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Abstract—This study investigates the potential advantages
of employing computer vision algorithms to enhance real-time
accident detection and response on highways using CCTV feed.
Traditional techniques rely on retrospective data, which can de-
crease response times and precision. Computer vision algorithms
have the potential to enhance detection speed and precision,
resulting in quicker emergency response and monitoring of traffic
flow. The primary objective of this study is to identify the
advantages of utilising computer vision algorithms and the data
gathered through them to enhance road safety measures and
reduce the occurrence of accidents. This study is anticipated to
result in quicker emergency response times, the identification
of areas where statistically more accidents are likely to occur,
and the use of collected data for research purposes, which can
lead to enhanced road safety measures. Using computer vision
algorithms for accident detection and response has the potential
to reduce the human and monetary costs associated with traffic
accidents.

Index Terms—Real-time accident detection, Computer vision,
Object detection, Traffic monitoring, Road safety, Emergency
response

I. INTRODUCTION

Road incidents are a significant risk to human life and have a
substantial economic impact globally. According to the World
Health Organisation [1], each year, 1.35 million people are
killed and 50 million are injured in road accidents. These
accidents also result in economic losses estimated between
1 and 3 percent of a country’s GDP [2]. Traditional accident
detection methods rely on retrospective data analysis, leading
to delayed response times and less accuracy [3].

The current method of accident detection relies on software
programs like PC-CRASH and analysis of past accidents
using data from police reports and eyewitness accounts [3].
This retrospective approach causes delays in alerting first
responders and may lead to missed opportunities to save lives.
Additionally, relying on human reporting introduces further
delays and potential inaccuracies in the data collected [3].

To overcome these challenges and improve accident de-
tection and response, computer vision algorithms, specifically
object detection, have been proposed [4]. By analyzing real-
time video feeds from traffic cameras using computer vision,
accidents can be detected as they happen, enabling prompt
alerts to first responders [4].

Using computer vision algorithms for accident detection
offers several benefits. It enables real-time identification of
incidents, leading to faster emergency response and potential
life-saving interventions [4]. Additionally, computer vision can
monitor traffic flow and identify accident-prone areas, allowing
for targeted road safety measures [4]. Lastly, the data collected
through computer vision provides valuable research material
for identifying patterns and factors contributing to accidents,
aiding in the development of evidence-based accident preven-
tion strategies [4].

II. LITERATURE REVIEW

A. Sensors vs Machine Learning: A Comparison for Accident
Detection

Haria et al. [5] propose a system based on ultrasonic and
vibration sensors for collision prevention and detection. The
system detects obstacles, reduces vehicle speed, and sends an
SOS signal in case of a collision. However, it has limitations
such as difficulty distinguishing between genuine obstacles
and false positives and being ineffective in adverse weather
conditions.

Almaadeed et al. [6] present an audio-based road hazard
detection method using quadratic time-frequency distributions
(QTFDs). Their method improves accuracy compared to other
approaches, but lacks information about the dataset used and
computational resource requirements, limiting its evaluation
and practical feasibility.

Ohgushi et al. [7] propose dash-mounted vehicle cameras
for collision identification but face the challenge of lengthy
processing time for photographs. These studies demonstrate



different approaches to accident detection, including machine
learning, audio surveillance, and video analysis. However, they
have limitations such as being limited to specific scenarios, not
considering environmental factors, and using small datasets
that may impact applicability to larger and diverse datasets.

Additionally, ethical implications of using machine learning
models for accident detection, such as privacy concerns and
potential misuse, are not thoroughly explored in these studies.

To advance the field, further research should address these
limitations by using representative datasets, considering envi-
ronmental factors, and carefully examining the ethical impli-
cations of implementing machine learning models for accident
detection.

B. The Problem of Data Availability: Challenges and Solu-
tions

Batanina et al. [8] address the challenge of limited crash
video data by adapting video game scenes to CCTV footage.
They use video games to generate car crash scenes for training
a 3D CNN-based deep model. The study shows improved
accuracy by leveraging synthetic video data, although there
is a domain gap between synthetic and real videos that can
impact the model’s performance.

Maaloul et al. [9] propose a model for car accident detec-
tion focusing on motion detection, feature extraction, feature
analysis, and accident recognition. Their model achieves a
high recall rate and specializes in detecting roadside vehicle
anomalies in a one-way traffic scenario. The model utilizes
optical flow, noise, and statistical analysis to capture various
traffic conditions and outperforms other methods.

Both studies contribute to car accident detection using dif-
ferent approaches. Batanina et al. [8] leverage synthetic data to
enhance the model’s performance on real-world footage, while
Maaloul et al. [9] focus on motion detection and statistical
analysis. These studies demonstrate the potential of machine
learning techniques in improving car accident detection and
highlight the importance of addressing challenges such as data
availability and domain adaptation for real-world scenarios.

C. Enhancing Accuracy

Chen et al. [10] address the difficulties associated with
traffic accident detection, including the construction of be-
havioural representations in congested environments and the
localization of the accident region based on these represen-
tations. To address the first difficulty, the authors propose
collision prediction by employing the target variable ”the last
second before collision” and introducing OF-SIFT, a temporal
feature descriptor derived from optical flow. This method
permits the construction of a more compact image represen-
tation capable of handling partial occlusion and independent
of explicit shape structure.

Chen et al. [10] propose the use of the extreme learning
machine (ELM) algorithm as the classifier for traffic accident
detection for the second challenge. The ELM algorithm has
an advantage over conventional methods like the Bayesian
Probability Framework because it does not require prior

knowledge about vehicle behaviour. This adaptability is a
major asset of the ELM algorithm. In addition, prior research
has demonstrated that ELM outperforms other classifiers in
classification tasks [11] [12] [13].

Chen et al. [10] contribute to the enhancement of exist-
ing methods for traffic accident detection by resolving both
obstacles. Their approach to collision prediction and use of
the ELM algorithm as a classifier offer promising avenues for
improving the precision of traffic accident detection systems.

D. Neural Networks: An Overview of Principles and Applica-
tions

Singh and Mohan [14] propose a framework for detecting
road accidents using denoising autoencoders and unsupervised
models. Their approach shows the superiority of convolutional
autoencoders over hand-crafted features-based methods. How-
ever, the reliance on trajectory intersection points and the use
of an unsupervised model may limit its applicability in certain
situations.

Ijjin and Sharma [15] introduce a deformable deep convolu-
tional neural network for generic object detection. Their pre-
training strategy and the novel deformation-constrained pool-
ing layer yield improved performance compared to previous
methods. However, the selective search method for generating
bounding boxes and potential inefficiency with large-scale
datasets could be drawbacks.

Wu et al. [16] address the issue of gradient contribu-
tion imbalance in object detection training by proposing the
gradient-balanced focal loss (GBFL). GBFL achieves a bal-
ance between foreground and background samples, leading
to enhanced accuracy and convergence speed. Their findings
demonstrate the superiority of GBFL over other state-of-the-
art loss functions. However, the limitations of the proposed
technique are not explicitly discussed.

Although these studies offer novel approaches to object
detection and accident detection, there are limitations and
scalability concerns that need to be addressed for practical
application and scalability. Further research and investigation
are required to optimize these methods and overcome their
limitations in order to contribute to the development of more
accurate and efficient object detection models.

E. Evaluating the Performance of Object Detection Models

Girshick et al. [17] developed a simple and scalable design
for object detection, achieving a groundbreaking mean average
precision (mAP) of 53.3%. They focused on object localization
using a deep neural network and trained their models with
annotated detection data. Their method, ”R-CNN Regions with
CNN Features,” employed region proposals, feature extraction
with a convolutional neural network, and classification with a
linear support vector machine, resulting in precise localization.
They also utilized a two-step training strategy to address
the issue of insufficient training data, leading to improved
accuracy.

Tan et al. [18] conducted a study comparing three object
detection algorithms: Faster R-CNN, SSD, and YOLO. They



created a dataset of oral solid dosage forms and evaluated the
algorithms based on factors such as MAP score and detection
speed. Faster R-CNN achieved the highest MAP score of 87.69
but had a slower detection speed of 7 FPS. YOLO had a faster
detection speed of 51 FPS, making it suitable for real-time
applications, while offering a satisfactory MAP score. SSD
provided a moderate trade-off between detection speed and
accuracy.

In conclusion, Girshick et al. [17] made significant contri-
butions to object detection by improving mAP and developing
efficient training strategies. Tan et al. [18] compared object
detection algorithms and found that Faster R-CNN excelled
in pinpointing objects with higher MAP scores, while YOLO
performed well in real-time scenarios with faster detection
speeds.

F. Human Detection

Human detection is a significant area in computer vision,
and researchers have developed various methods to address
the challenges associated with detecting humans in different
poses, postures, sizes, colors, and shapes.

One notable method proposed by Dalal and Triggs [19] is
the Histogram of Oriented Gradients (HOG) approach. They
compared the performance of wavelets to HOG and found that
HOG achieved better results. The HOG approach characterizes
the outline of an object based on the distribution of local
intensity gradients in an image. The image is divided into small
regions called cells, and each cell forms a one-dimensional
gradient histogram. The authors observed that larger cells,
referred to as blocks, improved accuracy. These blocks are
combined with a linear SVM classifier to create the human
detection chain.

The HOG approach offers advantages by accurately captur-
ing the edges of an image’s shape. It incorporates fine ori-
entation sampling and strong local photometric normalization,
which handle variations in appearance and orientation. The
HOG method has been widely employed in computer vision
tasks such as face detection, pedestrian detection, and object
recognition. Additionally, it has shown promising results in
autonomous vehicles for detecting and tracking objects on the
road.

G. Motor Lane Detection

Lane detection is a crucial application of object detec-
tion, with model-based and feature-based approaches being
commonly used. Wang et al. [20] proposed a model-based
algorithm based on the parabola model, while feature-based
approaches involve extracting features like edges or lines and
using techniques such as the Hough transform or Sobel edge
detector.

The Hough transform shows promise in real-time lane
detection but requires substantial computational power and can
be affected by other objects in the image. The Sobel edge
detector is a simpler and faster algorithm suitable for real-
time applications but may be sensitive to noise and require
additional preprocessing.

Ozgunalp and Kaymak [21] introduced a feature-based
approach that reduces computational complexity by focusing
on relevant image regions. Their method utilizes Canny edge
detection and Hough transforms with geometric filtering to
enhance accuracy.

Parajuli, Celenk, and Riley [22] proposed a method based
on the vertical gradient of images, which is robust against
horizontal shadows and does not require thresholding. This
approach is immune to environmental and lighting conditions.

Both the feature-based approach by Ozgunalp and Kaymak
[21] and the vertical gradient-based method by Parajuli, Ce-
lenk, and Riley [22] have their strengths and weaknesses in
terms of accuracy, computational complexity, and robustness
to environmental conditions.

To improve road safety, it is suggested to collect and an-
notate a large image dataset from various sources, preprocess
the data, and train object recognition and classification models
using the YOLO framework with the help of Roboflow. The
models can be evaluated using accuracy metrics, considering
weather and lighting conditions. However, ethical and bias
concerns related to machine learning for car crash detection
should be addressed, and further research is needed for acci-
dent detection and prevention to enhance road safety.

III. METHODOLOGY

Fig. 1. Architecture of the proposed system

A. Convolutional Neural Network

Convolutional Neural Networks (CNNs) have revolutionized
computer vision and image processing due to their exceptional
performance in various applications. CNNs consist of different
layers, including convolutional layers, pooling layers, and fully
connected layers, which extract high-level features from input
images using learned filters [23].

CNNs, also known as shift invariant or space invariant
artificial neural networks, utilize convolution kernels or filters
that slide across input features to generate feature maps. This
shared-weight architecture allows CNNs to recognize features
in different regions of the input image, making them efficient
in processing complex image data [24].

Compared to other deep learning architectures, CNNs have
several advantages. They require fewer parameters while



achieving better results in tasks such as image and speech
recognition [25]. CNNs can learn complex features from
images, enabling applications in object detection, image pro-
cessing, computer vision, and face recognition [26].

B. The YOLO (You Only Look Once) Algorithm

The YOLO (You Only Look Once) algorithm is a popular
CNN object detection and image segmentation model in com-
puter vision [27]. It follows a single-stage detection approach,
directly predicting bounding boxes and class probabilities for
all objects in an input image.

1) The YOLO (You Only Look Once) Architecture: The
YOLO architecture consists of a backbone network for feature
extraction, a detection head for prediction, and post-processing
steps for removing duplicate detections using non-maximum
suppression.

The working principle of YOLO involves passing an in-
put image through the neural network to generate feature
maps, which are used to predict bounding boxes and class
probabilities. The YOLO model is simple and follows three
steps: resizing the image, running a convolutional network,
and thresholding the resulting detections [27].

The YOLO framework treats object detection as a regres-
sion problem, dividing the image into a grid and predicting
bounding boxes, confidence scores, and class probabilities for
each grid cell. It excels at understanding the overall context
of the image and avoids mistaking background patches for
objects [28].

C. Yolo v5 Model Architecture

1) Simple Pipeline: The YOLO model follows a refresh-
ingly simple and straightforward pipeline, consisting of the
following three steps:

1) Resizing the input image to 448 × 448.
2) Running a single convolutional network on the image.
3) Thresholding the resulting detections by the model’s

confidence.

Fig. 2. YOLO simple pipeline. [29]

Fig. 3. YOLO Feature Extractor. [29]

2) YOLO Feature Extractor: Input images of size 448 ×
448 (3 channels) are processed using YOLO’s 24 convolutional
layers, resulting in feature maps of size 7 × 7 with 1024
channels (see Figure 3).

In other words, YOLO divides the input image into 1024-
dimensional vectors contained within a 7 × 7 grid.

3) YOLO Object Detection: YOLO treats object detection
as a regression problem by dividing the image into an S
× S grid. For each grid cell, it predicts B bounding boxes,
confidence scores for those boxes, and C class probabilities.
These predictions are encoded as an S × S × (B × 5 + C)
tensor (see Figure 4).

Fig. 4. YOLO Object Detection. [29]

This approach ensures that YOLO’s detector understands
the entire image and selects the right features, leading to fewer
mistakes about the background compared to previous methods
(see Figure 5).

Fig. 5. Context understanding in YOLO Object Detection. [29]

The final fully connected layer generates a 1470-
dimensional vector, which can be understood as a 7 × 7 ×
30 tensor of predictions (see Figure 6).



Fig. 6. YOLO Object Detection - 1470-dimensional vector layout. [29]

At first glance, the layout may seem confusing, but upon
closer inspection, it consists of 49 different value sets, corre-
sponding to the 49 grid cells (7 × 7) in the image. Each cell
contains 30 values (1470 divided by 49), enabling YOLO to
handle the 1470-dimensional vector as a 7 × 7 × 30 tensor
of predictions.

4) Limitations: While YOLO offers advantages in terms of
speed and accuracy, it also has limitations. It may struggle with
generalizing objects, localizing small objects, and imposing
spatial constraints on bounding boxes [27]. YOLO also has
a steep learning curve and may require high-end technology
for real-time applications [30]. Researchers have proposed
variations of YOLO to address these limitations.

D. Data-set Description

The dataset used in this investigation was sourced from the
Roboflow Universe, which is a collection of open-source com-
puter vision datasets and APIs (Roboflow). The dataset con-
sists of 3,221 images categorized into accidents and damage.
These images were annotated using the YOLO V5 PyTorch
file format, with bounding boxes drawn around indications
of accidents within each image. The dataset was divided into
train, test, and validation folders (Roboflow).

1) Annotation Process: The annotation process was made
more efficient with the use of the Roboflow annotation tool.
This tool simplifies the addition of machine learning-related
annotations to images by providing a user-friendly interface
and annotation options such as bounding boxes, polygons, and
semantic segmentation masks. The annotations were recorded
in XML files compatible with popular deep learning frame-
works like TensorFlow and PyTorch.

The Roboflow annotation tool offers several advantages,
including ease of use, speed, flexibility, and accuracy. It
streamlines the annotation process, allows for efficient anno-
tation of multiple photos simultaneously, and provides various
annotation options to meet specific requirements. The tool also
includes features like zooming to focus annotations on specific
image regions.

Bounding boxes and polygons are two commonly used
annotation types in computer vision. Bounding boxes involve
drawing rectangular boxes around objects or regions of inter-
est, providing simplicity and productivity. However, they may
lack accuracy and may not capture fine details accurately. On
the other hand, polygons offer higher precision as they capture
the shape and details of objects or regions more accurately.
However, polygon annotation can be more time-consuming
[29].

The choice between bounding boxes and polygons depends
on the specific application’s requirements and the desired level
of precision. Bounding boxes may be suitable for simpler

objects or regions, while polygons may be necessary for more
complex ones [29].

E. Model Training Testing and Validation

In the training phase, the YOLO method utilizing con-
volutional neural networks (CNNs) was applied to train the
model. The training data were stored in the ”training” folder on
Google Drive, and the YOLO method allowed for fast image
processing with a single forward pass.

After training, the model was tested using a separate dataset
to evaluate its accuracy. The testing data were uploaded to the
”testing” folder on Google Drive, and OpenCV was utilized
to process and test the model on this data. OpenCV is a
popular computer vision library that offers various tools for
image and video analysis. In this investigation, the trained
model was applied to real-time car accident videos captured
using OpenCV, enabling the identification and categorization
of objects of interest.

Following the testing phase, the model underwent validation
to ensure its accuracy. The validation data were transferred to
the ”validating” folder on Google Drive, and the model’s accu-
racy was evaluated using the Pandas and Matplotlib libraries.
Pandas is a powerful tool for data analysis and manipulation,
while Matplotlib provides visualization capabilities.

During the analysis phase, the accuracy score of the trained
model was examined. The accuracy score represents the ratio
of correct detections to the total number of detections. Mat-
plotlib was employed to visualize the results of the analysis,
offering a clear and concise representation of the accuracy
score.

IV. RESULTS

The model was evaluated in terms of accuracy, precision,
recall, and Area under the curve (AUC) metrics . The results of
the experiments are visualized using tables, figures, and plots
where appropriate.

A. Confusion Matrix

This confusion matrix illustrates the performance of a clas-
sifier trained to classify instances into three classes: ”accident,”
”damage,” and ”background.” The rows of the matrix represent
the instances’ actual class labels, while the columns represent
the predicted class labels.

Fig. 7 shows the result of the confusion matrix, The clas-
sifier accurately identified 76% of instances belonging to the
”accident” class (true positives), indicating a relatively high
accuracy in detecting accidents. However, there were 17% of
instances from the ”accident” class that were misclassified
as ”damage” (false negatives), suggesting some difficulty in
distinguishing between these two classes. On the other hand,
the classifier demonstrated good performance in recognizing
instances from the ”background” class, with 78% of instances
correctly classified as such (true negatives). However, there
were some instances that were misclassified, with 21% of
instances from the ”background” class being misclassified as



Fig. 7. Confusion Matrix

”accident” (false positives) and 15% as ”damage” (false pos-
itives). Additionally, there were instances where the classifier
showed confusion between the ”damage” and ”background”
classes, with 2% of instances classified as ”damage” actually
belonging to the ”accident” class (false positives) and 22%
of instances classified as ”damage” belonging to the ”back-
ground” class (false positives). Overall, while the classifier
demonstrated reasonable performance in detecting accidents
and backgrounds, there is room for improvement in accurately
distinguishing between accidents and damages, as well as
properly classifying certain instances from the background
class.

B. F1 Precision and Recall

The F1 score is a widely used metric for evaluating the per-
formance of classification models. It combines precision and
recall to provide a harmonic mean that assesses the model’s
ability to balance accurate positive predictions with capturing
all actual positive cases. The F1 score helps determine the
optimal confidence threshold for achieving a desired trade-
off between precision and recall. In the provided figure, an
F1 score of 0.67 suggests reasonable model performance with
room for improvement. Precision is defined as the ratio of
true positives to the sum of true positives and false positives,
highlighting the model’s accuracy in positive predictions. The
precision-recall curve demonstrates the relationship between
precision and recall at different classification thresholds. In the
precision graph, recall is on the x-axis, precision on the y-axis,
and accuracy is the positive predictive value. The graph shows
increasing recall but decreasing precision, indicating the trade-
off between accurately capturing positive cases and producing
more outcomes. The precision-recall curve is particularly
useful in object detection tasks, where object identification

performance metrics such as mean average precision (mAP)
are derived by averaging the maximum precision values at
each recall level. The provided mAP value of 0.718 suggests
accurate object detection, but there is room for improvement
by adjusting the threshold. It is important to note that small
threshold changes at precision-recall stages can significantly
impact accuracy while slightly affecting recall.

Fig. 8. F1 Confidence Curve

Fig. 9. Precision Recall Curve

C. Box Regression Loss (train/box_loss):
The box regression loss measures the model’s ability to

predict object location and size. A high box regression loss
indicates difficulty in accurate predictions, while a decreasing
loss value during training, from 1.6368 at epoch 1 to 0.79742
at epoch 100, indicates improved performance in predicting
bounding box coordinates.

D. Classification Loss (train/cls_loss):
The classification loss evaluates the model’s accuracy in

predicting object class probabilities. A lower classification loss
indicates improved performance in image classification. The
loss decreases from 2.935 at epoch 1 to 0.64938 at epoch 99,
showing enhancement in class probability predictions.



E. Deformable Convolution Layers (train/dfl_loss):

This loss measures the error in deformable convolution
layers, which help detect objects of varying scales and as-
pect ratios. Lower dfl loss signifies better handling of object
deformations and appearance variations. The loss decreases
from 1.8467 to 1.1949, indicating improved performance in
handling object variations.

Fig. 10. Performance Metrics

F. Recall

Recall, also known as sensitivity or true positive rate, mea-
sures the model’s ability to correctly identify relevant instances
of the target class. The recall value improves from 0.30843 at
epoch 0 to 0.61539 at epoch 99, indicating increased detection
of ground-truth objects. The false positive rate decreases from
69.16% to 38.46% over the epochs, suggesting improved
object classification.

Algorithm Precision Recall F1 MAP FPS
YOLO v3 69.13 80.19 70.14 80.17 51
Faster R-CNN 62.19 94.24 78.23 87.69 7
SSD 63.17 88.69 72.13 82.41 32

V. CONCLUSION AND FUTURE WORK

In conclusion, the developed accident detection model based
on the YOLO framework demonstrates the capability to detect
car accidents or damages in real time. The model has the
potential to speed up emergency response and enhance traffic
monitoring, leading to safer roads and reduced traffic accident
costs. Additionally, the model can be applied to identify
traffic flow patterns and trends, contributing to improved road
design. The utilization of machine learning models for real-
time accident detection can accelerate emergency response and
mitigate the severity of injuries. Moreover, computer vision
data can aid in identifying unsafe driving behaviors such as
speeding and distracted driving, facilitating driver education
and traffic enforcement.

In terms of future work, there are several areas for further
development of the accident detection model. Firstly, efforts
can be directed towards improving the model’s ability to
detect potential risks and more complex accidents. Training the
model on video recordings of traffic, various types of vehicles,
and road infrastructure can enhance its capabilities. This would

enable the model to detect incidents in real time, resulting in
quicker response times and potential lives saved.

Training the model on diverse traffic scenarios, including
different types of vehicles such as trams, bikes, and trains,
can enhance its accuracy and enable the identification of colli-
sions involving multiple forms of transportation. Incorporating
different road infrastructure elements like signs, poles, and
roundabouts can provide a deeper understanding of accident
causation factors and enhance accident detection. Moreover,
training the model on datasets depicting close proximity
between vehicles can enable the identification of potential
dangers before they escalate into actual accidents, contributing
to overall road safety.

Expanding the model’s recognition capabilities to include
pedestrians and cyclists in addition to vehicles can further
enhance safety measures and improve accident detection in-
volving vulnerable road users. Additionally, training the model
to recognize crashes involving multiple vehicles can provide
a more comprehensive picture of road safety and enable the
detection of more complex events.

In application, the accident detection model can be utilized
in various contexts, including traffic management systems,
public transit services, and private vehicles. It can aid in real-
time traffic flow monitoring and identification of incidents
that may cause congestion or delays in traffic management
systems. Public transport services can benefit from the model
by detecting accidents on their routes and notifying drivers to
take alternative routes. Integrating the model into dashcams
and onboard systems of private vehicles can provide collision
detection warnings to drivers or alert emergency services.
Moreover, smart cities can leverage the accident detection
model to monitor accident-prone areas and inform city officials
for infrastructure improvements such as speed cameras or
street lighting. The model can also contribute to workplace
safety by analyzing camera feeds from manufacturing and
construction sites to detect accidents and notify safety officers
or emergency services.

In summary, the accident detection model demonstrates its
applicability in various settings and can contribute to real-time
accident detection, improved road safety, efficient traffic flow,
and accident research. Further advancements and applications
of the model have the potential to save lives, enhance overall
road safety, and reduce the impact of accidents.
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