
A Roadmap for Privacy Preserving Speech Processing

Cornelius Glackin1, Gerard Chollet1, Nazim Dugan1, Nigel Cannings1, Julie Wall2,
Shahzaib Tahir3, Indranil Ghosh Ray3, Muttukrishnan Rajarajan3, Ryan Falkner4, Atta Badii4

1Intelligent Voice Ltd., 2University of East London, 3City University London, 4University of Reading

Abstract— This paper presents an overview of a strategy
for enabling speech recognition to be performed in the
cloud whilst preserving the privacy of users. The strategy
advocates a demarcation of responsibilities between the
client and server-side components for performing the
speech recognition task. On the client-side resides the
acoustic model, which symbolically encodes the audio and
encrypts the data before uploading to the server. The
server-side then employs searchable encryption-based
language modelling to perform the speech recognition
task. The paper details the proposed client-side acoustic
model components, and the proposed server-side
searchable encryption which will be the basis of the
language modelling. Some preliminary results are
presented, and potential problems and their solutions
regarding the encrypted communication between client
and server are discussed. Preliminary benchmarking
results with acceleration of the client and server
operations with GPGPU computing are also presented.

Index Terms— Speech Recognition, Privacy,
Searchable Encryption, GPGPU Computing

1. INTRODUCTION

In many activities involving big data, cloud computing
offers a common distributed infrastructure for the storage of
large amounts of data in a scalable, efficient, and low cost
way. For sensitive data there is the possibility to use
encryption for the secure storage of data in the cloud.
However, whilst we have become increasingly good at
encrypting data at rest, in order to process the data on the
cloud we first need to decrypt it, which in turn excludes the
possibility for using the cloud’s resources to process sensitive
data, unless it can be done in a secure way.
* Research supported by the Innovate UK as part of the Privacy Preserving
Speech Recognition in the Cloud Project, Project No.: 102506
1C. Glackin, G. Chollet, N. Dugan, and N. Cannings are with Intelligent
Voice Ltd, London, UK. (email: neil.glackin@intelligentvoice.com)
2S. Tahir, I. Ghosh Ray, and M. Rajarajan are with the School of
Mathematics, Computer Science & Engineering, Department of Electrical
and Electronic Engineering, City University London, London, UK. (email:
r.muttukrishnan@city.ac.uk)
3Ryan Falkner3, and Atta Badii are with the Intelligent System Research
Laboratory, University of Reading, Reading, UK. (email:
atta.badii@reading.ac.uk)

Speech contains biometric and other information which
should remain private and therefore inaccessible to the cloud
provider. Cloud users want to hide sensitive data such as
speech, from cloud providers; similarly, companies using
cloud services want to protect their intellectual property from
cloud providers and users. Hence the need for strategies for
processing data securely in the cloud becomes increasingly
more important.

In theory fully homomorphic encryption (FHE) offers the
possibility of constructing encrypted algorithms that operate
on encrypted data in such a way that neither the client’s data
nor the server’s intellectual property is decrypted on the
cloud. Since Gentry’s plausible construction of an FHE
scheme in 2009 (Gentry, 2009), FHE has understandably
gathered increasing interest from cryptographers. However,
FHE utilizes modular multiplication and addition operations
on primitives on the order of millions of bits (Wang, 2012),
making them currently unfeasible for big data tasks, even
when configured for GPGPU acceleration. Partially
homomorphic encryption (PHE) schemes such as Paillier
encryption (Paillier, 1999) offer some speed up, but these
schemes are still computationally demanding. Additionally,
PHE schemes are limited in the range of mathematical
operations they can implement, and hence they typically
employ some form of secure multiparty computation by
necessity to augment them. However, this then necessitates
that large amounts of encrypted data are passed to the client
periodically for decryption and processing outside of the
cloud before re-encryption of the results and transfer back to
the cloud; understandably for practical purposes the
communication overhead then becomes a limiting factor.

Speech is not reproducible in the sense that no speaker is
capable of making the same utterance the same way twice,
there are always small acoustic differences between
utterances that have the same base transcription and this is a
particular challenge of performing encrypted speech
recognition. Hence in order to utilize the cloud for processing
large amounts of audio data in a secure way, further
innovation in cryptographic schemes is required. By
reformulating the typical speech recognition task in such a
way as to facilitate cloud computation, for example by
reducing speech recognition to a search procedure (Chollet,
1999), practical secure large scale speech processing can now
be conducted in the cloud.

mailto:neil.glackin@intelligentvoice.com
mailto:r.muttukrishnan@city.ac.uk
mailto:atta.badii@reading.ac.uk

Section 2 presents the proposed architecture and the
client/server – acoustic model/language model configuration.
Section 3 outlines the privacy preserving speech encoding on
the client-side. Section 4 outlines the GPGPU acceleration of
AES encryption which is the basis of the proposed security.
Section 5 then outlines the Ranked Searchable Encryption
(RSE) scheme being developed as the basis for secure
language modelling on the server/cloud side. Finally, Section
6 presents conclusions and discusses the planned future
developments and potential problems with the approach.

2. PROPOSED ARCHITECTURE

Our proposed solution involves the compression of
speech containing biometric identifiers to a symbolic
representation that anonymizes the users’ identity (Chollet,
1999), and then on the other hand to use searchable
symmetric encryption (Curtmola, 2006) to enable the finding
of strings of symbols (e.g. phones) in an encrypted speech
transcription. Encrypted string matching will then be
performed to realize the language modelling component of
the speech recognition system (Pathak, 2013). Figure 1
illustrates the concept and the demarcation of responsibilities
between the client and cloud server.

Figure 1 The client and cloud server concept and division of
responsibilities for the speech processing task

Speech recognition is typically broken down into acoustic
and language modelling tasks. The acoustic model converts
raw speech wave forms into acoustic units such as phones.
The language model incorporates natural language
processing and Bayesian probability theory to infer the text
transcription, given what is known of a particular language,
and what words the sequences of phones likely correspond to.
As can be seen from Figure 1, in the proposed system, the
acoustic model resides on the client-side and the language
model resides on the server/cloud-side.

From the perspective of preserving the privacy of
personal data there are broadly two types of sensitive
information contained in speech. These are the biometric
identifiers relating to someone’s identity i.e. the speech
pattern itself, and then secondly there is the speech content
i.e. what is being said. The acoustic model operates on the
biometric data and we have taken the decision that the raw

form of this data, the audio itself, is processed on the client
side to convert it to phonetic symbols. The audio and its
symbolic representation are then encrypted and then stored
on the cloud. The symbolic representation of the audio
utterances encoded on the client-side and stored on the cloud
server can be searched in the encrypted domain. The setup
enables secure speech processing in that the audio remains
secured on the cloud until a particular user conducts searches
on the database and downloads specific utterances of interest.
At which point once the specific audio of interest is back on
the client-side it can be decrypted with the client’s private
key. In this way, the cloud server is designed to be a
repository for the encrypted audio, and at no point is the audio
database decrypted on the cloud after it leaves the client
machine.

The next section will now outline the operation of the
client-side speech encoding which converts the client’s audio
to a symbolic representation.

3. PRIVACY PRESERVING SPEECH ENCODING

Regarding Privacy Preservation, in the cloud modality we
need to make sure that personal information is not shared on
the cloud. Since speech is a biometric data type, it is possible
to identify someone and accurately infer a whole host of
information about someone that extends beyond the obvious
information such as gender, to data such as height, weight,
age, health and so on. Hence we need to ensure that speech
itself is not stored unencrypted on the cloud. This constraint

The client-side speech encoding may be viewed also as
compressing the audio data into phonetic symbols.

3.1 Data-driven Automatic Speech Recognition

Traditionally, Automatic Speech Recognition (ASR)
involves multiple successive layers of feature extraction to
compress the amount of information processed from the raw
audio so that the training of the acoustic model does not take
an unreasonably long time. However, in recent years with
increases in computational speed, adoption of parallel
computation with General Purpose Graphics Processing
Units (GPGPUs), and advances in neural networks (the so-
called Deep Learning trend), many researchers are replacing
the traditional ASR algorithms with data-driven approaches
that simply take the audio data in its frequency form (e.g.
Spectrogram) and process it with a Deep Neural Network
(DNN), or more appropriately (since speech is temporal) with
a Recurrent Neural Network (RNN) that can be trained
quickly with GPGPUs. The RNN then converts the
Spectrogram directly to phonetic symbols and in some cases
directly to text (Hannun, 2014).

The problem with many of these approaches from the
encryption point of view is that they typically combine the
acoustic model and the language model with one neural
network. This involves aligning the acoustic data (containing
sensitive biometrics) at various stages of the network training
with the text transcription with Expectation Maximization
(EM), Viterbi Search or Connectionist Temporal

Classification (CTC) (Graves, 2006). In our approach, as
previously stated, we think that a higher level of privacy
preservation can be attained by separating the acoustic and
language model training between the client and server-sides
of the system. Thus we need a way to train the acoustic model
in isolation to the language model. In the acoustic model
developed in this project we also use spectrograms as input
and phonemes as output classes to train the acoustic model
and we use a Convolutional Neural Network (CNN) at the
core of the acoustic model. The proceeding sub-section
explains the intricacies of spectrograms and how their
generation can be accelerated with parallel computation with
GPGPUs. Being able to train a system to identify time-
frequency intervals in acoustic data and relate it to acoustic
units such as phonemes requires extremely accurate labelling
of acoustic data, and this is afforded by the well-known
TIMIT speech corpus.

3.2 TIMIT Speech Corpus

The TIMIT speech corpus of read speech was designed in
1993 as a speech data resource for acoustic phonetic studies
and has been used extensively for the development and
evaluation of automatic speech recognition studies. TIMIT
contains broadband recordings of 630 speakers of eight major
dialects of American English, each reading ten phonetically
rich sentences. The corpus includes time-aligned
orthographic, phonetic and word transcriptions as well as a
16-bit, 16 KHz speech waveform file for each utterance.
TIMIT was designed to further acoustic-phonetic knowledge
and automatic speech recognition systems. It was
commissioned by DARPA and worked on by many sites,
including Texas Instruments (TI) and Massachusetts Institute
of Technology (MIT), hence the corpus' name. TIMIT is the
most accurately transcribed speech corpus in existence as it
contains not only transcriptions of the text but also contains
accurate timing of phones. This is impressive given that the
average English speaker utters 14-15 phones a second. The
accuracy of the corpus makes it ideal for training the acoustic
model on the client-side of the system.

3.3 Deep Acoustic Modelling

Arguably it is only since 2006 (Hinton, 2006) that the
training of neural networks with more than two layers has
been possible. The analysis of the vanishing and exploding
error phenomena, its relationship to sigmoidal activation
functions (Hochrieter, 1991), and subsequent alleviation with
such techniques as rectified linear units (ReLU) in feed-
forward nets and ‘gated recurrency’ in recurrent networks
(Hochreiter, 1997; Graves, 2009) has resulted in a resurgence
of neural network research, namely the so called ‘deep
learning’ trend. There are several elements that have brought
this resurgence about, previously inefficient network training
algorithms (when trained for small datasets) such as
stochastic gradient descent (SGD) benefit markedly from
economies of scale when applied to big data (Bottou, 2008).
Other innovations with batch sizes (e.g. mini batches),

improved learning rates (e.g. batch normalization (Loffe,
2015)), and regularization (e.g. dropout (Srivastava, 2014))
have also contributed to this resurgence. This renewed
reliance on backpropagation in machine learning is also
reflected in the graph-based paradigm employed by many of
the deep learning frameworks e.g. Theano (Bergstra, 2011),
TensorFlow (Dean, 2015), where nodes on the graph
(neurons) have states and their derivatives facilitating
efficient gradient calculation. The ability train deep networks
would be irrelevant without the exploitation of the GPGPU.
In addition to the typically graph-based paradigm, all the
mainstream deep learning frameworks are now providing
support for GPGPU computation. Many innovations around
accelerating gradient-descent algorithms themselves (Recht,
2011), allow simultaneous adaptation of parameters during
parallel training without locking the parameters in the
GPGPUs shared memory.

Inspired by the work of Barlow (Barlow, 1953), the first
convolutional neural network was developed by Fukushima
(Fukushima, 1980). Fukushima’s ‘Neocognitron’ performed
image processing operations on images, and the design has
been refined over the years, most notably with the LeNet-5
architecture (LeCun, 1990) which he used to learn the
MNIST handwritten character data set. LeNet 5 was the first
network to use convolutions and subsampling or pooling
layers.

One of the main strengths of the CNN is that since
Ciresan’s seminal GPGPU implementation (Ciresan, 2011)
they are now typically trained in parallel with a GPGPU, and
in fact are now arguably the most common type of deep
neural network currently being trained. The state of the art in
CNNs is arguably the GoogLeNet (Szegedy, 2015) which
was the architecture that won the ImageNet competition.
ImageNet (ImageNet, 2014) is an image database organized
according to the WordNet hierarchy (currently only the
nouns), in which each node of the hierarchy is depicted by
hundreds and thousands of images. GoogleNet won the 2011
competition by classifying 1.2 million images into 1000
classes.

CNN’s were the first deep learning network to make use
of GPGPU’s for their computation and we use them as the
basis of the acoustic model presented in this work, primarily
for the robustness and computational efficiency. They are
typically used for classifying static images but we make them
work for audio by using sliding windows operating over the
spectrograms.

3.4 Spectrograms

A spectrogram is a time-frequency representation of a
signal (in our case audio). It is obtained by applying a Fast
Fourier Transform (FFT) to the audio signal. This analysis
essentially separates the frequencies and amplitudes of its
component sinusoidal waves. The result can then be
displayed visually, with degrees of amplitude (represented by
colour of greyscale), at various frequencies (usually on the
vertical axis) by time (horizontal). Depending on the size of

the Fourier analysis window, different levels of
frequency/time resolution are achieved. A long window
resolves frequency at the expense of time—the result is a
narrow-band spectrogram, which reveals individual
harmonics (component frequencies), but smears together
adjacent 'moments'. If a short analysis window is used,
adjacent harmonics are smeared together, but with better time
resolution. The result is a wide-band spectrogram in which
individual pitch periods appear as vertical lines (or striations),
with formant structure. We typically use wide-band or Short-
Term Fourier Transform (STFT) spectrograms, since we
want to align acoustic data with phonetic symbols with timing
that is as accurate as possible.

SoX is used to convert audio files in .wav format to a
.dat file containing the timing of each sample frame and the
integer value of the frames energy. The .dat file also
contains the sampling frequency in the header of the file. The
spectrogram code loads the .dat file, extracts the sampling
rate automatically and uses this sampling rate as a parameter
in the FFT calculation. In the CPU version of the code the
well-known Cooley-Tukey algorithm is implemented.
However, in our implementation of spectrograms for acoustic
model input during training we can either generate them with
the CPU on the client-side or with GPGPU if it is available.
For the GPGPU version of the code we use NVIDIA’s CuFFT
library if the client-side has a GPGPU. Once the STFT is
calculated the magnitude of the complex Fourier transform is
determined and then log scaled to obtain the spectrogram. In
both the CPU and GPGPU case the spectrograms are then
saved to disk in Portable Network Graphics (PNG) format,
which uses two libraries libpng (libpng) distributed as
standard in Ubuntu Linux) and pngwriter (pngwriter)
which needs to be installed and compiled from source. The
spectrogram for the entire utterance is then saved to disk, the
pixel size of the resulting spectrogram is 256 × number of
frames/sample rate.

3.5 Preliminary Experiments

We use an implementation of the GoogLeNet architecture
(CAFFE, DIGITS). The GoogLeNet (Szegedy, 2015)
implementation was trained with SGD. Before the deep
learning boom, gradient descent was usually performed by
using the full set of training samples (full batch) to determine
the next update of the parameters. The problem with this
approach is that it is not parallelizable, and hence cannot by
implemented efficiently on GPGPU. SGD does away with
this approach by computing the gradient of the parameters on
a single or few (mini batch) or training samples. For large
sizes of datasets SGD performs qualitatively as well as batch
methods but outperforms them in computational time.

Once the convolutional acoustic model is trained it is then
uploaded to the client-side. It can then be used to perform
inferencing, converting the audio to phonetic symbols. The
audio is first converted to spectrograms, then passed to the
trained CNN and the CNN classifies the sliding windows
operating over the spectrogram into phonetic symbols. Figure

2 illustrates the operation of this convolutional speech
encoder.

Figure 2 Client-side convolutional speech encoder

As can be seen from the figure the sliding windows operating
over the spectrogram (each one is 256×256 greyscale pixels)
is classified by the CNN into phoneme classes. The phoneme
classes are then encrypted with AES and uploaded to the
cloud. Hence the cloud only contains a symbolic
representation of the encrypted speech data, the biometric
identifiers associated with the raw audio remain on the client-
side.

4. GPU ACCELERATION OF THE ADVANCED
ENCRYPTION STANDARD (AES) ALGORITHM

GPGPU acceleration is advocated where possible throughout
the system both on the client-side (if is available and on the
server side (the server-side is assumed to have GPGPU
functionality). In addition to accelerating the time it takes to
train the convolutional acoustic model and convert the audio
to spectrograms, GPGPU computation is also used for the
encryption itself.

The client needs to encrypt the encoded speech and
transmit it to the cloud server over the communication
channel. The encoding of the audio compresses the amount
of data that needs to be encrypted, but further efficiencies can
be gained by accelerating the encryption itself. We use the
Advanced Encryption Standard (AES) algorithm as the basis
of the security in the proposed system, and we use GPGPU-
based AES encryption if it available on the client-side for its
speed.

Two versions of the Advanced Encryption Standard
(AES) algorithm have been implemented on both the CPU in
plain C/C++ and on the GPU using CUDA C. The particular
version of AES that has been implemented is the Electronic
Cook Book (ECB) mode which splits plain text into a number
of blocks of 128 bits (16 bytes), each of which is
independently encoded by the algorithm using a series of
keys derived from a provided encryption key. The encoding

takes place over 10 rounds (using a 128-bit key) which
involves various substitutions and permutations using a
different value derived from the encryption key in each
round.

v1 of the algorithms uses inline C functions for
computations in the MixColumns() step of the algorithm
whereas v2 uses a pre-calculated lookup table which is copied
over and stored on the device. For brevity the following
preliminary results only show the v2 of the algorithm.

The CUDA implementations currently only exploit coarse
grain parallelism optimizations using the GPUs vast number
of multiprocessors to process cipher blocks in parallel. This
is achieved by assigning individual cipher blocks (128 bits)
to different blocks which are processed by one of many of the
devices' multiprocessors. However please note that the total
number of threads assigned needs to be equal to or greater
than the number of cipher blocks to be processed otherwise
all blocks will not be processed.

The AES implementation were setup and run with varying
input size to generate the comparison performance graph
between the CPU Host and the GPU device. Figure 3 shows
the differences in execution time between host and device as
the number of cipher blocks increases.

Figure 3 Comparison between CPU Host and GPU Device
illustrating differences in execution time of AES encryption
for less than 100 cypher blocks

These show clear linear relationships displayed by the two
approaches with an overlap occurring between roughly 80-
100 blocks of 128 bits where the performance of the GPU
implementation becomes greater than that of the CPU
implementation. The initial limitation of the GPU
implementation is the overhead of copying the input over to
the device from host memory however the benefit of parallel
processing makes this obsolete beyond this point. This
relationship has been observed to continue as such with an
increase in the number of input blocks up to 3000, as is
illustrated by Figure 4.

Figure 4 Comparison between CPU Host and GPU Device
illustrating differences in execution time of AES encryption
for up to 3000 cypher blocks

The next Section outlines the proposed encryption
scheme which will be the basis for the server-side language
modelling.

5. SEARCHABLE ENCRYPTION FOR LANGUAGE
MODELLING

Figure 5 illustrates the potential places of attacks that we
need to address for the development of the security of the
secure speech processing system.

Figure 5 Adversarial Assumptions for the client-cloud server
model

The server is assumed to be ‘friendly but curious’, meaning
that it will not actively try and break the encryption but that
it will monitor the traffic and infer the content of the audio if
it can, which means that the data should be encrypted. We
also assume that the client is taking care of their own network
and its security. The communication channels will be
assumed to be under threat from an adversary as is illustrated
from the figure. The communication channels will be used to
transmit AES encrypted symbolic speech data, and in return
AES encrypted search results and transcriptions in the final
system functionality. This is the basis by which we will
design suitable encryption.
When designing suitable encryption algorithms, we need to
be aware that there are trade-offs between security, efficiency
of the algorithm and query effectiveness which is closely
related to the usability of the system.
In this paper, we present one of the searchable encryption
schemes we have been developing with the speech

recognition task in mind, we have termed it Ranked
Searchable Encryption, but first we present some background
on deterministic searchable encryption.

5.1 Deterministic Encryption

Deterministic encryption always encrypts the same
message to the same ciphertext. The property preserved by
deterministic encryption is equality i.e., for any given two
encryptions one can test if the underlying messages are equal
by just checking the given ciphertexts. Due to this equality
property, the encrypted database leaks a large amount of data
even before the client searches. This means that if the server
sees two or more equal ciphertexts in the encrypted database,
it knows that the corresponding encrypted documents contain
a keyword in common. In addition, the server learns the
frequency with which keywords appear which makes the
encrypted database vulnerable to frequency analysis. Another
issue is that since tokens are deterministic encryptions of the
search terms, the server will always know whether the client
is repeating a search a not.

A third issue occurs when the deterministic encryption
scheme is based on a public-key scheme. In this case, all the
deterministic encryptions (both in encrypted database and in
the tokens) are encrypted using the client’s public key which
is, obviously, public and available to the server. The server
can then mount a dictionary attack on the encrypted database
by encrypting a list of possible keywords and comparing
them to the ones found in the encrypted database and in the
tokens. If it finds a match, then it knows the keyword. Hence
the solution based on deterministic encryption supports fast
search on encrypted data. However, the public-key based
scheme unfortunately leaks a considerable amount of
information to the server.

Searchable encryption built using identity based
encryption (IBC) mitigates most of the drawbacks that exist
in the above deterministic encryption based scheme. In
general, the IBC scheme consists of four algorithms:

Setup (λ): On input the security parameter λ, this algorithm
returns a master secret key msk and public parameters pp.
Extract (pp, msk, id): On input public parameters pp, a
master secret key msk and an identity id ∈ I, this algorithm
outputs a secret key sk.
Enc (pp, m, id): On input public parameters pp, a message
m ∈ M and an identity id ∈ I, this algorithm outputs a
ciphertext c.
Dec (pp, c,sk): On input public parameters pp, a ciphertext c
and a secret key sk, this algorithm outputs either a message
m or a failure symbol ⊥.

The above identity based encryption can be reformulated to
support searchable encryption as follows:

KeyGen (λ): On input the security parameter λ, this
algorithm returns a private/public key pair (sk, pk).

PEKS (pk, w): On input a public key pk and a keyword w ∈
W, this algorithm produces a searchable ciphertext c.
Trapdoor (pk, sk, w): On input a public key pk, a secret key
sk and a keyword w ∈ W, this algorithm outputs a trapdoor
tp for w.
Test (pk, c, tp): On input a public key pk, a searchable
ciphertext c and a trapdoor tp, this algorithm outputs either
True or False.

The above transformation is secure in the traditional
ciphertext indistinguishability sense. Identities and their
secret keys in the original scheme map to keywords and
trapdoors in the transformed scheme, respectively. The
anonymity requirement informally states that ciphertexts leak
no information regarding the identity of the recipient, leading
to the commonly desired keyword-privacy guarantees over
ciphertexts in searchable encryption (the transformed one).
The standard notion of ciphertext indistinguishability in
identity based encryption leads to Computational
Consistency in the transformed scheme, which informally
means that it is hard for computationally bounded adversaries
to find two distinct keywords such that the trapdoors for the
first keyword positively match the ciphertexts of the second
keyword.

5.2 Ranked Searchable Encryption

We will consider the client-server infrastructure by
visualizing a scenario in which there are two parties, Alice
(Client) and a Cloud Server (CS). Alice intends to upload all
her documents (encrypted speech files) D = {D1, D2, … , Di}
to the CS to enable remote access. The CS performs the
searching of the relevant documents on the behalf of Alice.
In the scheme it is assumed that the CS is a trusted but curious
server. Being trusted means that the CS acts in a known and
designated manner but the CS is equally also willing and
curious to get hold of any information about the documents
held with it. To prevent theft of any of the information Alice
decides to encrypt all the documents. Once the documents are
encrypted and outsourced she is challenged with the problem
of searching on the encrypted documents. Whenever Alice
decides to view a particular file she has to download all the
documents from the CS and after decrypting all of them she
can get hold of her required set of files. This creates
unnecessary network traffic and post processing overhead.
Alice decides to outsource the documents in such a way that
she would only have to download the relevant and desired
documents while keeping the security and privacy of the
outsourced files intact. This requires a scheme to be
developed that would facilitate performing textual searches
over encrypted data.

Searching over encrypted documents is performed in
three phases (Setup, Searching and Outcome). These phases
are further divided into sub-steps/sub-phases. The first phase
i.e. the Setup Phase comprises of three steps i.e. Keyword
Identification, Client Index Generation and Server Index
Generation. In the first step Alice generates an exhaustive set
of unique Keywords W = {W1, W2, …, WN} from the set of

documents D to be outsourced. In the second step (Client
Index Generation), Alice builds a client-side index table Ic.
The Ic is stored with Alice and is never revealed to the CS. In
step 3 (Server Index Generation), Alice generates a secure
ranked server-side index Is and outsources it to the CS along
with the encrypted set of documents D. Step 3 involves
relevance frequencies of the keywords to be calculated and
inserted in the index table.

In the Searching Phase, Alice generates a Trapdoor Ti for
the particular keyword Wi she is willing to search. The
generated Trapdoor is then transmitted to the CS to facilitate
the search. In the Outcome Phase the CS returns the
encrypted set of desired files to Alice in the ranked order.

Figure 6 shows the flow of events of the proposed RSE
scheme where a client is interacting with a cloud server (CS).
It can be seen that all the tasks are performed by the client,
whereas, the searching is done at the CS side.

Figure 6 RSE Flow of Events

The RSE scheme comprises of four polynomial time
algorithms Π = (KeyGen, BuildIndex, BuildTrap,
SearchOutcome) such that:

𝐾←KeyGen (1𝜆): is a probabilistic key generation algorithm
run by the client. The algorithm takes a security parameter λ
as the input and returns a master key K and a symmetric key
𝑘 shared with the CS.
(𝐼𝑐, 𝐼𝑠)←BuildIndex (𝐾,𝐷): is run by the client to generate
indices. The algorithm takes a master key K and a collection
of documents D to be outsourced to the CS as input. The
algorithm returns a client side index 𝐼𝑐 and a server side index
𝐼𝑠.
𝑇𝑤← BuildTrap (𝑘, 𝐾, 𝑤, 𝐼𝑐, num): is run by the client. The
algorithm takes the symmetric key 𝑘, master key 𝐾, keyword

w, client side index 𝐼𝑐 and the number (num) of documents D
required as the input. The algorithm returns a trapdoor 𝑇𝑤.
𝑖𝑑(𝐷𝑖)← SearchOutcome (𝑘, 𝐼𝑠, 𝑇𝑤): is run by the CS. The
algorithm takes the symmetric key 𝑘, server side index 𝐼𝑠 and
the trapdoor (𝑇𝑤) as the input and returns the desired
document identifiers 𝑖𝑑(𝐷𝑖) containing the keyword w in
ranked order.

Pre-processing is done on the client side in three major steps,
namely

1. Frequency computation
2. Client-side index generation
3. Server-side index generation

Frequency computation
First the scheme computes the frequency of the words

appearing in each of the selected files as shown in the above
figure. For example, the column corresponding to the word
‘this’ tells about its frequency of occurrence in the files
word.doc, Latest.doc, new.docx and F_t which are 0, 1, 1 and
2 respectively. This data is essential for the server side index
generation.

Client-side index generation
The next task is to generate the client-side index. The

client side index table is a collection of all key words each
assigned with a unique integer other than 0 and 1. If the total
number of such set of keywords is, say, ‘n’ in number, then a
prime number ‘p’ is chosen such that p > N. All integers that
are assigned for the keywords are from the set {2, 3, …, p-1}.
In the implementation p is 228199.

Figure 7 Modulus Prime Encryption Index Table Generation

Server-side index generation
Server-side index table is quite similar to the frequency

table with three modifications:
Firstly, the words are replaced by the integers which are

the multiplicative inverse of their corresponding client-side
index computed modulo prime p. For example, the client-side
index of this is 2. The multiplicative inverse of 2 in modulo

228199 is 114100. So in the Server-side index table, the word
‘this’ is replaced by 114100.

Secondly, the file names in the frequency table are
replaced by the encrypted file names. For example,
word.doc is replaced by AES(word.doc) as shown in the
figure.
Lastly, the frequencies are replaced by relevant scores which
are computed using the following formula:

𝑆𝑐𝑜𝑟𝑒(𝑄, 𝐹𝑑) =∑
1

|𝐹𝑑|
(1 + ln 𝑓𝑑,𝑡) ln (1 +

𝑁

𝑓𝑡
)

𝑡∈𝑄

Searching for a keyword
To search for a keyword, say the phoneme ‘n’, the client

will compute E = (Decimal (AES (‘n’))) mod 228199 and
the trapdoor K = (Decimal (AES (‘n’)) * 3) mod 228199.

The client’s query being sent to the server is of the form
(K, E). Note that 3 is the client-side index of the word ‘is’. In
the server side, after receiving (K, E), K will be multiplied
modulo 228199 with the integers occurring in the first row of
server-side index table one by one unless product matches K.
For example since the multiplicative inverse of 3 in modulo
228199 is 152133, (K × 152133) mod 228199 = Decimal
(AES (‘n’)) mod 228199 = E. Now the entries of the column
corresponding to the integer 152133 are to be checked. The
higher the score, the more relevant the corresponding file is
with respect to the search. If the number of files in which the
search is be performed is, say, 2, then the top two files
according to the top two relevant scores for the keyword ‘n’
are 7.7 and 5.7 and the corresponding encrypted files are
new.docx and Latest.doc. So the server will return the
encrypted new.docx first and then Latest.doc. In this way,
a phonetic search of the encrypted database can be carried
out.

Figure 8 Searching for a keyword

6. CONCLUSIONS

We have presented an outline of an ASR system that
preserves privacy within its operation. Whilst the complete
system is still in development the rationale for how the
system works has been presented along with specification and
preliminary operation of many of the core modules. The
rationale advocates that audio data is uploaded to the cloud
and remains encrypted once it leaves the client-side. On the
client-side the audio data is additionally encoded into
symbols by a novel convolutional neural network based
acoustic model. The encoded speech (phonetic symbolic
strings) are then encrypted with AES and uploaded to the
cloud. RSE then provides the capability to perform phonetic
searching of the encoded audio securely in the cloud realizing
the speech recognition task. The inherent trapdoor security
that RSE employs preserves the privacy of searches.

Future work is aimed at a number of developments
specifically aimed at satisfying the requirements of a robust
commercial encrypted speech engine. One of the
understandable criticisms of the scheme is that if new data is
added to the encrypted repository that server-side index table
needs to be recalculated. This is an obvious necessity of the
reliance on relevance ranking that the scheme employs. A
future iteration of encrypted speech will remove the ranking
aspect which will enable the adding of rows to the server-side
index without a global recalculation operation over the entire
database.

We have demonstrated single keyword (phone) searches
in the encrypted domain. Future work will also describe how
sequences of phonetic symbols can be searched for without
‘leaking’ information about the search history. This is
fundamental to the usability of the system since it will then
be possible for the user to search for keywords. The keyword
will be converted into phonetic strings on the client-side with
a simple lexicon, and then the phonetic string representation
of the keyword can be used to search the encrypted database
on the cloud. It will also be possible to use n-best
representations of the phonetic search strings. This will
involve parallel searches with the n-best phonetic strings, but
should promote robustness by accounting for variability in
pronunciation due to different accents and dialects for
example.

We have used a CNN-based encoder on the client-side
encoder as it is lightweight, it is a compressed python object
which can be used to encode the symbolic representation of
each audio file quickly whether the client has GPU capability
or not.

ACKNOWLEDGEMENTS

This research was supported by Innovate UK as part of
the ‘Privacy Preserving Speech Processing in the Cloud’
project (Project No.: 102506).

REFERENCES

G. Chollet, J. Cernocky, A. Constantinescu, S. Deligne and F.
Bimbot “Toward ALISP: A proposal for Automatic Language
Independent Speech Processing” in Computational Models of
Speech Pattern Processing, K. Ponting (ed.), NATO ASI Series Vol
169, pp 375-388, 1999.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient
constructions, Proc. 13th ACM Conf. Comput. Netw. Secur. Pp. 79,
2006.

SoX, the Swiss Army knife of sound processing programs,
http://sox.sourceforge.net

The NVIDIA CUDA Fast Fourier Transform library (cuFFT):
https://developer.nvidia.com/cufft

The official PNG reference library:
http://www.libpng.org/pub/png/libpng.html

PNGwriter is a C++ library for creating PNG images:
http://pngwriter.sourceforge.net/

DARPA TIMIT Acoustic Phonetic Continuous Speech Corpus
CDROM (1993) by J. S. Garofolo, L. F. Lamel, W. M. Fisher, et
al. https://catalog.ldc.upenn.edu/LDC93S1

G. E. Hinton, S. Osindero, and Y. The, “A fast learning algorithm
for deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527-
1554, 2006.

S. Hochreiter, “Untersuchungen zu dynamischen neuronalen
Netzen,” Diploma thesis, Institut f. Informatik, Technische Univ.
Munich, 1991.

S. Hochreiter, J. Schmidhuber, “Long Short-term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

A. Graves, J. Schmidhuber, “Offline handwriting recognition with
multidimensional recurrent neural networks,” Advances in Neural
Information Processing Systems, vol. 22, pp. 545-552, 2009.

L. Bottou, O. Bousquet, “The tradeoffs of large scale learning,”
Advances in Neural Information Processing Systems, vol. 20, pp.
161-168, 2008.

S. Loffe, C. Szegedy, “Batch normalisation: accelerating deep
network training by reducing internal covariate shift,” arXiv
preprint, arXiv: 1502.03167, 2015.

J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O.
Delalleau, G. Desjardins, D. Warde-Farley, I. Goodfellow, A.
Bergeron, “Theano: Deep learning on GPGPUs with python,”
Neural Information Processing Systems (NIPS), 2011.

J. Dean, et al., “TensorFlow: Large-scale machine learning on
heterogeneous distributed systems, White Paper, Google Research,
2015.

B. Recht, C. Re, S. Wright, F. Niu, “Hogwild: A lock-free
approach to parallelizing stochastic gradient descent,” Advances in
Neural Information Processing Systems, pp. 693-701, 2011.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,
D., Erhan, D., Vanhoucke, V. and Rabinovich, A., 2015. Going
deeper with convolutions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (pp. 1-9).

Graves, A., Fernández, S., Gomez, F. and Schmidhuber, J., 2006,
June. Connectionist temporal classification: labelling unsegmented
sequence data with recurrent neural networks. In Proceedings of
the 23rd international conference on Machine learning (pp. 369-
376). ACM.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen,
E., Prenger, R., Satheesh, S., Sengupta, S., Coates, A. and Ng,
A.Y., 2014. Deep speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567.

C. Gentry, “Fully homomorphic encryption using ideal lattices,”
Proc. 41st ACM Symposium on Theory of Computing, 2009.

W. Wang, Y. Hu, L. Chen, X., Huang, B. Sunar, “Accelerating
fully homomorphic encryption using GPGPUs,” IEEE Conference
on High Performance Extreme Computing, pp. 1-5, 2012.

P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” Advances in Cryptology, EUROCRYPT’99,
pp. 223-238, 1999.

M. A. Pathak, B. Raj, S. Rane, and P. Smaragdis, “Privacy-
preserving speech processing: cryptographic and string-match
frameworks show promise,” IEEE Signal Processing Magazine,
vol. 30, no. 2, pp. 62-74, 2013.

Barlow, H.B., 1953. Summation and inhibition in the frog's retina.
The Journal of physiology, 119(1), p.69.

CAFFE Deep Learning Framework:
http://caffe.berkeleyvision.org/

NVIDIA DIGITS Interactive Deep Learning GPGPU Training
System: https://developer.nvidia.com/digits

D. C. Ciresan, U. Meier, J. Masci, L. Gambardella, J. and
Schmidhuber, ‘Flexible, high performance convolutional neural
networks for image classification, IJCAI Proceedings-International
Joint Conference on Artificial Intelligence, vol. 22, no. 1, pp. 1237,
2011.

ImageNet: http://www.image-net.org/

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel. Handwritten digit recognition with
a back-propagation network. In David Touretzky, editor, Advances
in Neural Information Processing Systems 2 (NIPS*89), Denver,
CO, 1990.

Fukushima, Kunihiko, ‘Neocognitron: A Self-organizing Neural
Network Model for a Mechanism of Pattern Recognition
Unaffected by Shift in Position,’ Biological Cybernetics 36 (4):
193-202, 1980

http://sox.sourceforge.net/
https://developer.nvidia.com/cufft
http://www.libpng.org/pub/png/libpng.html
http://pngwriter.sourceforge.net/
https://catalog.ldc.upenn.edu/LDC93S1
http://caffe.berkeleyvision.org/
https://developer.nvidia.com/digits
http://www.image-net.org/
https://www.researchgate.net/publication/314096063

