is divided into a set
of non-overlapping patches, and each patch is treated
as a sequence of tokens. These sequences of tokens
are then processed by the Transformer layers, allowing
the network to learn complex relationships between the
tokens and to make predictions based on the entire im-
age. The final prediction is made based on a pooling
operation that aggregates the outputs of the Trans-
former layers. Then, a one-layer MLP classifier is uti-
lized as the final step in the prediction process after the
ViT encoders have processed the input picture. The
combination of sequence processing and pooling oper-
ations allows ViT models to capture local and global
information on the image, making them well-suited for
computer vision tasks. The Swin Transformer archi-
tecture is similar to the classic ViT architecture that
uses a Transformer-based approach to process image
data. However, the Swin Transformer introduces the
”Swin” operation, which allows the network to attend
to a broader range of spatial contexts, resulting in im-
proved performance compared to the classic ViT ar-
chitecture. It is achieved by using a series of shift-wise
operations that allow the network to consider multiple
scales of image features. The Swin Transformer and

Vision Transformer use a non-linear Gaussian Error
Linear Unit (GELU) as the activation function. The
lightweight MobileViT is designed for highly efficient
and fast while maintaining competitive accuracy. It is
optimized for resource-constrained and embedded de-
vices by reducing parameters compared to the classic
ViT architecture. Additionally, it leverages to train on
smaller datasets.

2.2 Model Selection

Compared to Convolutional Neural Networks
(CNNs), ViT models have demonstrated improved per-
formance on computer vision tasks because of their
ability to handle image data more globally. In facial
expression analysis, understanding the overall pattern
of expressions is crucial. Multiple ViT models in the
ensemble learning architecture provide the ability to
capture a range of features and patterns, allowing for
more robust and accurate predictions. Our network’s
models were selected due to their outstanding perfor-
mance in image recognition tasks and their ability to
capture intricate patterns in facial expressions. Thus,
the combination of ViT models allows for a compre-
hensive analysis of facial expressions, capturing a wide
range of patterns that could indicate ASD.

We exploit Support Vector Machine (SVM) in our
ensemble learning architectures due to several key ad-
vantages. Firstly, it is specifically designed for binary
classification problems, making them well-suited for
recognizing ASD based on facial expressions. Addition-
ally, it uses a hyperplane to separate the data into two
classes, which provides a clear boundary between the
classes and makes the decision boundary more robust.
The SVM is relatively robust to outliers, significantly
working with potentially noisy or unreliable data in a
medical diagnosis setting. Furthermore, it can produce
non-linear decision boundaries by transforming the in-
put data into a higher-dimensional space, allowing for



the capture of more complex relationships between the
variables. These factors make SVM models an attrac-
tive choice for the final decision-making step in the pro-
posed ensemble learning architecture. To validate the
choice of SVM, we compared its performance to the
Random Forest (RF) classifier.

Dropout Layers: In addition to the attention and
projection dropout layers, we added an extra dropout
layer at the end of each ViT and Swin Transformer
block to further enhance the ASD-EVNet ensemble
learning architecture. Thus, it improves the model’s
generalization ability and reduces overfitting problems.
Combining these layers could further regularize the
model and improve its robustness. The probability of
the extra dropout layers was set to 0.1.

Loss Function: We explored the binary cross-
entropy (BCE) as a loss function for the binary classi-
fication task. It measures the difference between pre-
dicted and ground truth labels (y) for each class. The
BCE is calculated as,

BCE = −(y log(p) + (1− y) log(1− p)) (1)

where, p is the probability of it being the target.

3 Datasets and Experiment

Datasets: The ASD dataset consists of 3,014 facial
images of a heterogeneous group of children, divided
equally between children with ASD and typically devel-
oping (TD) children [15]. Both the test and validation
sets consist of 200 instances each. Driven by the lack of
available large facial expression-based datasets, we de-
veloped a large dataset called ’Face-based ASD Dataset
for Children’ (FADC)1. It has 7921 images, having 3976
and 3945 images of ASD and TD, respectively (with
6337 and 1584 cases for train and test set, respectively)
(Figure 2). The TD instances were sourced from 3
datasets [18–20]. The ASD images were collected from
ASD patients’ videos from social media [21].

Figure 2: Sample instances from our FADC dataset.

Experiment and Evaluation: To find the opti-
mal hyperparameters for our models, we used the Tree-
structured Parzen Estimator (TPE) algorithm with op-
tuna [22]. For mViT-B, we experimentally noticed the
best learning rate is 0.007 with AdamW optimizer in 67

1This dataset will be available for researchers. Due to the
double-blind review, we did not share the downloadable link here.

epochs. For mSwinT-B, the learning rate is 0.002, the
same AdamW optimizer in 60 epochs. For MobileViT-
s, we used 0.01 learning rate with RMSProp opti-
mizer for 118 epochs. We used an SVC estimator with
C = 1.0, and RBF kernel. We used a NVIDIA GeForce
RTX 2080 GPU to train the ensemble model. We com-
puted the Accuracy and AUROC (Area Under Receiver
Operating Characteristic) curve. AUROC evaluates a
model’s performance across all possible thresholds and
is particularly useful for binary classification tasks.

4 Results and Discussion

Computational Performance: The computa-
tional performance of each module has been shown
in Table 1. The mViT-B and mSwinT-B had a
longer training time per epoch, averaging 22.12 sec-
onds and 22.83 seconds, respectively. On the other
hand, MobileViT-s had a training time of 18.052 sec-
onds per epoch. During testing, the mViT-B, mSwinT-
B, and mobileViT-s took 1.15 seconds for 200 image
testing (6ms/image), 1.20 seconds to test on 200 im-
ages (6ms/image), and 0.784 seconds to test 200 images
(4ms/image) respectively (refer to Table 1). Overall,
the testing times for all three models were relatively
fast, with mobileViT-s being the fastest and the mViT-
B being slightly slower.

Table 1: Computational performance of each model.

Models Training (s) Testing (s) Prediction (s)

mViT-B 22.12 1.15 0.006
mSwinT-B 22.83 1.20 0.006
MobileViT-s 18.05 0.78 0.004

Ablation Study: We conduct an ablation study
to analyze the contribution of different components to
the model’s performance (Table 2). Here, each model
achieved an accuracy ranging from 92.0% to 94.0% and
97.28% to 98.38% on ASD and FADC datasets, re-
spectively, where the mSwinT-B model outperformed
the other models (Table 3). Next, we evaluated the
performance of the different combinations of mod-
els. We trained each combination of models and com-
puted performances. Our results demonstrated that
the combination of mViT-B and mSwinT-B architec-
tures achieved the highest accuracy of 94.50% and
99.08%.

Our mViT-B model has 86 million parameters and
achieved impressive accuracy and AUROC. We found
that the mSwinT-B backbone with 86 million param-
eters outperformed the mViT-B. It implies that the
mSwinT-B model is highly effective and can perform
superior to other backbones. MobileViT-s has impres-
sive performance too, considering its compact size. The
advantage of SVM classifier over majority voting is that



Table 2: Ablation study on ASD-EVNet (results in %). M-Vote stands for majority voting.

ASD Dataset FADC Dataset

mViT-B mSwinT-B MobileViT-s M-Vote Ours Classifier Param. Accuracy AUROC Accuracy AUROC
✓ ✗ ✓ ✗ ✓ SVM 91M 94.00 97.05 98.11 99.09
✗ ✓ ✓ ✗ ✓ SVM 91M 94.50 97.41 98.58 99.27
✓ ✓ ✗ ✗ ✓ SVM 172M 94.50 97.63 99.08 99.68
✓ ✓ ✓ ✓ ✗ - 179M 95.00 98.09 99.39 99.78
✓ ✓ ✓ ✗ ✓ RF 179M 95.00 98.22 99.53 99.84
✔ ✔ ✔ ✗ ✔ SVM 179M 96.50 99.04 99.81 99.91

Table 3: Results on ASD-EVNet and each component.

ASD Dataset FADC Dataset

Models Param Accuracy AUROC Accuracy AUROC

mViT-B 86M 93.50 96.59 97.54 99.16
mSwinT-B 86M 94.00 97.10 98.38 99.55
MobileViT-s 5M 92.00 96.64 97.28 99.09

ASD-EVNet 179M 96.50 99.04 99.81 99.91

it considers each model’s confidence as its prediction. It
assigns weights to each model’s prediction based on its
confidence, whereas the majority voting assigns equal
weight to each model’s prediction. Hence, SVM can ef-
fectively leverage the strengths of each model and pro-
duce robust prediction than Random Forest (RF), as
demonstrated in Table 2.

(a) ASD DB (b) FADC DB

Figure 3: Confusion matrices of test data.

Qualitative Performance: Figure 3a shows only
4 false positives and 3 false negatives. The confusion
matrix on our dataset showed no false positives, indi-
cating that our model correctly predicted all positive
instances (Figure 3b). We observed that the only incor-
rect predictions made by our model were in instances
where hands, objects, or other obstructions hid part
of the face. This suggests that our model may need
further improvement to better handle such cases.

Quantitative Performance: For the ASD
Dataset, ASD-EVNet ensemble architecture outper-
formed all the individual models with an accuracy of
96.50% and an AUROC of 99.04% (Table 4). On FADC
dataset, we achieved 99.81% accuracy and 99.91% AU-

Table 4: Comparison of ASD-EVNet with all recent
state-of-the-art methods (results in %).

ASD Dataset FADC Dataset

Models Backbones Param Accuracy AUROC Accuracy AUROC

Elshoky et al. [23] ResNet50 24M 90.50 93.54 94.78 97.69
Hosseini et al. [24] MobileNetV3 4M 91.00 94.32 95.27 97.98
Cao et al. [17] ResNet152 60M 91.50 94.58 95.14 97.91

Alsaade and Alzahrani [16] VGG16 139M 91.50 94.71 61.89 71.88
Mujeeb and Subashin [25] EfficientNet 21M 91.50 94.89 94.72 96.93

Ahmed et al. [26] Xception 21M 92.00 95.34 96.47 98.22

Cao et al. [17] ViT-S 27M 91.00 94.06 - -
Cao et al. [17] ViT-M 86M 92.50 95.31 - -
Cao et al. [17] ViT-L 307M 93.50 96.62 - -

ASD-
EVNet
(Ours)

mViT-B
mSwinT-B 179M 96.50 99.04 99.81 99.91
MobileViT-s

ROC score, indicating its strong predictive power in
distinguishing ASD cases from TD ones. Our model
outperformed all other recent methods in both accu-
racy and AUROC, demonstrating its effectiveness in
diagnosing ASD in children based on facial expressions.

5 Conclusion

This paper presented a novel and effective ensem-
ble architecture, namely ASD-EVNet, for ASD classi-
fication from facial images. It consists of three ViT
models: mViT-B, mSwinT-B, and MobileViT-s. We
compared our model with state-of-the-art models and
achieved superior performances in terms of accuracy
and Area Under the Receiver Operating Characteris-
tic curve. Apart from the proposed model, we also
introduced the largest ASD dataset of this kind. We
exploited an added dropout layer along with attention
and projection layers at the end of each ViT and Swin
Transformer. We found that it is beneficial in improv-
ing the performance of the models. It also reduced the
overfitting problem and improved the model’s general-
ization capability. The proposed architecture achieved
excellent performance on two of the largest datasets on
ASD classification of children. Though it is extremely
challenging to develop a very large dataset having fa-
cial expressions of ASD children, we need to develop
a gigantic dataset to explore our method and improve
thereby for any constraints in methods.
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