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Abstract 

Diabetes is associated with macrovascular and microvascular complications and is a major 

risk factor for neurological and psychiatric disorders, such as dementia and depression. Type 

1 diabetes (T1DM) and type 2 diabetes (T2DM) have distinct etiologies and 

pathophysiological effects while sharing a common endpoint of persistent hyperglycemia. 

Neuroimaging studies in T1DM have revealed reductions in numerous regions, including the 

parahippocampal and occipital regions, while in T2DM there have been numerous reports of 

hippocampal atrophy. This meta-analysis aimed to identify consistent regional abnormalities 

in cerebral structures in T1DM and T2DM respectively, and also to examine the impact of 

potential confounds, including age, depression and vascular risk factors. Neuroimaging 

studies of both voxel-based morphometry (VBM) data and volumetric data were included. 

Ten T1DM studies (n=613 patients) and 23 T2DM studies (n=1364 patients) fulfilled 

inclusion criteria. The T1DM meta-analysis revealed reduced bilateral thalamus grey matter 

density in adults. The T2DM meta-analysis revealed reduced global brain volume and 

regional atrophy in the hippocampi, basal ganglia, orbitofrontal and occipital lobes. 

Moreover, hippocampal atrophy in T2DM was not modified by hypertension, although there 

were more marked reductions in younger patients relative to healthy controls. In conclusion, 

T1DM and T2DM demonstrated distinct cerebral effects with generalised and specific target 

areas of grey matter reduction. Thalamic atrophy in T1DM may be a substrate of associated 

cognitive deficits. In T2DM, global cerebral atrophy may reflect atherosclerotic factors, while 

hippocampal atrophy was an independent effect providing a potential common 

neuropathological aetiology for the comorbidity of T2DM with dementia and depression.  
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1. INTRODUCTION 

 

Diabetes is a multi-system disease characterised by persistent hyperglycemia associated with 

numerous macrovascular complications, such as cardiovascular and cerebrovascular disease, 

as well as microvascular complications, including retinopathy, nephropathy and neuropathy. 

Diabetes has emerged as a major risk factor for numerous conditions affecting the central 

nervous system. Up to 20% of adults with diabetes meet criteria for major depression (Ali et 

al. 2006), and diabetes doubles the risk of Alzheimer’s disease and all-cause dementia (Jorm 

2000).  

 

Diabetes is currently subdivided into two subtypes which share a common end-point of 

persistent hyperglycemia. However, type 1 diabetes (T1DM) and type 2 diabetes (T2DM) 

have different etiologies. T1DM results from autoimmune destruction of islet beta-cells with 

a typical onset in childhood and young adulthood. T2DM usually results from increasing 

resistance to the end-organ actions of insulin and progressive impairment of insulin secretion, 

and its end effects often occur with other cardiovascular risk factors, such as hypertension, 

dyslipidemia and obesity (Stamler et al. 1993). 

 

Altered cerebral metabolism has been observed in T1DM in children (Sarac et al. 2007). 

T1DM in adults has been associated with neurocognitive deficits, such as impaired attention 

and information processing (Brands et al. 2005), and corresponding reductions in cortical and 

subcortical regions, including occipital and inferior frontal (Wessels et al. 2006), thalamus 

and parahippocampal regions (Northam et al. 2009). In T2DM, decreases in whole brain 

volume (Espeland et al. 2013) as well as in regional volumes, namely in the hippocampus and 

amygdala (den Heijer et al. 2003), anterior cingulate (Kumar et al. 2008) and cerebellum 

(Manor et al. 2012) have been observed.  Findings have been mixed in part due to variability 

in method of analysis, some studies using voxel-based morphometry (Musen et al. 2006) with 

others using volumetric analysis (Lobnig et al. 2005), and some studies have limited their 

analyses to specific regions of interest (Anan et al. 2010; Kamiyama et al. 2010). 

 

In order to investigate the regional cerebral correlates of T1DM and T2DM, we performed a 

meta-analysis of studies of grey matter effects including studies of both VBM and volumetric 

measures. Our aim was to identify the consistent regional abnormalities in T1DM and T2DM 
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and to examine the effects of the potential confounds of depression, hypertension, 

hyperlipidemia, glycemic control, age and gender. We hypothesised that grey matter changes 

in T2DM would demonstrate strong parallels with the deficits observed in depression and 

dementia, namely hippocampal atrophy (Cole et al. 2011), whilst other regional abnormalities 

would be observed in T1DM.   

  

2. MATERIALS AND METHODS 

  

  

2.1. Literature search 

The meta-analyses followed the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines. We systematically searched Web of Science and MEDLINE 

for original articles published before May 2013 using the following search strategy: (diabetes 

OR diabetic) AND (morphometry OR voxel-based OR voxelwise OR VBM OR volumetric 

OR ‘gray matter’ OR ‘grey matter’ OR ‘brain volume’ OR ‘brain volumes’ OR ‘cortical 

atrophy’ OR ‘brain atrophy’ OR ‘subcortical atrophy’ OR MR OR MRI OR ‘magnetic 

resonance’). Studies using animals, other imaging modalities, and patients with major 

psychiatric comorbidity (e.g. psychosis, alcoholism) or previous cerebrovascular disease were 

excluded. Titles were reviewed to exclude studies not meeting the inclusion criteria, and 

remaining abstracts were examined. From abstracts meeting inclusion criteria, full-text 

articles were reviewed, and relevant studies carried forward for data extraction. Reference 

lists of included papers were checked for additional publications, and both published and 

unpublished articles were included.   

  

2.2. Criteria for inclusion in analysis 

Inclusion criteria were: 1) volumetric and/or voxel-based morphometry data on grey matter 

structure in either T1DM or T2DM; 2) at least one direct structural or longitudinal 

comparison was made between patients and controls; 3) MRI imaging was used with voxel-

based analysis or volumetric data produced using a validated manual- or automatic 

segmentation method; and 4) whole-brain and/or region of interest (ROI) analysis was 

produced. Studies were excluded if they met any of the following criteria: 1) patients had a 

diagnosis of insulin resistance; 2) study did not differentiate T1DM from T2DM; 3) only 

white matter data were presented; 4) fewer than 10 individuals were included or fewer than 5 
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subjects in either group; 5) study included patients with dementia only; 6) study re-analysed 

previously published data; 7) study was a review article without original data; or 8) not 

published in English (Figure 1).  

  

2.3. Data extraction 

The following data were extracted for all relevant studies: authors; year of publication; 

sample size; age (mean + standard deviation (SD)); type of diabetes; MRI modality and 

method of analysis used.  

 

We identified the following possible confounders: duration of diabetes (mean + SD); HbA1c 

percentage at time of study (mean + SD), converted to International Federation of Clinical 

Chemistry-standardised concentrations (mmol/mol); hypertension; hyperlipidemia; previous 

stroke; dementia; insulin therapy; and correction for intracranial volume. Covariate analysis 

was performed when there were at least 5 independent studies with complete data for a 

particular brain region. If covariate analysis was not possible, stratified analysis was 

performed (e.g. analysing studies with children and adult participants separately). For any 

data reported as mean +/- standard error, the latter was converted to its SD for inclusion in the 

meta-analysis. For prospective studies, baseline measures were also included in the meta-

analysis when available.  

 

Studies presenting overlapping or identical samples were identified, and only the study 

presenting the largest number of subjects retained. If there was possible overlap but different 

results were presented, for example hippocampus presented in one study and frontal lobe in 

the other, all data were included. The following 9 studies were assimilated into 4 studies 

because of potential sample overlap: i) Brundel et al. 2010; de Bresser et al. 2010 and Jongen 

et al. 2007; ii) Anan et al. 2010 and Anan et al. 2011; iii) Manor et al. 2012 and Novak et al. 

2011; iv) Hershey et al. 2010 and Perantie et al. 2011. 

 

  

2.4. Volumetric meta-analysis 

Grey matter volumetric measurements of global (whole brain) or regional volumes were 

included which were reported by at least 2 studies. Authors were contacted for studies in 

which the reported measurements were unclear.   
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DerSimonian-Laird random-effects meta-analysis was used (DerSimonian and Laird 

1986). In this method, the standard errors of the study-specific estimates are adjusted to 

incorporate a measure of heterogeneity observed in different studies. The amount of 

variation, and hence the adjustment carried out, is estimated from the intervention effects and 

standard errors of included studies. R statistical software was used to produce an effect size 

estimate (Hedge’s g) for each region analysed (standardised mean difference for continuous 

variables), 95% confidence interval, and z-value and p-value (Viechtbauer 2010). The 

heterogeneity quantifier I2 was produced for each area of interest (Higgins et al. 2003). 

 

2.5. Voxel-based morphometry meta-analysis 

Voxel-based morphometry (VBM) is a fully-automated and standardised method of 

determining tissue-type probabilities (Ashburner and Friston, 2000), and we performed a 

meta-analysis to produce a whole-brain summary map based on VBM effect sizes. The 

following data were extracted: normalization template (such as MNI or Talairach); x/y/z 

coordinates; area examined (whether whole brain or region of interest); statistic used to report 

the findings (if p-values, whether uncorrected or corrected and the type of correction used); 

effect sizes; and the size of the smoothing kernel used. If the statistical threshold was not 

reported by a study, the smallest effect size of significant findings was used as a conservative 

estimate. For region of interest analyses or when the coordinates were not specified, 

automated anatomical labels (AAL) were used to record the relevant area (Tzourio-Mazoyer 

et al. 2002). Where appropriate, we duplicated the result to account for more than one AAL 

label.   

  

Parametric coordinate-based meta-analysis (PCM) was used to analyse the VBM data 

(Costafreda 2012). PCM is a method that can incorporate positive, negative and sub-threshold 

statistical findings from VBM studies, themselves with different statistical thresholds, to 

generate a valid pooled effect size summary. A finding can be incorporated into PCM if 

sufficient information is reported to compute the effect size associated with the finding, and 

PCM employs a spatial kernel to account for the spatial uncertainty in location. If a study 

reported both whole-brain and ROI contrasts, the most precise measurement available (either 

an exact measurement for a significant finding or most conservative threshold for a negative 
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result) is used in the summary map for that study. PCM corrects for multiple comparisons 

using the false discovery rate correction (q = 0.05). 

 

Each significant triplet of spatial coordinates is assigned to the corresponding location in 

MNI space, and this location receives the effect size reported, either as exact value or 

significant interval (not crossing zero). Two maps are created, reflecting the lower and upper 

bounds of these intervals. After convolution with the kernel, the outcome is a brain map for 

study i, in which either a significant measurement (if the location is located within ρ of a 

significant finding) or a non-significant measurement (determined by the statistical threshold) 

is assigned to each location within the field of view. Outside of this, the measurement is not 

defined. The non-significant measurement will be left- or interval-censored containing zero, 

bounded by the threshold ti,. If the threshold is not stated in the paper and cannot be 

computed or approximated, the significance of the smallest significant finding is used to 

estimate ti, thereby maximising the width of the non-significance interval and producing a 

conservative estimate. This method demonstrates high agreement between its estimates and 

those obtained from the meta-analysis of unthresholded manual volumetric measurements, 

and further details on PCM methods have been published (Costafreda, 2012). 

  

3. RESULTS 

In T1DM, 10 studies (n = 613 T1DM patients, mean age 26.6 years; n = 375 healthy controls, 

mean age 25.8 years) consisting of 6 VBM (n = 453 patients, n = 286 controls) and 4 

volumetric (n = 160 pts, n = 89 controls) studies were eligible for inclusion (Table 1). In 

T2DM, 23 studies (n = 1364 T2DM patients, mean age 63.2 years; n = 3433 healthy controls, 

mean age 60.5 years), consisting of 6 VBM (n = 216 pts, n = 202 controls) and 17 volumetric 

studies (n = 1148 patients, n = 3231 controls) were included (Table 2).  

 

Average duration of diabetes was 14.5 years for T1DM and 10.3 years for T2DM, and 

average HbA1c was 8.2% (66 mmol/mol) for T1DM (Table 1) and 7.6% (60 mmol/mol) for 

T2DM (Table 2), as a proxy measure of glycemic control. Additional potential confounders 

of depression, dementia, stroke, hypertension, hyperlipdemia and correction for intracranial 

volume are presented in Supplementary Tables 1 and 2.  

 

3.1. Type 1 diabetes 
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In the volumetric meta-analysis, there were no significant differences between in total brain 

volume, total grey matter volume, or hippocampal volume (all p > 0.1), and these results are 

published as supplementary material (Supplementary Figure 1, Supplementary Table 3). 

 

In the VBM meta-analysis, significant reductions were observed in both the left thalamus 

(cluster size 5768 mm3, subregion volume 5112mm3, MNI coordinates (-14, -22, 0), z=4.46, 

p<0.05 FDR corrected) and right thalamus (cluster size 5768 mm3,  subregion volume 612 

mm3, MNI coordinates (4, -16, 0), z=4.46, p<0.005 FDR corrected) as compared to controls 

(Figure 2). Stratification by age revealed significant thalamic reductions in the aggregation of 

studies which included adults (Musen et al. 2006; Northam et al. 2009; Wessels et al. 2006), 

but no differences in children (Perantie et al. 2007; Perantie et al. 2011). No other regions 

showed any significant differences between T1DM and healthy controls. 

 

3.2. Type 2 diabetes 

The volumetric meta-analysis demonstrated significant global reductions in total brain 

volume (Z=-2.77, p=0.006), brain parenchymal fraction (Z=-7.77, p<0.001) and grey matter 

volume (Z=-4.75, p<0.001) (Table 3, Supplementary Figures 2-3). Regional reductions were 

revealed in orbitofrontal cortex grey matter (Table 3, Z=-3.29,p=0.001), the hippocampus 

(Figure 3, Z=-3.67,p=0.0002) and basal ganglia (Table 3, Z=-2.61,p=0.009). Reductions in 

frontal and temporal volumes approached statistical significance (p=0.057 and p=0.066, 

respectively) (Supplementary Figure 4). There were no significant differences in anterior 

cingulate, superior temporal and parietal regions (Table 3). 

 

The VBM meta-analysis revealed  significant reductions in both the left hippocampus (cluster 

size 7224 mm3, subregion volume 7224 mm3, MNI coordinates (-32, -6, -26), z=2.67, 

p=0.0076) and right hippocampus (cluster size 7296 mm3, subregion volume 7296 mm3, MNI 

coordinates (26, -6, -26), z=2.67, p=0.0076) compared to healthy controls (Figure 4). 

 

We also examined potential longitudinal changes, which was possible for total brain volume 

from 2 studies (n = 113 patients, mean age 65.9 years; n=668 controls, mean age 78.1 years) 

(de Bresser et al. 2010; Espeland et al. 2013). Accelerated brain atrophy was evident in older 

T2DM patients relative to age-matched healthy controls (Hedges’ g = -0.25 95% CI (-0.49;-

0.02); z=2.16, p=0.03) with a follow-up period of 4.7 and 4.1 years respectively. 
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3.3. Modifier analysis 

Modifier analysis was only performed if there were at least 5 studies with complete data for a 

particular region. Reductions in total brain volume and the hippocampus in T2DM were 

robust to adjustment by age (Table 3), and age was a significant modifier of the differences 

between patients and controls in hippocampal volume, with studies that included younger 

patients showing more marked reductions between patients and controls than those including 

older participants (modifier effect Z = 6.2, p<0.001).   

 

Hypertension was associated with more pronounced differences in frontal volumes between 

T2DM patients and controls: studies where a higher proportion of patients with T2DM had 

comorbid hypertension reported smaller frontal volume in T2DM relative to controls 

(modifier Z = -2.51, p=0.012).  There were no significant effects of gender or age on frontal 

reductions. For total grey matter volume, hypertension as a modifier of the differences 

between patients and controls approached statistical significance (modifier Z=-1.89, 

p=0.058), whereas age, gender or HbA1c did not modify these differences. For hippocampal 

volume, neither hypertension nor glycemic control (using HbA1c as a proxy measure) 

modified the differences between patients and controls, though again data were limited and 

between-study differences in HbA1c relatively small.  

 

Where possible, the effect of depression on results was analysed by estimating differences 

within each study between both groups of patients. There was no evidence that depression 

was associated with differences in anterior cingulate or orbitofrontal volumes, although only 

2 studies examined these areas, and no data were available for hippocampal volume. Due to 

the limited number of studies, modifier analysis was not performed in T1DM studies or to 

examine the effects of hyperlipidemia. 

   

4. DISCUSSION 

 

Our meta-analysis of the structural brain changes associated with T1DM and T2DM 

demonstrated distinct effects within the conditions with generalised and specific target areas 

of grey matter reduction. T1DM was associated with significant bilateral reductions that were 

limited to the thalamus in adults with T1DM. In contrast, T2DM was associated with 
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widespread global cerebral atrophy, which declined more rapidly over time compared to 

healthy controls, as well as regional atrophy, particularly in the hippocampus, basal ganglia, 

orbitofrontal and occipital lobes. While hypertension modified the global cerebral effects of 

diabetes, indicating a potential atherosclerotic contribution, there was no significant modifier 

effect of hypertension on hippocampal atrophy, which may provide a common neural 

pathology for the high comorbidity of T2DM with dementia as well as depression.   

 

4.1. Type 1 diabetes 

The VBM meta-analysis revealed significantly lower grey matter density in the right 

thalamus in T1DM. The significant reductions in thalamus were not seen when analysing 

childhood studies only. In support, blunted thalamic blood flow has been reported in T1DM 

(Mangia et al. 2012). There is growing interest into the neuropsychological effects of T1DM 

in both children and adults, with decrements found in IQ, attention and higher-order 

executive function (Gaudieri et al. 2008; Naguib et al. 2009). The area of the right thalamus 

identified in our meta-analysis is thought to have prominent projections to the prefrontal 

cortex with no motor connections (Oxford Thalamic Connectivity Atlas 2003), so could 

potentially be a substrate of associated cognitive deficits. Insulin receptor expression is 

particularly rich in the anterior thalamic and hypothalamic nuclei of rat brains (Bondy et al. 

1992), identifying the thalamus as an area of potential vulnerability to damage in T1DM.  

 

The effects of T1DM on cognitive impairment have been linked both with prolonged 

exposure to hyperglycemia (Musen et al. 2006) and with repeated episodes of hypoglycemia, 

though this has been disputed (DCCT et al. 2007). In our meta-analysis, the effects of 

previous hypoglycemia and hyperglycemia were mixed (Musen et al. 2006; Perantie et al. 

2011; Aye et al. 2011), but there were insufficient data to test either exposure quantitatively 

(Supplementary Table 1). .  

 

Some authors have highlighted parallels between the cerebral correlates of T1DM and those 

of depression, advancing this as evidence for shared biological mechanisms between the two 

conditions (Korczak et al. 2011). Our meta-analysis, however, suggests that this conclusion is 

not supported by the available grey matter studies of T1DM and, indeed, that distinct cerebral 

effects may be observed.  
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4.2. Type 2 diabetes 

T2DM patients have a 39% increased risk of Alzheimer’s disease and a 47% increased risk of 

all-cause dementia (Lu et al. 2009). Our meta-analysis revealed global cerebral atrophy and 

implicates the hippocampus as a target of T2DM pathology in the brain. Hippocampal 

atrophy was demonstrated at high significance and survived covarying for hypertension, 

making it unlikely that hippocampal atrophy is the result only of vascular risk factors and 

atherosclerosis. Furthermore, the difference in hippocampal volume was even more marked 

for younger patients. This probably reflects the increased contribution of factors other than 

T2DM leading to hippocampal atrophy in older patients, and thereby strengthens the 

association of hippocampal atrophy with T2DM. In rat models, it has been demonstrated that 

insulin provides significant neurotrophic support to the hippocampus, which may be impaired 

in the diabetic brain (Balakrishnan 2010).  

 

Our findings also showed lower volumes of subcortical structures in T2DM compared to 

healthy controls. In early Alzheimer’s disease, amyloid deposits have been found in the 

striatum (Klunk et al. 2007), while Alzheimer’s disease is associated with reduced putamen 

and thalamic volumes (de Jong et al. 2008). As the basal nuclei and thalamus are involved 

with emotional, motivational and cognitive abilities (Herrero et al. 2002), the shared finding 

of reduced subcortical volume in Alzheimer’s disease and in T2DM could provide further 

insight into their relationship. In our meta-analysis, only five studies did not exclude 

participants with dementia and one of these studies found that covarying for dementia did not 

modify the significant difference between T2DM and controls (Korf et al. 2006). 

 

As well as dementia, there is a well established bidirectional link between T2DM and 

depression (Ali et al. 2006; Mezuk et al. 2008). Reduced hippocampal volume has been 

consistently observed in major depression (Cole et al. 2011; Videbech and Ravnkilde 2004), 

therefore our finding of reduced hippocampal volume in T2DM may implicate a common 

pathophysiology. Deficiency of brain derived neurotrophic factor (BDNF) has been linked 

both to depression and T2DM (Karege et al. 2002; Fujinami et al. 2008), potentially via 

decrements in hippocampal function (Egan et al. 2003). Unfortunately, in our meta-analysis 

there were insufficient data to examine whether the interaction between depression and 

T2DM had a greater effect on hippocampal volume than T2DM alone. 
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Both diabetes and depression are associated with activation of the innate inflammatory 

response (Dowlati et al. 2010; Pickup and Crook 1998), and patients with depression and 

T2DM have been shown to have higher levels of inflammatory markers than patients with 

T2DM alone (Laake et al. 2014). Depressed subjects have significantly higher concentrations 

of tumour necrosis factor-α and interleukin-6 (IL-6) (Dowlati et al. 2010), and high IL-6 

levels in depression are associated with reduced hippocampal volumes (Frodl et al. 2012). In 

addition, both depression and diabetes are also associated with overactivation of the 

hypothalamic-pituitary-adrenal (HPA) axis (Stetler et al. 2011). Dysregulation of the HPA 

axis has been observed in patients who experienced childhood stress/adversity, and such 

patients are at increased risk of developing both depression and incident diabetes in adult life 

(Colman et al. 2014; Scott et al. 2011). In the brain, structural consequences of early stress 

include attenuated development of the left neocortex and hippocampus, which have a high 

density of glucocorticoid receptors (Teicher et al. 2003), while excess cortisol has been 

shown to hinder hippocampal neurogenesis (Elder et al. 2006). It is possible, therefore, that 

overactivation of the innate inflammatory response and/or HPA axis may provide a common 

link between both diabetes and depression and hippocampal atrophy.  

 

Another finding in our meta-analysis was reduced orbitofrontal cortex grey matter in T2DM. 

This area has been implicated in the regulation and modulation of cognition and mood 

(Ballmaier et al. 2004), and as a predictor of clinical outcome in depression (Fu et al. 2013), 

pointing to a potential link between T2DM and associated cognitive impairment as well as 

depressive symptomatology.   

 

Although the relationship between diabetes and depression and dementia individually is well 

established, these associations should not be considered in isolation. In T2DM, depression 

doubles the risk of incident dementia over five years (Katon et al. 2012). The risk of dementia 

was even more marked for younger patients, while cohort studies of T2DM have found that 

patients with depression are more likely to be younger (Twist et al. 2013). It is possible, 

therefore, that younger patients with T2DM – who demonstrated more marked hippocampal 

atrophy relative to older patients in our meta-analysis – are more vulnerable to the 

development of psychiatric complications such as depression and dementia, and/or to their 

detrimental effects on grey matter structure. The temporal relationship of these associations 

will require longitudinal study, and our meta-analysis identifies the relationship between 



 
13 
 

T2DM and depression as a major gap in the neuroimaging literature which requires further 

exploration. 

 

4.3. Possible cellular mechanisms  

Several molecular mechanisms have been proposed to explain the regional cerebral effects of 

diabetes, including cerebral capillary basement membrane thickening, amyloid angiopathy 

and increased rate of brain infarcts (Biessels et al. 2006).  Hyperglycaemia decreases 

vasodilatation by decreased expression of endothelial nitric oxide synthase, which in turn 

decreases cerebral blood flow (Tesfomariam et al. 1991; Williams et al. 1998). Impaired 

insulin signalling and hyperglycaemia cause increased expression and activation of NF-κB, 

which is a key player in the inflammatory cascade and a modulator of apoptosis (Sima et al. 

2009).  Chronic hyperglycemia is associated with increased advanced glycation end products, 

which may enhance inflammatory processes and oxidative stress in the cerebral vasculature 

(Brownlee 1995). The latter can also contribute to amyloid deposition and tau 

phosphorylation (Necula et al. 2004), reminiscent of the pathogenesis of Alzheimer’s disease.  

Some authors have highlighted diminished O-linked N-acetylglucosamine glycosylation (O-

GlcNAcylation) as a molecular mechanism linking diabetes and Alzheimer’s disease. A rat 

model using stroptozotocin showed down-regulation of O-GlcNAcylation and impaired 

insulin signalling (Deng et al. 2009). As decreased O-GlcNAcylation is found in Alzheimer’s 

disease and is inversely related to the phosphorylation of tau (Liu et al. 2009), subsequent 

hyperphosphorylation of tau could lead to pathology associated with Alzheimer’s disease.  

 

4.4. Limitations 

Our study was limited by a lack of data for many brain areas, in particular for T1DM. Where 

study numbers were particularly limited, the findings should be treated with caution. 

Although the lack of a modifying effect of hypertension and more marked differences seen in 

younger patients lend robustness to the hippocampal findings in T2DM, the greater number 

of studies examining the hippocampus increases the likelihood of positive findings compared 

to other brain areas. Lack of data limited the amount of covariate analysis possible, meaning 

the effect of other confounders on our findings cannot be excluded. A very small number of 

studies examined patients with potentially confounding disease processes, such as heart 

failure and arterial disease, though studies examining previous stroke were excluded 
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altogether. Although various hypotheses were examined by the included studies, the vast 

majority examined the general population with T1DM or T2DM.   

 

Our analysis was limited to grey matter changes, thereby not including the large amount of 

research on white matter changes in T2DM, which would also benefit from consolidation in 

meta-analysis. As with any meta-analysis, there is heterogeneity in the study populations and 

methods, for example with different MRI scanners and different segmentation techniques. 

The largely cross-sectional nature of our analysis makes it difficult to draw firm conclusions 

about the temporal relationship between diabetes and associated psychiatric conditions. 

However, by performing two separate meta-analyses, we were able to include 33 suitable 

studies in the analysis and, through PCM meta-analysis, to include negative results, a feature 

not possible with some other VBM analysis techniques.   

 

4.5. Conclusions 

Diabetes is associated with global cerebral deficits as well as discrete regional cortical and 

subcortical atrophy. T1DM was associated with lower VBM signal in the thalamus 

bilaterally, which may provide insight into associated cognitive deficits. T2DM was 

associated with atrophy in numerous brain areas but most strikingly in hippocampus, a 

potential link for its high comorbidity and risk for both depression and dementia. The 

mechanisms behind this may include inflammatory processes, oxidative stress and apoptosis 

as a result of aberrant insulin signalling. Further research is needed to understand these 

changes, and longitudinal research into the factors leading to grey matter loss in diabetes and 

its relationship with other psychiatric conditions is required.   
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FIGURE CAPTIONS 

 
 
Fig. 1 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow 

diagram of search strategy 

 

 

Fig. 2 

VBM meta-analysis map of T1DM (axial, sagittal and transverse cerebral views are 

presented, overlaid on MNI template). Red areas are statistically significant results (P<0.05 

FDR corrected). Significant reductions were found in left thalamus (MNI coordinates (-14, -

22, 0), z=4.46) and right thalamus (MNI coordinates (4, -16, 0), z=4.46) in T1DM compared 

to controls 

 

Fig. 3 

Forest plot of hippocampal volume in T2DM studies. Significant reduction in T2DM 

compared to controls 

 

Fig. 4 

VBM meta-analysis map of T2DM (axial, sagittal and transverse cerebral views are 

presented, overlaid on MNI template). Red areas are statistically significant results (P<0.05 

FDR corrected).  Significant reductions were found in left hippocampus (MNI coordinates (-

32, -6, -26), z=2.67) and right hippocampus (MNI coordinates (26, -6, -26), z=2.67) in T2DM 

compared to controls 

 

Supplementary Fig. 1 

Forest plot of hippocampal volume in T1DM studies. Non-significant reduction found in 

T1DM compared to controls 
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Supplementary Fig. 2 

 

Forest plots of total brain volume.   Non-significant reduction found in T1DM compared to 

controls (left) and significant reduction in T2DM compared to controls (right) 

 

Supplementary Fig. 3 

Forest plots of total grey matter volume. Non-significant reduction found in T1DM compared 

to controls (left) and significant reduction in T2DM compared to controls (right) 

 

Supplementary Fig. 4 

Forest plot of total frontal volume. Non-significant reduction found in T2DM compared to 

controls 
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Table 1: T1DM demographic and neuroimaging characteristics  
 
 
 

 
Age of patients and controls is presented as the mean age in years and standard deviation (SD). Mean duration of diabetes is presented in years. 
HbA1c: mean and SD are presented. T = Tesla; N/S = not stated.

 
 
Paper  Year 

Number of 
patients 
(male) 

Number of 
controls 
(male) 

Mean age of 
patients  

Mean age of 
controls  

Diabetes 
duration  HbA1c (%)  

Number 
receiving 
insulin 
therapy 

 
MRI magnet 
strength  

 
Image processing 
technique 

Aye  2011 27 (13) 18 (11) 7 ± 1.4 7.2 ± 1.6 3.6 ± 1.9 7.6 ± 1.0 27 1.5T Manual segmentation 

Hershey  2010 95 (52) 49 (0) 12.4 ± 2.8 12.4 ± 2.7 5.4 ± 2.8 8.3 ± 1.0 95 1.5T Automated segmentation 
Lobnig  2005 13 (9) 13 (9) 41.3 ± 1.3 38.5 ± 1.5 N/Sa 8.2 ± 0.3 13 1T Manual tracing  
Musen  2006 82 (33) 80 (2) 32.6 ± 3.2 31.3 ± 5.1 20 ± 3.6 7.8 ± 1.3 82 1.5T VBM (no modulation) 
Northam  2009 106 (54) 75 (37) 20.5 ± 4.3 21.0 ± 3.8 12 9.2 ± 1.8 106 3T VBM (no modulation) 
Perantie  2007 108(62) 51 (26) 12.6 ± 2.7 12.3 ± 2.7 5.7 ± 2.9 8.4 ± 1.0 108 1.5T VBM with modulation 
Perantie  2011 75 (48) 25 (24) 12.5 ± 2.8 12.5 ± 2.6 5.5 ± 3.3 8.6 ± 1.4 75 1.5T VBM with modulation 
Wessels  2006 31 (12) 21 (7) 40.6 ± 6.0 36.3 ± 7.9 23 ± 12 7.6 ± 1.0 31 1.5T VBM (no modulation) 
Wessels  2007 25 (10) 9 (3) 42.2 ± 4.8 40.9 ± 8.5 26.3 ± 8.5 8.0 ± 1.1 25 3T Automated segmentation 
Van Elderen  2011 51 (30) 34(17) 44 ± 11 46 ± 14 28.8 ± 7.9 7.9 ± 1.1 15 1.5T VBM with modulation 



Table 2: Key demographic, diabetes and imaging characteristics for T2DM studies 
 

 
 
Paper (1st 
author) Year 

Number of 
patients 
(male) 

Number of 
controls 
(male) 

Age of 
patients 
(mean ± 
SD) 

Age of 
controls 
(mean ± 
SD) 

Diabetes 
duration 
(years) 

HbA1c (%) 
(mean ± SD) 

Number 
receiving 
insulin 
therapy 

MRI 
magnet 
strength 
(Tesla) 

Image processing technique 

Alosco  2013 23 (12) 52 (32) 66.1 ± 6.7 69.0 ± 8.5 N/S N/S N/S 1.5T Automated segmentation 
Anan  2011 45 (26) 41 (N/S) 65.0 ± 6.6 N/S 11.1 ± 4.5 7.5 ± 1.0 0 1.5T VBM (no modulation) 
Anan  2010 43 (N/S) 41 (N/S) 65.0 ± 7.6 N/S 11.2 ± 4.3 7.5 ± 0.9 0 1.5T VBM (no modulation) 

Bruehl  2009 18 (10) 12 (8) 57.7 ± 8.2 62.3 ± 6.8 5.9 ± 3.8 8.1 ± 2.0 0 1.5T Manual tracing 
Brundel  2010 56 (27) 30 (13) 70.0 ± 5.2 68.1 ± 4.3 13.6 ± 6.8 7.1 ± 1.0 27 1.5T Automated probabilistic segmentation 
Chen  2011 16 (4) 16 (4) 61.2 ± 7.8 59.6 ± 6.1 13.2 ± 5.6 8.4 ± 1.7 N/S 1.5T VBM with modulation 
de Bresser  2010 55 (26) 28 (12) 65.9 ± 5.4 64.2 ± 4.3 9.5 ± 6.6 7.0 ± 1.1 17 1.5T Automatic probabilistic segmentation 
Den Heijer  2003 41 (27) 435 (233) 77.0 ± 8.0 73.0 ± 8.0 N/S N/S N/S 1.5T Manual tracing  
Espeland  2013 145 (0) 1221 (0) 78.1 ± 0.3 78.6 ± 0.1 N/S N/S N/S 1.5T Automated segmentation 
Gold  2007 23 (11) 23 (11) 59.2 ± 8.4 59.9 ± 8.6 6.0 ± 6.3 6.9 ± 0.8  0 1.5T VBM with modulation 
Hayashi  2011 61 (34) 53 (25) 74.0 ± 7.0 74.0 ± 5.0 16 ± 10 9.5 ± 2.1 47 1.5T VBM (no modulation) 
Hempel  2012 40 (22) 47 (24) 58.9 ± 8.5 60.0 ± 8.0 7.0 ± 6.3 7.9 ± 1.7 N/S 1.5T Manual tracing 
Jongen  2007 99 (49) 46 (20) 65.9 ± 5.6 64.9 ± 5.6 8.7 ± 6.1 6.8 ± 1.2 29 1.5T Automated probabilistic segmentation 
Kamiyama  2010 28 (14) 28 (14) 70.7 N/S 13.8 (1-25) 8.0 (5-14.4) 19 1.5T VBM (no modulation) 
Korf  2006 202 (202) 204 (204) 81.7 ± 5.1 81.3 ± 4.9 N/S N/S 10 1.5T Manual tracing  
Kumar  2008 52 (13) 25 (5) 56.7 ± 9.1 53.2 ± 9.1 10.2 ± 8.5 7.5 ± 1.4 11 1.5T Automated segmentation 
Last  2007 26 (13) 25 (13) 61.6 ± 6.6 60.4 ± 8.6 12.9 ± 11.3 7.1 ± 1.0 9 1.5T Automated segmentation 
Manor  2012 97 (52) 89 (43) 64.7 ± 7.8 65.3 ± 8.2 10.8 ± 7.9 7.1 ± 1.2  N/S 1.5T Automated segmentation 
Musen  2012 10 (7) 11(7) 56.0 ± 7.0 54.0 ± 6.0 6.1 ± 0.9 7.5 ± 0.5 5 3T Automated segmentation 
Novak  2011 71 (40) 76 (33) 65.2 ± 0.7 65.2 ± 0.7 10.5 ± 1.0 7.1 ± 0.1 15 3T Automated segmentation 
Tiehuis  2008 151 (120) 892 (705) 61.5 ± 9.6 58.1 ± 10.3 8.1 ± 7.1 N/S 50 1.5T Automated segmentation 
Watari   2008 44 (14) 22 (4) 57.5 ± 9.4 52.6 ± 8.3 10.0 ± 7.9 7.4 ± 1.4 N/S 1.5T Automated segmentation 
Yau  2010 18 (N/S) 16 (N/S) 16.5 ± 1.9 17.2 ± 1.5 N/S 8.3 ± 4.8 N/S 1.5T Automated segmentation 

 



Age of patients and controls is presented as the mean age in years and standard deviation (SD). Mean duration of diabetes is presented in years. 
HbA1c: mean and SD are presented. T = Tesla; N/S = not stated.  



 
Table 3: Volumetric meta-analysis results in T2DM 
 
 

Region studied Number 
of studies 

Hedge’s g 95% confidence 
interval: lower limit 

95% confidence 
interval: upper limit 

z-value p-value I2 heterogeneity quantifier 

Brain parenchymal fraction 2 -0.65    -0.81  -0.48       -7.77    <.0001   0 
Total brain volume 4 -0.32    -0.55  -0.094        -2.77    0.0057   36% 
Frontal lobe 6 -0.22    -0.43  0.0065         -1.90    0.057   44% 
Grey matter 8 -0.43   -0.60 -0.25       -4.75    <.0001   35% 
Hippocampus 7 -0.88    -1.36  -0.41       3.67    0.0002   86% 
Occipital lobe 3 -0.16    -0.30 -0.011 -2.11    0.035   0 
Anterior cingulated 2 -0.042    -0.45    0.37           -0.20    0.84   0 
Orbitofrontal cortex grey matter 2 -0.70    -1.10 -0.28       -3.29    0.001   0 
Parietal lobe 3 -0.20    -0.48    0.077           -1.41    0.16   58% 
Basal ganglia 3 -0.35    -0.61 0.087        -2.61    0.009 0 
Temporal lobe 4 -0.13    -0.27    0.0089         -1.84    0.067   0 
Superior temporal gyrus 3 -0.062    -0.43    0.30           -0.33    0.74   0 

 

Volumetric meta-analysis is presented as Hedge’s for each region analysed (standardised mean difference), 95% confidence interval, z-value and 
p-value, as well as the heterogeneity quantifier I2 for each area of interest. 
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Supplementary Figures 

Supplementary Figure 1 
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Supplementary Figure 2  

 
 

 
 

a) Type 1: total brain volume  b) Type 2: total brain volume 
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Supplementary Figure 3 
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Supplementary Figure 4 
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Supplementary Tables 

Supplementary Table 1: Potential confounding variables for T1DM studies 

 

Paper (first author) Year 

Corrected for 
Intra-cranial 
Volume 

Dementia 
Excluded 

Depression 
Excluded 

Stroke 
Excluded 

No. patients 
Hyper-
lipidemia 

 
 
 
No. controls 
Hyper-
lipidemia 

No. patients 
HTN 

No. controls 
HTN 

 
 
 
Previous severe or 
recurrent hypo-glycemia 
(% of T1DM group) 

Aye  2011 No No No No N/S N/S N/S N/S 29.6 

Hershey 2010 Yes Yes Yes Yes N/S N/S N/S N/S 
 
61.1 

Lobnig 2005 No Yes Yes Yes N/S N/S 10 0 
 
23.1 

Musen  2006 N/S No Yes No N/S N/S N/S N/S 
 
62.2 

Northam  2009 N/S No No Yes N/S N/S N/S N/S 
 
41.5 

Perantie 2007 N/S Yes Yes Yes N/S N/S N/S N/S 
 
61.1 

Perantie  2011 No Yes Yes Yes N/S N/S N/S N/S 
 
25.3 

Wessels. 2006 N/S Yes Yes Yes N/S N/S 0 0 
 
0 

Wessels  2007 N/S Yes Yes Yes N/S N/S 0 0 
 
0 

Van Elderen  2011 Yes No No Yes N/S N/S 0 0 

 
 
N/S 

 
Key: HTN = hypertension, N/S = not stated  
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Supplementary Table 2: Potential confounding variables for T2DM studies 

 

Paper (first author) Year 
Corrected for 
Intracranial Volume 

Dementia 
Excluded 

Depression 
Excluded 

Stroke 
Excluded 

No. patients 
Hyper-lipidemia 

No. Controls Hyper-
lipidemia 

No. patients 
HTN 

No. controls 
HTN 

Alsosco  2013 Yes Yes No Yes 18 31 21 34 

Anan  2011 N/S Yes No No 11 N/S 18 N/S 
Anan  2010 N/S Yes No No 10 N/S 16 N/S 
Bruehl  2009 Yes Yes Yes Yes N/S N/S 14 6 
Brundel  2010 No Yes Yes No 40 15 42 10 
Chen  2011 No Yes No Yes N/S N/S 6 0 
de Bresser  2010 No Yes Yes Yes 33 13 36 8 
Den Heijer  2003 Yes Yes No No N/S N/S N/S N/S 
Espeland  2013 Yes Yes No No N/S N/S N/S N/S 
Gold  2007 Yes Yes Yes Yes N/S N/S 14 3 
Hayashi  2011 N/S Yes No Yes N/S N/S N/S N/S 
Hempel  2012 Yes Yes Yes Yes N/S N/S 14 6 
Jongen  2007 No Yes Yes No 69 19 70 13 
Kamiyama  2010 N/S Yes No Yes N/S N/S N/S N/S 
Korf  2006 No No No No N/S N/S 111 84 
Kumar  2008 Yes Yes Yes Yes N/S N/S N/S N/S 
Last  2007 Yes No No Yes 10 7 8 0 
Manor  2012 Yes No No Yes N/S N/S 33 30 
Musen  2012 Yes No No No N/S N/S 5 2 
Novak  2011 Yes Yes No Yes 47 29 31 19 
Tiehuis  2008 Yes No No No 118 705 106 428 
Watari  2008 No Yes No Yes N/S N/S 14 4 
Yau  2010 No Yes Yes Yes N/S N/S 5 4 

 
Key: HTN = hypertension, N/S = not stated 
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Supplementary Table 3: Volumetric meta-analysis results in T1DM 
 
 

Region studied Number of 
Studies 

Hedge’s g 95% confidence interval: 
lower limit 

95% confidence interval: 
upper limit 

z-value p-value I2 heterogeneity 
quantifier 

Total brain 
volume 

2 -0.71 -1.67 0.25 -1.45    0.15   76% 

Grey matter 3 -0.035    -0.54 0.47           -0.13    0.89   69% 
Hippocampus 3 -0.046    -0.32   0.23           -0.32    0.75   0 

 
 

 
Volumetric meta-analysis is presented as Hedge’s for each region analysed (standardised mean difference), 95% confidence interval, z-value and 
p-value, as well as the heterogeneity quantifier I2 for each area of interest. 
 

 


