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Abstract— This paper presents an overview of a strategy 
for enabling speech recognition to be performed in the 
cloud whilst preserving the privacy of users. The strategy 
advocates a demarcation of responsibilities between the 
client and server-side components for performing the 
speech recognition task. On the client-side resides the 
acoustic model, which symbolically encodes the audio and 
encrypts the data before uploading to the server. The 
server-side then employs searchable encryption-based 
language modelling to perform the speech recognition 
task. The paper details the proposed client-side acoustic 
model components, and the proposed server-side 
searchable encryption which will be the basis of the 
language modelling. Some preliminary results are 
presented, and potential problems and their solutions 
regarding the encrypted communication between client 
and server are discussed. Preliminary benchmarking 
results with acceleration of the client and server 
operations with GPGPU computing are also presented. 

Index Terms— Speech Recognition, Privacy, 
Searchable Encryption, GPGPU Computing 

1. INTRODUCTION

In many activities involving big data, cloud computing
offers a common distributed infrastructure for the storage of 
large amounts of data in a scalable, efficient, and low cost 
way. For sensitive data there is the possibility to use 
encryption for the secure storage of data in the cloud. 
However, whilst we have become increasingly good at 
encrypting data at rest, in order to process the data on the 
cloud we first need to decrypt it, which in turn excludes the 
possibility for using the cloud’s resources to process sensitive 
data, unless it can be done in a secure way.  
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Speech contains biometric and other information which 
should remain private and therefore inaccessible to the cloud 
provider. Cloud users want to hide sensitive data such as 
speech, from cloud providers; similarly, companies using 
cloud services want to protect their intellectual property from 
cloud providers and users. Hence the need for strategies for 
processing data securely in the cloud becomes increasingly 
more important. 

In theory fully homomorphic encryption (FHE) offers the 
possibility of constructing encrypted algorithms that operate 
on encrypted data in such a way that neither the client’s data 
nor the server’s intellectual property is decrypted on the 
cloud. Since Gentry’s plausible construction of an FHE 
scheme in 2009 (Gentry, 2009), FHE has understandably 
gathered increasing interest from cryptographers. However, 
FHE utilizes modular multiplication and addition operations 
on primitives on the order of millions of bits (Wang, 2012), 
making them currently unfeasible for big data tasks, even 
when configured for GPGPU acceleration. Partially 
homomorphic encryption (PHE) schemes such as Paillier 
encryption (Paillier, 1999) offer some speed up, but these 
schemes are still computationally demanding. Additionally, 
PHE schemes are limited in the range of mathematical 
operations they can implement, and hence they typically 
employ some form of secure multiparty computation by 
necessity to augment them. However, this then necessitates 
that large amounts of encrypted data are passed to the client 
periodically for decryption and processing outside of the 
cloud before re-encryption of the results and transfer back to 
the cloud; understandably for practical purposes the 
communication overhead then becomes a limiting factor. 

Speech is not reproducible in the sense that no speaker is 
capable of making the same utterance the same way twice, 
there are always small acoustic differences between 
utterances that have the same base transcription and this is a 
particular challenge of performing encrypted speech 
recognition. Hence in order to utilize the cloud for processing 
large amounts of audio data in a secure way, further 
innovation in cryptographic schemes is required. By 
reformulating the typical speech recognition task in such a 
way as to facilitate cloud computation, for example by 
reducing speech recognition to a search procedure (Chollet, 
1999), practical secure large scale speech processing can now 
be conducted in the cloud. 
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Section 2 presents the proposed architecture and the 
client/server – acoustic model/language model configuration. 
Section 3 outlines the privacy preserving speech encoding on 
the client-side. Section 4 outlines the GPGPU acceleration of 
AES encryption which is the basis of the proposed security. 
Section 5 then outlines the Ranked Searchable Encryption 
(RSE) scheme being developed as the basis for secure 
language modelling on the server/cloud side. Finally, Section 
6 presents conclusions and discusses the planned future 
developments and potential problems with the approach. 

2. PROPOSED ARCHITECTURE 

Our proposed solution involves the compression of 
speech containing biometric identifiers to a symbolic 
representation that anonymizes the users’ identity (Chollet, 
1999), and then on the other hand to use searchable 
symmetric encryption (Curtmola, 2006) to enable the finding 
of strings of symbols (e.g. phones) in an encrypted speech 
transcription. Encrypted string matching will then be 
performed to realize the language modelling component of 
the speech recognition system (Pathak, 2013). Figure 1 
illustrates the concept and the demarcation of responsibilities 
between the client and cloud server. 

 
Figure 1 The client and cloud server concept and division of 
responsibilities for the speech processing task 

Speech recognition is typically broken down into acoustic 
and language modelling tasks. The acoustic model converts 
raw speech wave forms into acoustic units such as phones. 
The language model incorporates natural language 
processing and Bayesian probability theory to infer the text 
transcription, given what is known of a particular language, 
and what words the sequences of phones likely correspond to. 
As can be seen from Figure 1, in the proposed system, the 
acoustic model resides on the client-side and the language 
model resides on the server/cloud-side.  

From the perspective of preserving the privacy of 
personal data there are broadly two types of sensitive 
information contained in speech. These are the biometric 
identifiers relating to someone’s identity i.e. the speech 
pattern itself, and then secondly there is the speech content 
i.e. what is being said. The acoustic model operates on the 
biometric data and we have taken the decision that the raw 

form of this data, the audio itself, is processed on the client 
side to convert it to phonetic symbols. The audio and its 
symbolic representation are then encrypted and then stored 
on the cloud. The symbolic representation of the audio 
utterances encoded on the client-side and stored on the cloud 
server can be searched in the encrypted domain. The setup 
enables secure speech processing in that the audio remains 
secured on the cloud until a particular user conducts searches 
on the database and downloads specific utterances of interest. 
At which point once the specific audio of interest is back on 
the client-side it can be decrypted with the client’s private 
key. In this way, the cloud server is designed to be a 
repository for the encrypted audio, and at no point is the audio 
database decrypted on the cloud after it leaves the client 
machine. 

The next section will now outline the operation of the 
client-side speech encoding which converts the client’s audio 
to a symbolic representation. 

3. PRIVACY PRESERVING SPEECH ENCODING 

Regarding Privacy Preservation, in the cloud modality we 
need to make sure that personal information is not shared on 
the cloud. Since speech is a biometric data type, it is possible 
to identify someone and accurately infer a whole host of 
information about someone that extends beyond the obvious 
information such as gender, to data such as height, weight, 
age, health and so on. Hence we need to ensure that speech 
itself is not stored unencrypted on the cloud. This constraint  

The client-side speech encoding may be viewed also as 
compressing the audio data into phonetic symbols.  

3.1 Data-driven Automatic Speech Recognition 

Traditionally, Automatic Speech Recognition (ASR) 
involves multiple successive layers of feature extraction to 
compress the amount of information processed from the raw 
audio so that the training of the acoustic model does not take 
an unreasonably long time. However, in recent years with 
increases in computational speed, adoption of parallel 
computation with General Purpose Graphics Processing 
Units (GPGPUs), and advances in neural networks (the so-
called Deep Learning trend), many researchers are replacing 
the traditional ASR algorithms with data-driven approaches 
that simply take the audio data in its frequency form (e.g. 
Spectrogram) and process it with a Deep Neural Network 
(DNN), or more appropriately (since speech is temporal) with 
a Recurrent Neural Network (RNN) that can be trained 
quickly with GPGPUs. The RNN then converts the 
Spectrogram directly to phonetic symbols and in some cases 
directly to text (Hannun, 2014). 

The problem with many of these approaches from the 
encryption point of view is that they typically combine the 
acoustic model and the language model with one neural 
network. This involves aligning the acoustic data (containing 
sensitive biometrics) at various stages of the network training 
with the text transcription with Expectation Maximization 
(EM), Viterbi Search or Connectionist Temporal 



Classification (CTC) (Graves, 2006). In our approach, as 
previously stated, we think that a higher level of privacy 
preservation can be attained by separating the acoustic and 
language model training between the client and server-sides 
of the system. Thus we need a way to train the acoustic model 
in isolation to the language model. In the acoustic model 
developed in this project we also use spectrograms as input 
and phonemes as output classes to train the acoustic model 
and we use a Convolutional Neural Network (CNN) at the 
core of the acoustic model. The proceeding sub-section 
explains the intricacies of spectrograms and how their 
generation can be accelerated with parallel computation with 
GPGPUs. Being able to train a system to identify time-
frequency intervals in acoustic data and relate it to acoustic 
units such as phonemes requires extremely accurate labelling 
of acoustic data, and this is afforded by the well-known 
TIMIT speech corpus.  

3.2 TIMIT Speech Corpus 

The TIMIT speech corpus of read speech was designed in 
1993 as a speech data resource for acoustic phonetic studies 
and has been used extensively for the development and 
evaluation of automatic speech recognition studies. TIMIT 
contains broadband recordings of 630 speakers of eight major 
dialects of American English, each reading ten phonetically 
rich sentences. The corpus includes time-aligned 
orthographic, phonetic and word transcriptions as well as a 
16-bit, 16 KHz speech waveform file for each utterance.
TIMIT was designed to further acoustic-phonetic knowledge
and automatic speech recognition systems. It was
commissioned by DARPA and worked on by many sites,
including Texas Instruments (TI) and Massachusetts Institute
of Technology (MIT), hence the corpus' name. TIMIT is the
most accurately transcribed speech corpus in existence as it
contains not only transcriptions of the text but also contains
accurate timing of phones. This is impressive given that the
average English speaker utters 14-15 phones a second. The
accuracy of the corpus makes it ideal for training the acoustic
model on the client-side of the system.

3.3 Deep Acoustic Modelling 

Arguably it is only since 2006 (Hinton, 2006) that the 
training of neural networks with more than two layers has 
been possible. The analysis of the vanishing and exploding 
error phenomena, its relationship to sigmoidal activation 
functions (Hochrieter, 1991), and subsequent alleviation with 
such techniques as rectified linear units (ReLU) in feed-
forward nets and ‘gated recurrency’ in recurrent networks 
(Hochreiter, 1997; Graves, 2009) has resulted in a resurgence 
of neural network research, namely the so called ‘deep 
learning’ trend. There are several elements that have brought 
this resurgence about, previously inefficient network training 
algorithms (when trained for small datasets) such as 
stochastic gradient descent (SGD) benefit markedly from 
economies of scale when applied to big data (Bottou, 2008). 
Other innovations with batch sizes (e.g. mini batches), 

improved learning rates (e.g. batch normalization (Loffe, 
2015)), and regularization (e.g. dropout (Srivastava, 2014)) 
have also contributed to this resurgence. This renewed 
reliance on backpropagation in machine learning is also 
reflected in the graph-based paradigm employed by many of 
the deep learning frameworks e.g. Theano (Bergstra, 2011), 
TensorFlow (Dean, 2015), where nodes on the graph 
(neurons) have states and their derivatives facilitating 
efficient gradient calculation. The ability train deep networks 
would be irrelevant without the exploitation of the GPGPU. 
In addition to the typically graph-based paradigm, all the 
mainstream deep learning frameworks are now providing 
support for GPGPU computation. Many innovations around 
accelerating gradient-descent algorithms themselves (Recht, 
2011), allow simultaneous adaptation of parameters during 
parallel training without locking the parameters in the 
GPGPUs shared memory. 

Inspired by the work of Barlow (Barlow, 1953), the first 
convolutional neural network was developed by Fukushima 
(Fukushima, 1980). Fukushima’s ‘Neocognitron’ performed 
image processing operations on images, and the design has 
been refined over the years, most notably with the LeNet-5 
architecture (LeCun, 1990) which he used to learn the 
MNIST handwritten character data set. LeNet 5 was the first 
network to use convolutions and subsampling or pooling 
layers. 

One of the main strengths of the CNN is that since 
Ciresan’s seminal GPGPU implementation (Ciresan, 2011) 
they are now typically trained in parallel with a GPGPU, and 
in fact are now arguably the most common type of deep 
neural network currently being trained. The state of the art in 
CNNs is arguably the GoogLeNet (Szegedy, 2015) which 
was the architecture that won the ImageNet competition. 
ImageNet (ImageNet, 2014) is an image database organized 
according to the WordNet hierarchy (currently only the 
nouns), in which each node of the hierarchy is depicted by 
hundreds and thousands of images. GoogleNet won the 2011 
competition by classifying 1.2 million images into 1000 
classes. 

CNN’s were the first deep learning network to make use 
of GPGPU’s for their computation and we use them as the 
basis of the acoustic model presented in this work, primarily 
for the robustness and computational efficiency. They are 
typically used for classifying static images but we make them 
work for audio by using sliding windows operating over the 
spectrograms. 

3.4 Spectrograms 

A spectrogram is a time-frequency representation of a 
signal (in our case audio). It is obtained by applying a Fast 
Fourier Transform (FFT) to the audio signal. This analysis 
essentially separates the frequencies and amplitudes of its 
component sinusoidal waves. The result can then be 
displayed visually, with degrees of amplitude (represented by 
colour of greyscale), at various frequencies (usually on the 
vertical axis) by time (horizontal). Depending on the size of 



the Fourier analysis window, different levels of 
frequency/time resolution are achieved. A long window 
resolves frequency at the expense of time—the result is a 
narrow-band spectrogram, which reveals individual 
harmonics (component frequencies), but smears together 
adjacent 'moments'. If a short analysis window is used, 
adjacent harmonics are smeared together, but with better time 
resolution. The result is a wide-band spectrogram in which 
individual pitch periods appear as vertical lines (or striations), 
with formant structure. We typically use wide-band or Short-
Term Fourier Transform (STFT) spectrograms, since we 
want to align acoustic data with phonetic symbols with timing 
that is as accurate as possible. 

SoX is used to convert audio files in .wav format to a 
.dat file containing the timing of each sample frame and the 
integer value of the frames energy. The .dat file also 
contains the sampling frequency in the header of the file. The 
spectrogram code loads the .dat file, extracts the sampling 
rate automatically and uses this sampling rate as a parameter 
in the FFT calculation. In the CPU version of the code the 
well-known Cooley-Tukey algorithm is implemented. 
However, in our implementation of spectrograms for acoustic 
model input during training we can either generate them with 
the CPU on the client-side or with GPGPU if it is available. 
For the GPGPU version of the code we use NVIDIA’s CuFFT 
library if the client-side has a GPGPU. Once the STFT is 
calculated the magnitude of the complex Fourier transform is 
determined and then log scaled to obtain the spectrogram. In 
both the CPU and GPGPU case the spectrograms are then 
saved to disk in Portable Network Graphics (PNG) format, 
which uses two libraries libpng (libpng) distributed as 
standard in Ubuntu Linux) and pngwriter (pngwriter) 
which needs to be installed and compiled from source. The 
spectrogram for the entire utterance is then saved to disk, the 
pixel size of the resulting spectrogram is 256 × number of 
frames/sample rate. 

3.5 Preliminary Experiments 

We use an implementation of the GoogLeNet architecture 
(CAFFE, DIGITS). The GoogLeNet (Szegedy, 2015) 
implementation was trained with SGD. Before the deep 
learning boom, gradient descent was usually performed by 
using the full set of training samples (full batch) to determine 
the next update of the parameters. The problem with this 
approach is that it is not parallelizable, and hence cannot by 
implemented efficiently on GPGPU. SGD does away with 
this approach by computing the gradient of the parameters on 
a single or few (mini batch) or training samples. For large 
sizes of datasets SGD performs qualitatively as well as batch 
methods but outperforms them in computational time. 

Once the convolutional acoustic model is trained it is then 
uploaded to the client-side. It can then be used to perform 
inferencing, converting the audio to phonetic symbols. The 
audio is first converted to spectrograms, then passed to the 
trained CNN and the CNN classifies the sliding windows 
operating over the spectrogram into phonetic symbols. Figure 

2 illustrates the operation of this convolutional speech 
encoder. 

Figure 2 Client-side convolutional speech encoder 

As can be seen from the figure the sliding windows operating 
over the spectrogram (each one is 256×256 greyscale pixels) 
is classified by the CNN into phoneme classes. The phoneme 
classes are then encrypted with AES and uploaded to the 
cloud. Hence the cloud only contains a symbolic 
representation of the encrypted speech data, the biometric 
identifiers associated with the raw audio remain on the client-
side. 

4. GPU ACCELERATION OF THE ADVANCED
ENCRYPTION STANDARD (AES) ALGORITHM

GPGPU acceleration is advocated where possible throughout 
the system both on the client-side (if is available and on the 
server side (the server-side is assumed to have GPGPU 
functionality). In addition to accelerating the time it takes to 
train the convolutional acoustic model and convert the audio 
to spectrograms, GPGPU computation is also used for the 
encryption itself. 

The client needs to encrypt the encoded speech and 
transmit it to the cloud server over the communication 
channel. The encoding of the audio compresses the amount 
of data that needs to be encrypted, but further efficiencies can 
be gained by accelerating the encryption itself. We use the 
Advanced Encryption Standard (AES) algorithm as the basis 
of the security in the proposed system, and we use GPGPU-
based AES encryption if it available on the client-side for its 
speed.  

Two versions of the Advanced Encryption Standard 
(AES) algorithm have been implemented on both the CPU in 
plain C/C++ and on the GPU using CUDA C. The particular 
version of AES that has been implemented is the Electronic 
Cook Book (ECB) mode which splits plain text into a number 
of blocks of 128 bits (16 bytes), each of which is 
independently encoded by the algorithm using a series of 
keys derived from a provided encryption key. The encoding 



takes place over 10 rounds (using a 128-bit key) which 
involves various substitutions and permutations using a 
different value derived from the encryption key in each 
round. 

v1 of the algorithms uses inline C functions for 
computations in the MixColumns() step of the algorithm 
whereas v2 uses a pre-calculated lookup table which is copied 
over and stored on the device. For brevity the following 
preliminary results only show the v2 of the algorithm. 

The CUDA implementations currently only exploit coarse 
grain parallelism optimizations using the GPUs vast number 
of multiprocessors to process cipher blocks in parallel. This 
is achieved by assigning individual cipher blocks (128 bits) 
to different blocks which are processed by one of many of the 
devices' multiprocessors. However please note that the total 
number of threads assigned needs to be equal to or greater 
than the number of cipher blocks to be processed otherwise 
all blocks will not be processed. 

The AES implementation were setup and run with varying 
input size to generate the comparison performance graph 
between the CPU Host and the GPU device. Figure 3 shows 
the differences in execution time between host and device as 
the number of cipher blocks increases. 

Figure 3 Comparison between CPU Host and GPU Device 
illustrating differences in execution time of AES encryption 
for less than 100 cypher blocks 

These show clear linear relationships displayed by the two 
approaches with an overlap occurring between roughly 80-
100 blocks of 128 bits where the performance of the GPU 
implementation becomes greater than that of the CPU 
implementation. The initial limitation of the GPU 
implementation is the overhead of copying the input over to 
the device from host memory however the benefit of parallel 
processing makes this obsolete beyond this point. This 
relationship has been observed to continue as such with an 
increase in the number of input blocks up to 3000, as is 
illustrated by Figure 4. 

Figure 4 Comparison between CPU Host and GPU Device 
illustrating differences in execution time of AES encryption 
for up to 3000 cypher blocks 

The next Section outlines the proposed encryption 
scheme which will be the basis for the server-side language 
modelling. 

5. SEARCHABLE ENCRYPTION FOR LANGUAGE
MODELLING

Figure 5 illustrates the potential places of attacks that we
need to address for the development of the security of the 
secure speech processing system. 

Figure 5 Adversarial Assumptions for the client-cloud server 
model 

The server is assumed to be ‘friendly but curious’, meaning 
that it will not actively try and break the encryption but that 
it will monitor the traffic and infer the content of the audio if 
it can, which means that the data should be encrypted. We 
also assume that the client is taking care of their own network 
and its security. The communication channels will be 
assumed to be under threat from an adversary as is illustrated 
from the figure. The communication channels will be used to 
transmit AES encrypted symbolic speech data, and in return 
AES encrypted search results and transcriptions in the final 
system functionality. This is the basis by which we will 
design suitable encryption. 
When designing suitable encryption algorithms, we need to 
be aware that there are trade-offs between security, efficiency 
of the algorithm and query effectiveness which is closely 
related to the usability of the system. 
In this paper, we present one of the searchable encryption 
schemes we have been developing with the speech 



recognition task in mind, we have termed it Ranked 
Searchable Encryption, but first we present some background 
on deterministic searchable encryption. 

5.1 Deterministic Encryption 

Deterministic encryption always encrypts the same 
message to the same ciphertext. The property preserved by 
deterministic encryption is equality i.e., for any given two 
encryptions one can test if the underlying messages are equal 
by just checking the given ciphertexts. Due to this equality 
property, the encrypted database leaks a large amount of data 
even before the client searches. This means that if the server 
sees two or more equal ciphertexts in the encrypted database, 
it knows that the corresponding encrypted documents contain 
a keyword in common. In addition, the server learns the 
frequency with which keywords appear which makes the 
encrypted database vulnerable to frequency analysis. Another 
issue is that since tokens are deterministic encryptions of the 
search terms, the server will always know whether the client 
is repeating a search a not.  

A third issue occurs when the deterministic encryption 
scheme is based on a public-key scheme. In this case, all the 
deterministic encryptions (both in encrypted database and in 
the tokens) are encrypted using the client’s public key which 
is, obviously, public and available to the server. The server 
can then mount a dictionary attack on the encrypted database 
by encrypting a list of possible keywords and comparing 
them to the ones found in the encrypted database and in the 
tokens. If it finds a match, then it knows the keyword. Hence 
the solution based on deterministic encryption supports fast 
search on encrypted data.  However, the public-key based 
scheme unfortunately leaks a considerable amount of 
information to the server. 

Searchable encryption built using identity based 
encryption (IBC) mitigates most of the drawbacks that exist 
in the above deterministic encryption based scheme. In 
general, the IBC scheme consists of four algorithms: 

Setup (λ): On input the security parameter λ, this algorithm 
returns a master secret key msk and public parameters pp. 
Extract (pp, msk, id): On input public parameters pp, a 
master secret key msk and an identity id ∈ I, this algorithm 
outputs a secret key sk. 
Enc (pp, m, id): On input public parameters pp, a message 
m ∈ M and an identity id ∈ I, this algorithm outputs a 
ciphertext c. 
Dec (pp, c,sk): On input public parameters pp, a ciphertext c 
and a secret key sk, this algorithm outputs either a message 
m or a failure symbol ⊥. 

The above identity based encryption can be reformulated to 
support searchable encryption as follows: 

KeyGen (λ): On input the security parameter λ, this 
algorithm returns a private/public key pair (sk, pk). 

PEKS (pk, w): On input a public key pk and a keyword w ∈ 
W, this algorithm produces a searchable ciphertext c. 
Trapdoor (pk, sk, w): On input a public key pk, a secret key 
sk and a keyword w ∈ W, this algorithm outputs a trapdoor 
tp for w. 
Test (pk, c, tp): On input a public key pk, a searchable 
ciphertext c and a trapdoor tp, this algorithm outputs either 
True or False. 

The above transformation is secure in the traditional 
ciphertext indistinguishability sense. Identities and their 
secret keys in the original scheme map to keywords and 
trapdoors in the transformed scheme, respectively. The 
anonymity requirement informally states that ciphertexts leak 
no information regarding the identity of the recipient, leading 
to the commonly desired keyword-privacy guarantees over 
ciphertexts in searchable encryption (the transformed one). 
The standard notion of ciphertext indistinguishability in 
identity based encryption leads to Computational 
Consistency in the transformed scheme, which informally 
means that it is hard for computationally bounded adversaries 
to find two distinct keywords such that the trapdoors for the 
first keyword positively match the ciphertexts of the second 
keyword.  

5.2 Ranked Searchable Encryption 

We will consider the client-server infrastructure by 
visualizing a scenario in which there are two parties, Alice 
(Client) and a Cloud Server (CS). Alice intends to upload all 
her documents (encrypted speech files) D = {D1, D2, … , Di} 
to the CS to enable remote access. The CS performs the 
searching of the relevant documents on the behalf of Alice. 
In the scheme it is assumed that the CS is a trusted but curious 
server. Being trusted means that the CS acts in a known and 
designated manner but the CS is equally also willing and 
curious to get hold of any information about the documents 
held with it. To prevent theft of any of the information Alice 
decides to encrypt all the documents. Once the documents are 
encrypted and outsourced she is challenged with the problem 
of searching on the encrypted documents. Whenever Alice 
decides to view a particular file she has to download all the 
documents from the CS and after decrypting all of them she 
can get hold of her required set of files. This creates 
unnecessary network traffic and post processing overhead. 
Alice decides to outsource the documents in such a way that 
she would only have to download the relevant and desired 
documents while keeping the security and privacy of the 
outsourced files intact. This requires a scheme to be 
developed that would facilitate performing textual searches 
over encrypted data. 

Searching over encrypted documents is performed in 
three phases (Setup, Searching and Outcome). These phases 
are further divided into sub-steps/sub-phases. The first phase 
i.e. the Setup Phase comprises of three steps i.e. Keyword
Identification, Client Index Generation and Server Index
Generation. In the first step Alice generates an exhaustive set
of unique Keywords W = {W1, W2, …, WN} from the set of



documents D to be outsourced. In the second step (Client 
Index Generation), Alice builds a client-side index table Ic. 
The Ic is stored with Alice and is never revealed to the CS. In 
step 3 (Server Index Generation), Alice generates a secure 
ranked server-side index Is and outsources it to the CS along 
with the encrypted set of documents D. Step 3 involves 
relevance frequencies of the keywords to be calculated and 
inserted in the index table. 

In the Searching Phase, Alice generates a Trapdoor Ti for 
the particular keyword Wi she is willing to search. The 
generated Trapdoor is then transmitted to the CS to facilitate 
the search. In the Outcome Phase the CS returns the 
encrypted set of desired files to Alice in the ranked order. 

Figure 6 shows the flow of events of the proposed RSE 
scheme where a client is interacting with a cloud server (CS). 
It can be seen that all the tasks are performed by the client, 
whereas, the searching is done at the CS side. 

Figure 6 RSE Flow of Events

The RSE scheme comprises of four polynomial time 
algorithms Π = (KeyGen, BuildIndex, BuildTrap, 
SearchOutcome) such that: 

𝐾←KeyGen (1𝜆): is a probabilistic key generation algorithm 
run by the client. The algorithm takes a security parameter λ 
as the input and returns a master key K and a symmetric key 
𝑘 shared with the CS. 
(𝐼𝑐, 𝐼𝑠)←BuildIndex (𝐾,𝐷): is run by the client to generate 
indices. The algorithm takes a master key K and a collection 
of documents D to be outsourced to the CS as input. The 
algorithm returns a client side index 𝐼𝑐 and a server side index 
𝐼𝑠. 
𝑇𝑤← BuildTrap (𝑘, 𝐾, 𝑤, 𝐼𝑐, num): is run by the client. The 
algorithm takes the symmetric key 𝑘, master key 𝐾, keyword 

w, client side index 𝐼𝑐 and the number (num) of documents D 
required as the input. The algorithm returns a trapdoor 𝑇𝑤. 
𝑖𝑑(𝐷𝑖)← SearchOutcome (𝑘, 𝐼𝑠, 𝑇𝑤): is run by the CS. The 
algorithm takes the symmetric key 𝑘, server side index 𝐼𝑠 and 
the trapdoor (𝑇𝑤) as the input and returns the desired 
document identifiers 𝑖𝑑(𝐷𝑖) containing the keyword w in 
ranked order. 

Pre-processing is done on the client side in three major steps, 
namely  

1. Frequency computation
2. Client-side index generation
3. Server-side index generation

Frequency computation 
First the scheme computes the frequency of the words 

appearing in each of the selected files as shown in the above 
figure. For example, the column corresponding to the word 
‘this’ tells about its frequency of occurrence in the files 
word.doc, Latest.doc, new.docx and F_t which are 0, 1, 1 and 
2 respectively. This data is essential for the server side index 
generation. 

Client-side index generation 
The next task is to generate the client-side index. The 

client side index table is a collection of all key words each 
assigned with a unique integer other than 0 and 1. If the total 
number of such set of keywords is, say, ‘n’ in number, then a 
prime number ‘p’ is chosen such that p > N. All integers that 
are assigned for the keywords are from the set {2, 3, …, p-1}. 
In the implementation p is 228199. 

Figure 7 Modulus Prime Encryption Index Table Generation 

Server-side index generation 
Server-side index table is quite similar to the frequency 

table with three modifications: 
Firstly, the words are replaced by the integers which are 

the multiplicative inverse of their corresponding client-side 
index computed modulo prime p. For example, the client-side 
index of this is 2. The multiplicative inverse of 2 in modulo 



228199 is 114100. So in the Server-side index table, the word 
‘this’ is replaced by 114100.   

Secondly, the file names in the frequency table are 
replaced by the encrypted file names. For example, 
word.doc is replaced by AES(word.doc) as shown in the 
figure. 
Lastly, the frequencies are replaced by relevant scores which 
are computed using the following formula: 

𝑆𝑐𝑜𝑟𝑒(𝑄, 𝐹𝑑) =∑
1

|𝐹𝑑|
(1 + ln 𝑓𝑑,𝑡) ln (1 +

𝑁

𝑓𝑡
)

𝑡∈𝑄

 

Searching for a keyword 
To search for a keyword, say the phoneme ‘n’, the client 

will compute E = (Decimal (AES ( ‘n’ ))) mod  228199 and 
the trapdoor K = (Decimal (AES ( ‘n’ )) *  3 ) mod 228199. 

The client’s query being sent to the server is of the form 
(K, E). Note that 3 is the client-side index of the word ‘is’.  In 
the server side, after receiving (K, E), K will be multiplied 
modulo 228199 with the integers occurring in the first row of 
server-side index table one by one unless product matches K. 
For example since the multiplicative inverse of 3 in modulo 
228199 is 152133, (K × 152133) mod 228199 = Decimal 
(AES ( ‘n’ )) mod 228199 = E. Now the entries of the column 
corresponding to the integer 152133 are to be checked. The 
higher the score, the more relevant the corresponding file is 
with respect to the search. If the number of files in which the 
search is be performed is, say, 2, then the top two files 
according to the top two relevant scores for the keyword ‘n’ 
are 7.7 and 5.7 and the corresponding encrypted files are 
new.docx and Latest.doc. So the server will return the 
encrypted new.docx first and then Latest.doc. In this way, 
a phonetic search of the encrypted database can be carried 
out. 

Figure 8 Searching for a keyword

6. CONCLUSIONS

We have presented an outline of an ASR system that
preserves privacy within its operation. Whilst the complete 
system is still in development the rationale for how the 
system works has been presented along with specification and 
preliminary operation of many of the core modules. The 
rationale advocates that audio data is uploaded to the cloud 
and remains encrypted once it leaves the client-side. On the 
client-side the audio data is additionally encoded into 
symbols by a novel convolutional neural network based 
acoustic model. The encoded speech (phonetic symbolic 
strings) are then encrypted with AES and uploaded to the 
cloud. RSE then provides the capability to perform phonetic 
searching of the encoded audio securely in the cloud realizing 
the speech recognition task. The inherent trapdoor security 
that RSE employs preserves the privacy of searches. 

Future work is aimed at a number of developments 
specifically aimed at satisfying the requirements of a robust 
commercial encrypted speech engine. One of the 
understandable criticisms of the scheme is that if new data is 
added to the encrypted repository that server-side index table 
needs to be recalculated. This is an obvious necessity of the 
reliance on relevance ranking that the scheme employs. A 
future iteration of encrypted speech will remove the ranking 
aspect which will enable the adding of rows to the server-side 
index without a global recalculation operation over the entire 
database.  

We have demonstrated single keyword (phone) searches 
in the encrypted domain. Future work will also describe how 
sequences of phonetic symbols can be searched for without 
‘leaking’ information about the search history. This is 
fundamental to the usability of the system since it will then 
be possible for the user to search for keywords. The keyword 
will be converted into phonetic strings on the client-side with 
a simple lexicon, and then the phonetic string representation 
of the keyword can be used to search the encrypted database 
on the cloud. It will also be possible to use n-best 
representations of the phonetic search strings. This will 
involve parallel searches with the n-best phonetic strings, but 
should promote robustness by accounting for variability in 
pronunciation due to different accents and dialects for 
example. 

We have used a CNN-based encoder on the client-side 
encoder as it is lightweight, it is a compressed python object 
which can be used to encode the symbolic representation of 
each audio file quickly whether the client has GPU capability 
or not.  

ACKNOWLEDGEMENTS 

This research was supported by Innovate UK as part of 
the ‘Privacy Preserving Speech Processing in the Cloud’ 
project (Project No.: 102506). 



REFERENCES 

G. Chollet, J. Cernocky, A. Constantinescu, S. Deligne and F.
Bimbot “Toward ALISP: A proposal for Automatic Language
Independent Speech Processing” in Computational Models of
Speech Pattern Processing, K. Ponting (ed.), NATO ASI Series Vol
169, pp 375-388, 1999.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient
constructions, Proc. 13th ACM Conf. Comput. Netw. Secur. Pp. 79,
2006.

SoX, the Swiss Army knife of sound processing programs, 
http://sox.sourceforge.net  

The NVIDIA CUDA Fast Fourier Transform library (cuFFT): 
https://developer.nvidia.com/cufft  

The official PNG reference library: 
http://www.libpng.org/pub/png/libpng.html  

PNGwriter is a C++ library for creating PNG images: 
http://pngwriter.sourceforge.net/ 

DARPA TIMIT Acoustic Phonetic Continuous Speech Corpus 
CDROM (1993) by J. S. Garofolo, L. F. Lamel, W. M. Fisher, et 
al. https://catalog.ldc.upenn.edu/LDC93S1 

G. E. Hinton, S. Osindero, and Y. The, “A fast learning algorithm 
for deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527-
1554, 2006. 

S. Hochreiter, “Untersuchungen zu dynamischen neuronalen
Netzen,” Diploma thesis, Institut f. Informatik, Technische Univ.
Munich, 1991.

S. Hochreiter, J. Schmidhuber, “Long Short-term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

A. Graves, J. Schmidhuber, “Offline handwriting recognition with
multidimensional recurrent neural networks,” Advances in Neural
Information Processing Systems, vol. 22, pp. 545-552, 2009.

L. Bottou, O. Bousquet, “The tradeoffs of large scale learning,”
Advances in Neural Information Processing Systems, vol. 20, pp.
161-168, 2008.

S. Loffe, C. Szegedy, “Batch normalisation: accelerating deep
network training by reducing internal covariate shift,” arXiv
preprint, arXiv: 1502.03167, 2015.

J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O.
Delalleau, G. Desjardins, D. Warde-Farley, I. Goodfellow, A.
Bergeron, “Theano: Deep learning on GPGPUs with python,”
Neural Information Processing Systems (NIPS), 2011.

J. Dean, et al., “TensorFlow: Large-scale machine learning on
heterogeneous distributed systems, White Paper, Google Research,
2015.

B. Recht, C. Re, S. Wright, F. Niu, “Hogwild: A lock-free
approach to parallelizing stochastic gradient descent,” Advances in
Neural Information Processing Systems, pp. 693-701, 2011.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, 
D., Erhan, D., Vanhoucke, V. and Rabinovich, A., 2015. Going 
deeper with convolutions. In Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition (pp. 1-9). 

Graves, A., Fernández, S., Gomez, F. and Schmidhuber, J., 2006, 
June. Connectionist temporal classification: labelling unsegmented 
sequence data with recurrent neural networks. In Proceedings of 
the 23rd international conference on Machine learning (pp. 369-
376). ACM. 

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, 
E., Prenger, R., Satheesh, S., Sengupta, S., Coates, A. and Ng, 
A.Y., 2014. Deep speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567.

C. Gentry, “Fully homomorphic encryption using ideal lattices,”
Proc. 41st ACM Symposium on Theory of Computing, 2009.

W. Wang, Y. Hu, L. Chen, X., Huang, B. Sunar, “Accelerating
fully homomorphic encryption using GPGPUs,” IEEE Conference
on High Performance Extreme Computing, pp. 1-5, 2012.

P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” Advances in Cryptology, EUROCRYPT’99,
pp. 223-238, 1999.

M. A. Pathak, B. Raj, S. Rane, and P. Smaragdis, “Privacy-
preserving speech processing: cryptographic and string-match
frameworks show promise,” IEEE Signal Processing Magazine,
vol. 30, no. 2, pp. 62-74, 2013.

Barlow, H.B., 1953. Summation and inhibition in the frog's retina. 
The Journal of physiology, 119(1), p.69. 

CAFFE Deep Learning Framework: 
http://caffe.berkeleyvision.org/  

NVIDIA DIGITS Interactive Deep Learning GPGPU Training 
System: https://developer.nvidia.com/digits  

D. C. Ciresan, U. Meier, J.  Masci, L. Gambardella, J. and
Schmidhuber, ‘Flexible, high performance convolutional neural
networks for image classification, IJCAI Proceedings-International
Joint Conference on Artificial Intelligence, vol. 22, no. 1, pp. 1237,
2011.

ImageNet: http://www.image-net.org/ 

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel. Handwritten digit recognition with
a back-propagation network. In David Touretzky, editor, Advances
in Neural Information Processing Systems 2 (NIPS*89), Denver,
CO, 1990.

Fukushima, Kunihiko, ‘Neocognitron: A Self-organizing Neural 
Network Model for a Mechanism of Pattern  Recognition 
Unaffected by Shift in Position,’ Biological  Cybernetics 36 (4): 
193-202, 1980

http://sox.sourceforge.net/
https://developer.nvidia.com/cufft
http://www.libpng.org/pub/png/libpng.html
http://pngwriter.sourceforge.net/
https://catalog.ldc.upenn.edu/LDC93S1
http://caffe.berkeleyvision.org/
https://developer.nvidia.com/digits
http://www.image-net.org/
https://www.researchgate.net/publication/314096063



