
Ad Hoc Networks 134 (2022) 102877

A
1

Contents lists available at ScienceDirect

AdHoc Networks

journal homepage: www.elsevier.com/locate/adhoc

Confidence interval estimation for fingerprint-based indoor localization
Mohammad Nabati a, Seyed Ali Ghorashi b,a,∗, Reza Shahbazian c

a Cognitive Telecommunication Research Group, Department of Telecommunications, Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
b School of Architecture, Computing and Engineering, University of East London, E16 2RD London, UK
c Department of Electrical Engineering, Faculty of Technology and Engineering, Standard Research Institute, Alborz, Iran

A R T I C L E I N F O

Keywords:
Fingerprint-based localization
Gaussian process regression
Minimum variance unbiased
Cramer–Rao lower bound

A B S T R A C T

Fingerprint-based localization methods provide high accuracy location estimation, which use machine learning
algorithms to recognize the statistical patterns of collected data. In these methods, the users’ locations can be
estimated based on the received signal strength vectors from some transmitters. However, the data collection
is a labor-intensive phase, and the collected data should be updated periodically. Many researchers have
contributed to reducing this cost. The easiest way to remove the data collection cost is to use fingerprints
generated by the model-based approaches, in which the trained machine learning algorithm can be updated
based on the environment changes. Probabilistic-based localization algorithms, in addition to the user location,
can estimate a region of interest called 2𝜎 confidence interval in which the probability of user presence is 95%.
Gaussian process regression (GPR) is a probabilistic method that can be used to achieve this goal. However,
conventional GPR (CGPR) cannot accurately estimate the confidence interval when noise-free fingerprints
generated by the model-based approaches are used in the training phase. In this paper, we propose a novel GPR-
based localization algorithm, named enhanced GPR (EGPR), which improves the accuracy level of confidence
interval estimation compared to the existing methods while fixing the level of computational complexity in
the online phase. We also theoretically prove that GPR-based algorithms are minimum variance unbiased
and efficient estimators. Experiments under line-of-sight and non-line-of-sight conditions demonstrate the
superiority of our proposed method over counterparts in terms of accuracy as well as applicability in real-time
localization systems.
1. Introduction

Recently, indoor location-based services have attracted a fair
amount of attention in a wide variety of applications [1,2]. Available
services that use the global positioning system can be employed for
most of the application requirements. However, such methods do not
provide high accuracy performance in indoor environments due to the
limited coverage of satellites and non-line-of-sight (NLOS) errors [3,4].
Satellite-based methods regularly use ranging information that can be
obtained from techniques such as time of arrival (TOA), angle of arrival
(AOA), and received signal strength (RSS) [2].

The time of transferred signals are measured in TOA based meth-
ods [5,6], and the distance between transmitter and receiver can be
calculated by multiplying the measurement time and the speed of
light [7]. AOA can be calculated by antenna arrays [8], however,
even in modern smartphones, the number of antennas is still less
than three, and it is hard to measure the angles information. Ranging
information can also be extracted via RSS by using the path-loss model.
Among these, the RSS is still a well-known method to acquire the dis-
tance between the transmitter and receiver, since it does not implicate
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hardware complexities [1]. After calculating the distance between the
transmitters and a receiver, the trilateration or triangulation methods
can estimate the users’ location. The main concern about the ranging
information is that it suffers from NLOS error [3].

Fingerprint-based localization is one of the most popular and ef-
fective methods to provide high accuracy, since it considers the NLOS
conditions during the data collection phase [3]. The localization pro-
cess in this method is divided into two phases: training (offline) and
test (online). In the training phase, fingerprints of located base stations
(BSs) such as RSS or channel state information (CSI) in some known
locations – called reference points (RPs) – are gathered and saved
in a database. These BSs are also known as access points (APs) in
the literature [9]. Some of the most frequently used signals are Wi-
Fi [10,11], Bluetooth [12], ZigBee [13], and light [14]. Among these,
Wi-Fi is the most popular one [15,16] because of its accessibility in
most environments, including offices, buildings, shopping malls, and
museums [17]. Also, most of the portable devices provide this standard
communication technology [1,3]. After the training phase, the trained
model can map the online (test) RSS or CSI data to location coordinates.
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Recently, researchers propose to use the CSI as fingerprints of
RPs for accuracy enhancement of location estimation [18,19]. CSI is
stable [19] and provides more information than RSS [18]; however,
measuring this information needs special network interface controllers
and software tools [1,20]. Thus, the RSS is still the preferred solution,
especially when it comes to practical aspects of popular applications.
Fingerprint-based localization methods can be non-probabilistic such as
𝑘-nearest neighbors (KNN) [3], support vector regression (SVR) [21]
or can be probabilistic-based ones such as Gaussian process regres-
sion (GPR) [22], KL divergence [23], and expectation–maximization
(EM) [24]. In probabilistic methods, besides the location estimation,
it is possible to compute the confidence interval [25] and Cramer–Rao
lower bound (CRLB) [22] to be used in realistic applications and to
determine the theoretical accuracy, respectively.

The data collection phase is labor-intensive, and many researchers
have contributed to solve this issue. The synthetic noise-free finger-
prints generated by model-based approaches (i.e., path-loss model) can
be used to remove the data collection in the offline phase. Unlike the
obtained distances by path-loss model for trilateration or triangulation
methods [3], the NLOS condition can be detected in the offline phase
for generating synthetic fingerprints. In the online phase of localization,
the RSS samples suffer from small-scale fading and shadowing effects.
The small-scale fading can be removed by averaging out the RSS
samples; however, the shadowing noise cannot easily be alleviated.
Therefore, the shadowing noise remains in the online phase.

Conventional GPR (CGPR) cannot accurately estimate the confi-
dence interval for synthetic noise-free fingerprints. In this paper, we
propose a GPR-based algorithm called enhanced GPR (EGPR) to in-
tensify the accuracy level in estimating the confidence interval. EGPR
consists of two optimization and tuning parts to estimate the 2𝜎 confi-
dence interval more accurately. Besides, most of the existing works do
not consider the theoretical analysis of their proposed methods. Here,
we demonstrate that a GPR-based algorithm is a minimum variance
unbiased (MVU) and an efficient estimator. It means that the prac-
tical accuracy can reach the CRLB. To the best of our knowledge in
fingerprint-based localization, this is the first time that it is proven
whether the practical accuracy can reach the theoretical bound (CRLB)
or not. To summarize, the main contributions of this paper can be listed
as follows:

• We propose a Gaussian process regression-based algorithm,
named EGPR, to increase the accuracy of the confidence interval
estimation.

• We demonstrate that a Gaussian process regression-based algo-
rithm is MVU and efficient.

• We provide a complexity analysis for the proposed EGPR algo-
rithm and demonstrate that its complexity at the test (online)
phase is the same as CGPR.

The rest of this paper is organized as follows: In Section 2, the
elated works are described. In Section 3 the system model and pro-
posed localization algorithm are described in detail. Theoretical and
complexity analysis is provided in Section 4. Experimental results
and corresponding discussions are presented in Section 5, and finally,
Section 6 concludes the paper.

In this paper we use lower-case letters to denote scalars (e.g., 𝑎),
boldface lower-case letters for vectors (e.g., 𝐚), and boldface capital
letters to present matrices (e.g., 𝐀). Moreover, 𝑎𝑖 shows the 𝑖th element
of vector 𝐚 and 𝑎𝑖𝑗 denotes the element within the 𝑖th row and 𝑗th
column of matrix 𝐀. Also 𝐚𝑖 shows the 𝑖th row of matrix 𝐀. The symbols
( .̃ ) and ( .̂ ) are used to indicate the train and test data, respectively.

2. Related works

Although several accurate algorithms for fingerprint-based indoor
localization are proposed in the literature, most of them are not yet
2

appropriate for practical scenarios due to their critical need for costly
data-gathering processes in the training phase and high level of com-
plexity.

In [22], the researchers tried to remove the need for data gathering
step in the training phase by generating synthetic simulated data using
a model-based approach (i.e., path-loss model). They found that con-
ventional GPR (CGPR) cannot reliably estimate the confidence interval
for this noise-free training phase. Therefore, they proposed a numerical
approximation GPR (NaGPR) algorithm, which significantly increases
the computational complexity at the online phase of localization. Au-
thors in [26] used generative adversarial networks (GANs) to generate
massive synthetic training data out of a small set of really gathered
data for the cases in which limited training data is available. However,
this technique forces a considerable computational cost at the training
phase due to the usage of GANs for each class, separately. Authors
in [24] used supporting sets that are subsets of available fingerprints
similar to the test samples and a probabilistic-based EM algorithm
estimates the users’ locations. The proposed method forces a high
calculation cost to the localization process, since the EM algorithm
is implemented in the test (online) phase. Also, the ability of EM to
estimate the confidence interval is not considered by [24]. In [10],
the authors proposed a localization method that employs the GPR
to learn the distribution of available fingerprints. Then, the obtained
distribution is used for generating synthetic training data to be added
to existing gathered training data, and weighted KNN is then used for
location estimation procedure. However, the confidence interval cannot
be estimated in this method due to the nature of the implemented tech-
nique. Authors in [27] proposed a crowdsourcing-based probabilistic
approach in which active participants in unfixed data points update
the available dataset. The proposed method needs at least a robot to
move in known track lines of the environment, and this forces huge
equipment costs in the offline phase. Also, the crowdsourcing-based
algorithms cannot guarantee the desired performance as the gathered
data are very noisy, and this leads to inaccurate relations between RSS
vectors and locations [28].

When localization systems are supposed to be implemented on the
user side (mostly because of privacy reasons), NaGPR is no longer
feasible due to its computational complexity in the test (online) phase,
whereas, our proposed EGPR algorithm does not increase the complex-
ity in the test phase, as can be seen in Section 4.

3. System model

In this section, we describe the underlying architecture of the
proposed EGPR-based localization, which can be used to estimate the
confidence interval accurately.

3.1. Preliminaries

RSS fingerprint-based methods measure and store the received sig-
nal strength (called fingerprint) from APs in specific coordinates called
reference points (RPs), as depicted in Fig. 1. These RSS vectors are used
in the offline phase of the localization process. Among the fingerprint-
based algorithms, the probabilistic ones can estimate 2𝜎 confidence
interval in addition to the coordinates themselves. The 2𝜎 confidence
interval shows a region in which the user is located with a probability
of 95%.

Two types of fingerprints are used for the training phase, including
noise-free and real noisy fingerprints. The real noisy fingerprint is
one that we measure in a real environment. Although this scenario
considers all complexities of the indoor area, it is labor-intensive, and
the collected fingerprints need to be updated periodically due to the
environment changes or displacement of access points [29]. Small-
scale fading and shadowing noise are the main concerns in real data
gathering scenario [22]. To mitigate the small-scale fading effect, we
can average out the RSS samples obtained from multiple times [30],

while the shadowing noise is space-dependent and the spatial averaging
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Fig. 1. Schematic of fingerprint-based localization in which the RSS vectors received
from APs (dBm) are recorded at RPs in the offline phase.

is needed to reduce the effect of this noise. The spatial averaging is
impossible for the test phase because the test location is not available
in the online phase [31]. However, we can simulate synthetic noise-free
ata using the path-loss model for the training phase [22,31]. In this
cenario, the train data does not have shadowing noise, while the noise
s added to the test data. To construct a map in the noise-free scenario,
e only need to know the APs’ and walls’ locations, which consumes
ewer efforts than RSS data collection. By doing so, we can consider
he NLOS condition, which is the utmost concern of trilateration or
riangulation methods [3]. The trained algorithm can easily be updated
n the noise-free scenario based on the environment variations such as
Ps’ locations displacement.
In the training phase, we should obtain two functions for location

stimation (𝜇𝑥 and 𝜇𝑦) and two functions for variance estimation (𝜑𝑥
nd 𝜑𝑦) using the training dataset. For the training phase, we consider
dataset consists of RPs’ locations and their corresponding fingerprints
s follows

̃ = [�̃�1, �̃�2,… , �̃��̃� ]𝑇 , �̃� = [�̃�1, �̃�2,… , �̃��̃� ]𝑇

�̃� = [�̃�1, �̃�2,… , �̃��̃� ]𝑇 ,
(1)

here �̃� ∈ R�̃�×𝑀 is the RSS matrix called fingerprints of RPs, �̃�𝑖 is the
ector of the received signal from all APs in the 𝑖th RP, �̃� and �̃� are
artesian coordinates of the RPs, 𝑀 is the number of APs, and �̃� is
he number of RPs.
The location estimation functions map RSS vectors 𝐫𝑖 to the two-

imensional (2D) Cartesian coordinates as described in (2)

𝑥𝑖 = 𝜇𝑥(𝐫𝑖) + 𝜀𝑥 and 𝑦𝑖 = 𝜇𝑦(𝐫𝑖) + 𝜀𝑦 ∀𝐫𝑖 ∈ {�̃�𝑖, �̂�𝑖}
𝜀𝑥 ∼  (0, 𝜎𝑥𝑛 ) and 𝜀𝑦 ∼  (0, 𝜎𝑦𝑛 ).

(2)

oth 𝑥 and 𝑦 coordinates are estimated with separate optimized func-
ions 𝜇𝑥 and 𝜇𝑦. The functions 𝜑𝑥 and 𝜑𝑦 estimate the variance of 𝜀𝑥
nd 𝜀𝑦, respectively. Then, the 2𝜎 confidence interval can be estimated
y 𝜇𝑥±2

√

𝜑𝑥 and 𝜇𝑦±2√𝜑𝑦. Since the optimization process is the same
or both coordinates, without loss of generality, we use 𝑓 to represent
or 𝑦, and the coordinate vectors in (1) (i.e. �̃� or �̃�) can be considered

as 𝐟 = [𝑓1, 𝑓2,… , 𝑓�̃� ]𝑇 . Also, Eq. (2) can be re-written as follows

𝑓𝑖 = 𝜇(𝐫𝑖) + 𝜀 and 𝜀 ∼  (0, 𝜎𝑛). (3)

The 𝑓 𝑡ℎ
𝑖 in training data can be considered to have a joint Gaus-

sian distribution. For simplicity and without loss of generality, we
3

Fig. 2. Architecture of proposed EGPR in offline and online phases.

assume a zero-mean Gaussian process, and therefore, the vector 𝐟 =
[𝑓1, 𝑓2,… , 𝑓�̃� ]𝑇 has the following distribution [32]

̃ ∼(𝟎,𝐂), (4)

where 𝐂 ∈ R�̃�×�̃� is the covariance matrix of the training data.
Each element of this matrix demonstrates the similarity between two
elements of the vector 𝐟 . This similarity can be captured by different
kernel functions such as linear, squared exponential, and Noise kernel,
as depicted in Table 1 [32].

In Table 1, 𝑆𝐸 is the squared exponential kernel that captures
non-linear dependencies of RSS samples, 𝐿𝑖𝑛 is the linear kernel that
captures linear dependencies of RSS samples, and 𝑛 is the Noise kernel
that models the variance of 𝜀 in (3). The Noise kernel is independent
of inputs, however, it increases the similarity of diagonal elements
and plays a pivotal role in estimating the confidence interval. Finally,
𝑑 (., .) and 𝜔(., .) represent the Euclidean distance and inner product,
respectively, which are defined as follows

𝑑(𝐫𝑖, 𝐫𝑗 ) =
√

(𝑟1𝑖 − 𝑟1𝑗 )
2 +⋯ + (𝑟𝑀𝑖 − 𝑟𝑀𝑗 )

2, (5)

𝜔(𝐫𝑖, 𝐫𝑗 ) = (𝑟1𝑖 ⋅ 𝑟1𝑗 ) +⋯ + (𝑟𝑀𝑖 ⋅ 𝑟𝑀𝑗 ), (6)

where 𝐫𝑖 and 𝐫𝑗 are two RSS vectors, and𝑀 is the number of APs in the
nvironment. A single kernel can only capture one characteristic of RSS
amples [10], and therefore, we have preferred to use the combination
f different kernels.
The architecture of the proposed fingerprinting-based EGPR is de-

icted in Fig. 2. As can be seen, the training data is employed to
optimize the hyperparameters of kernel functions. In the next step, the
Noise kernel parameter is tuned by using the validation data to estimate
the confidence interval accurately. After the offline phase, the system
is ready to be utilized in the online phase to determine the location and
its corresponding confidence interval for the new input, also known as
‘‘test data’’.

3.2. Training phase

GPR-based algorithms are specified by kernel functions with their
hyperparameters where should be optimized in the training phase [10].
In this section, we present the hyperparameter optimization procedure
for a combination of three different kernels of Table 1 to capture linear
and non-linear dependencies of RSS distribution

𝑐𝑖𝑗 = 𝑆𝐸 (�̃�𝑖, �̃�𝑗 ) +𝐿𝑖𝑛(�̃�𝑖, �̃�𝑗 ) +𝑛(�̃�𝑖, �̃�𝑗 )

= 𝛾21 exp

(

−
𝑑2(�̃�𝑖,�̃�𝑗 )

𝑙2

)

+ 𝛾22𝜔(�̃�𝑖,�̃�𝑗 ) + 𝜎2𝑛𝛿𝑖𝑗 , (7)
where, 𝛿𝑖𝑗 = {1 if 𝑖 = 𝑗, 0 otherwise},
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Table 1
Kernel functions that can be used to capture the similarity between two pairs of RSS vectors.
Kernel Name Function Hyper-

parameter(s)

Squared
Exponential (SE)

𝑆𝐸 (𝐫𝑖 , 𝐫𝑗 ) = 𝛾2 exp

(

−
𝑑2(𝐫𝑖 , 𝐫𝑗 )

𝑙2

)

𝛾 and 𝑙

Linear (Lin) 𝐿𝑖𝑛(𝐫𝑖 , 𝐫𝑗 ) = 𝛾2𝜔(𝐫𝑖 , 𝐫𝑗 ) 𝛾

Noise (n) 𝑛(𝐫𝑖 , 𝐫𝑗 ) = 𝜎2
𝑛𝛿𝑖𝑗

𝛿𝑖𝑗 = {1 if 𝑖 = 𝑗, 0 otherwise}
𝜎𝑛
i
e
f
(
𝐟

r
c

In (7), 𝑐𝑖𝑗 is the element at the 𝑖th row and 𝑗th column of 𝐂. The
vector 𝜽 = [𝛾1, 𝛾2, 𝑙, 𝜎𝑛]𝑇 contains all hyperparameters that should
be optimized in the training phase. The hyperparameters in 𝜽 can be
stimated from an optimization problem to maximize the log-likelihood
f the multivariate probability density function of training samples or
o minimize the negative ones as below

̃ = argmax
𝜽

log(𝑝(𝐟 )) = argmin
𝜽

(− log(𝑝(𝐟 ))), (8)

here 𝑝(𝐟 ) is the multivariate probability density function defined in
9)

(𝐟 ) = 1
(2𝜋)�̃�∕2

|𝐂|1∕2
𝑒𝑥𝑝(−1

2
𝐟𝑇𝐂−1𝐟 ). (9)

Therefore, the objective function which should be optimized in (8) can
be written as follows

(𝜽) = − log 𝑝(𝐟 ) = 1
2
log |𝐂| + �̃�

2
log(2𝜋) + 1

2
𝐟𝑇𝐂−1𝐟 . (10)

Eq. (8) shows a non-convex optimization problem; however, we can use
the gradient-based optimizers (e.g., conjugate gradient [33] or gradient
descent [34]) to solve the problem for a locally optimum point. The
gradient of (𝜽) for each hyperparameter in optimization process can
be calculated as follows

∇(𝜃𝑗 ) =
𝜕(− log 𝑝(𝐟 ))

𝜕𝜃𝑗
= −1

2
tr((𝐬𝐬𝑇 − 𝐂−1) 𝜕𝐂

𝜕𝜃𝑗
) where 𝐬 = 𝐂−1𝐟 ,

(11)

where 𝜕𝐂
𝜕𝜃𝑗

∈ R�̃�×�̃� is a symmetric matrix, and each element of this
atrix is calculated by the gradient of kernel function with respect to
he 𝑖th hyperparameter. After calculating ∇(𝜃𝑖) for the 𝑖th hyperpa-
ameter, it can be fed into the 𝑖th element of a vector 𝝑, called gradient
ector. The hyperparameters in 𝜽 can be updated until reaching a con-
ergence by using the gradient descent or conjugate gradient algorithm.
ere, we use the conjugate gradient algorithm as provided in [33].
Considering 𝜎𝑛 in (7) as a learning parameter can capture the

oise when real noisy data is used for the training phase, because the
oise extracted from training data can be used in the test phase to
stimate the confidence interval. However, this scheme cannot be used
n the noise-free scenario, because unlike the test observations, the train
bservations are not noisy and the noise cannot be estimated with the
raining dataset. In Section 3.4, we propose the tuning procedure to
vercome this problem.

.3. Test phase

We need to find the posterior distribution to estimate the users’
ocations and their confidence intervals. The GPR is able to provide
oth information at the same time. First, the joint distribution of the
rain and test samples can be written as follows

𝐟
𝐟

]

∼ 
[(

𝟎
𝟎

)

,
(

𝐂 𝐂(�̃�, �̂�)
𝐂(�̂�, �̃�) 𝐂(�̂�, �̂�)

)]

, (12)

here 𝐂 ∈ R�̃�×�̃� is the covariance matrix calculated from the train
bservations, (𝐂(�̃�, �̂�))𝑇 = 𝐂(�̂�, �̃�) ∈ R�̂�×�̃� is the covariance matrix

̂ ̂ �̂�×�̂�
4

alculated from the test and train observations, and 𝐂(𝐫, 𝐫) ∈ R
s the covariance matrix calculated from the test observations. All
lements of covariance matrices in (12) are calculated with kernel
unctions obtained from (8). Also, 𝐟 is the vector of real test values
users’ locations) that should be estimated with conditioning over the
̃ as follows [32]

𝐟 |𝐟 ∼  (𝝁, 𝜱)
𝝁 = 𝐂(�̂�, �̃�)𝐂−1𝐟
𝜱 = 𝐂(�̂�, �̂�) − 𝐂(�̂�, �̃�)𝐂−1𝐂(�̃�, �̂�),

(13)

where 𝝁 is the vector of estimated coordinates and 𝜱 is the corre-
sponding covariance matrix for all users. The diagonal elements of 𝜱
epresent the variance of estimated locations in 𝝁. Therefore, the 2𝜎
onfidence interval for the 𝑖th user can be calculated by 𝜇𝑖 ± 2

√

𝜑𝑖𝑖,
where 𝜇𝑖 is the 𝑖th element of 𝝁 and 𝜑𝑖𝑖 is the 𝑖th diagonal element of
𝜱.

The optimized hyperparameters in (8) and the training data in (1)
can be delivered to smartphones or other portable devices to estimate
the location and confidence interval from (13). Note that when the
location estimation is performed on the user side, 𝝁 and 𝜱 have only
one element, and each user performs the (13) separately. However, we
explained the test phase of the Gaussian process in (13) for a general
form that can calculate all users’ locations and corresponding covari-
ance matrix simultaneously. The diagonal elements of 𝜱 for synthetic
noise-free fingerprints are small and cannot be used to determine the
2𝜎 confidence interval accurately [15]. In Section 3.4, we propose
tuning procedure to estimate the 2𝜎 confidence interval for noise-free
scenarios.

3.4. Tuning the parameter of noise kernel 𝑛

The parameter of Noise kernel 𝑛 is chosen during the optimization
of (8). However, experimental results show that it is not accurate to
estimate the 2𝜎 confidence interval for the synthetic noise-free training
fingerprints [15]. In this section, we explain the tuning procedure of
the Noise kernel parameter 𝜎𝑛 to overcome the small estimation of
the confidence interval. To tune the Noise kernel parameter, we need
to find the relation between 𝜱 and 𝜎2𝑛 . In other word, the effect of
𝜎2𝑛 on the 𝜱 should be known when it increases. First, by using the
mathematical formulation, we show that by adding 𝜎2𝑛 to diagonal
elements of 𝐂 and 𝐂(�̂�, �̂�) in (13), the variance of posterior distribution
𝜱 will increase. Then, we propose a method to choose the proper value
of 𝜎𝑛. Considering the added parameter to diagonal elements of 𝐂 and
𝐂(�̂�, �̂�) in (13), we can write

𝜱 = 𝜎2𝑛𝐈 + 𝐂(�̂�, �̂�) − 𝐂(�̂�, �̃�) (𝜎2𝑛𝐈 + 𝐂)−1(𝐂(�̂�, �̃�))𝑇 . (14)

The second term 𝐂(�̂�, �̂�) already exists on the 𝜱 in (13) and does not
change the diagonal elements of 𝜱. It is clear that 𝜎2𝑛𝐈 in the first term,
is positive and increases the diagonal elements of 𝜱. Expansion of the
third term in (14) is as follows

𝐂(�̂�, �̃�) (𝜎2𝑛𝐈 + 𝐂)−1(𝐂(�̂�, �̃�))𝑇
= 𝐂(�̂�, �̃�) (𝜎2𝑛 𝐂

−1𝐂 + 𝐂𝐂−1𝐂)−1(𝐂(�̂�, �̃�))𝑇
= 𝐂(�̂�, �̃�)((𝜎2𝑛 𝐂

−1 + 𝐂𝐂−1)𝐂)−1(𝐂(�̂�, �̃�))𝑇
= 𝐂(�̂�, �̃�)𝐂−1(𝜎2𝑛 𝐂

−1 + 𝐈)−1(𝐂(�̂�, �̃�))𝑇
ts
= 𝐂(�̂�, �̃�)𝐂−1(𝐈 − 𝜎2𝑛 𝐂

−1 + (𝜎2𝑛 𝐂
−1)2 −⋯)(𝐂(�̂�, �̃�))𝑇

≃ 𝐂(�̂�, �̃�)𝐂−1(𝐈 − 𝜎2𝑛 𝐂
−1)(𝐂(�̂�, �̃�))𝑇

−1 𝑇 2 −1 −1 𝑇

(15)
= 𝐂(�̂�, �̃�)𝐂 (𝐂(�̂�, �̃�)) − 𝜎𝑛 𝐂(�̂�, �̃�)𝐂 (𝐂 𝐂(�̂�, �̃�)) ,
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where ‘‘ts’’ in the fifth line of (15) is the Taylor series. In the last line
f (15) the first term 𝐂(�̂�, �̃�)𝐂−1(𝐂(�̂�, �̃�))𝑇 already exists in (13) and
oes not change the diagonal elements of 𝜱. We need to show that
iagonal elements in the second term 𝜎2𝑛 𝐂(�̂�, �̃�)𝐂

−1 (𝐂−1𝐂(�̂�, �̃�))𝑇 are
ositive. The 𝜎2𝑛 is positive and therefore, we just consider 𝐂(�̂�, �̃�)𝐂−1

𝐂−1𝐂(�̂�, �̃�))𝑇 . By assuming that 𝐀 = 𝐂(�̂�, �̃�)𝐂−1, it can be shown that
iagonal elements of 𝐀𝐀𝑇 are positive, and therefore by adding 𝜎2𝑛 to
iagonal elements of 𝐂 and 𝐂(�̂�, �̂�) the estimated variances in 𝜱 will
ncrease. To select the suitable value of 𝜎𝑛, we carry the 𝜎𝑛 over the
alues between 𝜎down𝑛 and 𝜎up𝑛 with steps of 𝜍 and compute the true
stimate region percentage (TERP). The values of 𝜎down𝑛 , 𝜎up𝑛 , and the
tep size 𝜍 depend on the data and are chosen experimentally. The TERP
s calculated as follows

TERP =
⎛

⎜

⎜

⎝

1
�̂�

�̂�
∑

𝑖=1
𝛤𝑖

⎞

⎟

⎟

⎠

,

where, 𝛤𝑖 =
{

1 |𝑓𝑖 − 𝜇𝑖| ≤ 2
√

𝜑𝑖𝑖
0 otherwise.

.

(16)

he TERP criterion shows the user presence for the estimated 2𝜎 confi-
ence interval. After calculating the TERP values for 𝜎𝑛 in the interval
𝜎down𝑛 , 𝜎up𝑛 ], we can choose a proper value for 𝜎𝑛. We hold all values
f 𝜎𝑛 on a vector 𝝍 , where the TERP is between TERPd and TERPu,
nd then the median of 𝝍 is selected. This process means that the
robability of user presence is between TERPd and TERPu. We choose
he upper and lower TERP such that 0.9 ≤ TERPd < TERPu ≤ 0.99.
herefore, the values of vector 𝝍 is as follows

=
{

𝜎𝑛|TERPd ≤ TERP(𝜎𝑛) ≤ TERPu
}

, (17)

here 𝝍 is a vector consists of all values for 𝜎𝑛 in which the TERP is
etween TERPd and TERPu. The 𝜎𝑛 is selected as below

𝜎𝑛]sel = median{𝝍}. (18)

. Theoretical analyses

.1. CRLB and MVU estimator

The CRLB demonstrates the lowest possible mean squared error
MSE) for an estimator [35]. There are two types of CRLB in the litera-
ure for Gaussian processes that already have been derived. One of them
iscusses the lower bound of errors for estimated hyperparameters
̃ [36], and the other one for the estimated locations 𝝁 [22]. Here, the
RLB refers to the lower bound of estimated locations. Considering the
xisting works on the theoretical analysis of GPR, it has not been proven
hether the MSE of GPR can reach the CRLB or not. In this section, we
how that the GPR-based algorithms are MVU and efficient estimators.
t means that the MSE performance of GPR-based algorithms can reach
he CRLB. We use two lemmas as described below.

emma 1 (MVU Estimator in Vector Form). Assume that 𝝁 = 𝐟 +𝐰 where
̂ is the vector of real outputs, 𝝁 is the vector of predicted outputs, and 𝐰 is
hite Gaussian noise. The probability distribution of vector 𝝁 is p(𝝁; 𝐟 ,𝜱)
here 𝜱 is the covariance matrix. If regularity condition 𝐸[ 𝜕𝑙𝑜𝑔(𝑝(𝝁;𝐟 ,𝜱))

𝜕𝐟
] = 0

s satisfied, then the covariance matrix of any unbiased estimator must
atisfy

�̄� ≥ 1
𝐈(𝐟 )

⇒ �̄� − 𝐈−1(𝐟 ) ≥ 0,

where, 𝐈(𝐟 ) = 1

−𝐸

[

𝜕2 log(𝑝(𝝁; 𝐟 ,𝜱))
𝜕𝐟2

]
. (19)

In (19), �̄� = 𝐸[(𝝁 − 𝐟 )(𝝁 − 𝐟 )𝑇 ], 𝐈(𝐟 ) is the Fisher information matrix,
and �̄� − 𝐈−1(𝐟 ) ≥ 0 means that the resulting matrix is positive semidefinite.
The average of diagonal elements in �̄� shows the MSE and the average of
5

b

diagonal elements in 𝐈−1(𝐟 ) shows the CRLB. Also, an unbiased estimator
maybe found that attains to the CRLB if and only if 𝜕 log 𝑝(𝝁;𝐟 ,𝜱)

𝜕𝐟
= 𝐈(𝐟 )(𝑔(𝝁)−

̂), where the mentioned estimator 𝑔(𝝁) is MVU.

emma 2 (Efficient Estimator in Vector Form). If the 𝑔 function is a linear
ransformation of 𝝁 in Lemma 1 (i.e. 𝑔(𝝁) = 𝐀𝝁+ 𝐛 where 𝐀 ∈ R𝑅×�̂� and
∈ R𝑅×1), then the 𝑔(𝝁) is an efficient estimator.

Based on Lemmas 1 and 2, we prove that GPR-based algorithms
re MVU and efficient. First, MSE for estimated locations is defined as
ollows

MSE = 1
�̂�

tr(�̄�𝑥 + �̄�𝑦)

= 1
�̂�

⎛

⎜

⎜

⎝

�̂�
∑

𝑖=1
(�̂�𝑖 − 𝜇𝑥

𝑖 )
2 + (�̂�𝑖 − 𝜇𝑦

𝑖 )
2
⎞

⎟

⎟

⎠

.
(20)

ccording to Lemma 1, the CRLB is available if the regularity condition
s satisfied
[

𝜕 log 𝑝(𝝁; 𝐟 ,𝜱)
𝜕𝐟

]

= 0, (21)

where 𝐟 is a vector that consists of real outputs, 𝝁 is the predicted values
y GPR algorithm, 𝐰 is white Gaussian noise, and the expectation is
aken with respect to 𝑝(𝝁; 𝐟 ,𝜱). Therefore, we can write

∫ ∞

−∞

𝜕 log 𝑝(𝝁; 𝐟 ,𝜱)
𝜕𝐟

𝑝(𝝁; 𝐟 ,𝜱) 𝑑𝝁

= 𝑘′∫ ∞

−∞
(𝝁 − 𝐟 ) 𝑒𝑥𝑝

(

−(𝝁 − 𝐟 )𝑇𝜱−1(𝝁 − 𝐟 )
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
odd function

𝑑𝝁 = 0,

(22)

here 𝑘′ = 𝜱−1∕(2𝜋)
�̂�
2
|𝜱|

1
2 , which can be brought out from the

integral operator as it does not depend on 𝝁. We can see that the
regularity condition is satisfied, and therefore, the CRLB is available.
The CRLB can be derived as below
⇒ 𝐸[(𝝁 − 𝐟 )(𝝁 − 𝐟 )𝑇 ] ≥ CRLB,

CRLB = 𝐈(𝐟 )−1 = 1

−𝐸

[

𝜕2(log 𝑝(𝝁; 𝐟 ,𝜱))
𝜕𝐟2

] ,

where,
log 𝑝(𝝁; 𝐟 ,𝜱) =

− �̂�
2

log(2𝜋) − 1
2
log(|𝜱|) − 1

2
(𝝁 − 𝐟 )𝑇𝜱−1(𝝁 − 𝐟 ),

𝐈(𝐟 ) = −𝐸

[

𝜕2(log 𝑝(𝝁; 𝐟 ,𝜱))
𝜕𝐟2

]

= 𝜱−1,

⇒ MSE ≥ 1
�̂�

tr(𝜱),

(23)

where 𝐈(𝐟 ) is the Fisher information matrix and for the two-dimensional
scenario we have

MSE ≥ 1
�̂�

(tr(𝜱𝑥 +𝜱𝑦)) (24)

ow we show that GPR is MVU and efficient

𝜕(log 𝑝(𝝁; 𝐟 ,𝜱))
𝜕𝐟

=
𝜕
(

−1
2
(𝝁 − 𝐟 )𝑇𝜱−1(𝝁 − 𝐟 )

)

𝜕𝐟

= −1
2

𝜕
(

(𝝁 − 𝐟 ) ⋅ (𝜱−1(𝝁 − 𝐟 ))
)

𝜕𝐟
= −1

2

(

−𝜱−1(𝝁 − 𝐟 ) −𝜱−1(𝝁 − 𝐟 )
)

= 𝜱−1(𝝁 − 𝐟 ) = 𝐈(𝐟 )(𝝁 − 𝐟 ).

(25)

herefore, 𝝁 is an MVU estimator and as 𝝁 is in the linear form
according to Lemma 2), this MVU estimator is also efficient and can

e attained to the lower bound.
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Note that we report the root mean squared error (RMSE) in Sec-
tion 5, therefore without loss of generality the CRLB for RMSE per-
formance can be defined by CRLB =

√

1∕�̂� (tr(𝜱𝑥 +𝜱𝑦)). The CRLB,
and TERP (see Eq. (16)) depend on diagonal elements of 𝜱. Also in
Section 3.4, we showed that the diagonal elements of 𝜱 are affected
by Noise kernel. Therefore, the Noise kernel parameter plays a key
role in both CRLB and TERP. Hence, the selected values for TERPd and
TERPu in (17) should not be in such a way that the TERP exceeds 95%.
Otherwise, the CRLB is wrongly placed upper than that of RMSE.

4.2. Complexity analysis

Here, we use the notation  to demonstrate the order of complexity.
In the first step, we will present the complexity of the conventional
GPR method in both of the training and test phases. Then, we discuss
the complexity of our proposed EGPR. The following explanations are
based on the assumption that𝑀 ≪ �̃� and �̂� ≪ �̃� . We note that �̂� = 1
when the algorithm is performed on the user side.

Training phase: The conjugate gradient algorithm just needs the
first-order gradient ∇(𝜽) to optimize the hyperparameters, where the
complexity of the first-order gradient is (�̃�3), because the inversion
matrix has (�̃�3) complexity in (11). The other operations such as
calculation of all elements in 𝜕𝐂

𝜕𝜃𝑗
and 𝐂 need (𝑀�̃�2) computations.

Therefore, the complexity of GPR in training phase is equal to (�̃�3).

Test phase: The complexity of calculating the elements of 𝐂 and
(�̂�, �̃�) matrices in (13) is equivalent to (𝑀�̃�2) and (𝑀�̃��̂�), respec-

tively. To calculate 𝝁, it needs (�̃�3), (�̃�2) and (�̃��̂�) operations
or 𝐀1 = 𝐂−1, 𝐀2 = 𝐀1𝐟 and 𝐂(�̂�, �̃�)𝐀2, respectively. Therefore, the
omplexity order of calculating 𝝁 is (�̃�3). Also, calculation of 𝜱 needs
perations with the orders of (�̃�3), (�̃�2�̂�), and (�̂�2�̃�) for 𝐀1 =

𝐂−1, 𝐀2 = 𝐀1(𝐂(�̂�, �̃�))𝑇 , and 𝐀3 = 𝐂(�̂�, �̃�)𝐀2, respectively. Therefore, the
complexity of calculating 𝜱 is (�̃�3).

Complexity of EGPR and NaGPR: To tune the Noise kernel param-
eter in the proposed EGPR method, we need to estimate the outputs’
mean and variance for 𝐿 = 𝜎up𝑛 −𝜎down𝑛

𝜍 times, and we know that the
stimations of 𝝁 and 𝜱 are in the order of (�̃�3). Therefore, the
omplexity of this process is (𝐿�̃�3) in the offline phase. The online
hase of EGPR is the same as the online phase of CGPR, therefore,
he complexity of EGPR in the online phase is (�̃�3). NaGPR [22]
alculates the outputs’ mean and variance for 𝑆 times in the online
hase, where 𝑆 is the number of iteration in which the shadowing noise
s added to the RSS vectors. Thus, the complexity of NaGPR equals to
(𝑆�̃�3) in the online phase. The 𝑆 is a user-defined value, and the

broader 𝑆 leads to a more accurate confidence interval estimation.

5. Results and discussion

In this section, we perform the experiments on both simulated
est data and really-collected test samples. In Section 5.1, we present
he performed simulations for both LOS and NLOS conditions, and in
ection 5.2, we perform the experiment on the really-collected test
amples. Using the noise-free dataset in the training phase has three
dvantages, especially for large areas: (a) it removes the data collection
tage that is labor-intensive. (b) the trained algorithm can easily be
eplaced according to the environment changes such as APs’ locations
isplacement. (c) the shadowing noise is mitigated from training data.

.1. Numerical results

We generate RSS values from 25 APs on 500 RPs in a 100 m ×
100 m area. The relationship between RSS value and distance is as
follows [37]

𝑃𝑟 = 𝑃0 − 10𝜂log10(𝑑∕𝑑0) −
𝑊
∑

𝑊𝐴𝐹𝑖 + (𝜎𝑠), (26)
6

𝑖=1
Table 2
Simulation parameters in the noise-free scenario.
System parameters Value

Path-loss parameters [38]

𝑑0 = 5m
𝑃0 = −49 dBm

𝜂 =
{

5 if 𝑑 ≤ 5m
4 if 𝑑 > 5m

Wall attenuation factor 𝑊𝐴𝐹 = 10 dBm

Receiver sensitivity −95 dBm

Fig. 3. The simulated environment in a noise-free scenario under (a) LOS and (b)
NLOS conditions.

where 𝑃𝑟 is the received power at distance 𝑑 from the transmitter, 𝑃0
is the received signal power at reference distance 𝑑0, the parameter
𝜂 is chosen based on the environment, (𝜎𝑠) is zero-mean Gaussian
oise with 𝜎𝑠 deviant that models the shadowing noise, and 𝑊𝐴𝐹𝑖 is
he wall attenuation factor of the 𝑖th wall, and 𝑊 is the number of
alls between the transmitter and receiver. We set the parameters with
roposed values in [38] that have been summarized in Table 2.
First, we implement our proposed EGPR method in a noise-free

cenario under a LOS condition. The shadowing noise (𝜎𝑠) is only
added to the test data; because, the shadowing noise is a random factor
that affects the RSS training samples. The simulated environment is
depicted in Fig. 3.a for the LOS condition and 20 test points are ran-
domly generated in this figure. Also, 20 other points as validation data
are generated to tune the Noise kernel parameter. Here we compare
the proposed EGPR with NaGPR [22] and CGPR [22]. The mean RMSE
(MRMSE) performance of the mentioned methods is depicted in Fig. 4.a
which is defined as follows

MRMSE = 1
𝑍

𝑍
∑

𝑖=1
RMSE𝑖, (27)

where RMSE𝑖 is the RMSE for the 𝑖th iteration in which the noise is
added to the test samples (in this experiment 𝑍 = 200) and prediction is
performed. As can be seen, the EGPR has better performance and is very
close to the CRLB. The CGPR does not show a realistic 2𝜎 confidence in-
terval. The TERP of this LOS scenario for 𝑥 dimension has been depicted
in Fig. 5.a. The horizontal line shows the 95% confidence interval. As
shown, both EGPR and NaGPR provide a realistic confidence interval
for each level of noise deviant, whereas the CGPR fails to estimate the
confidence interval.

For the NLOS condition, the 𝑊𝐴𝐹 is added to both of the test
nd train samples, because this value is not a random factor for each
oint, while the shadowing noise is only added to the test samples
ue to the randomness properties of this term. Each segment wall in
imulation is described by two points and the NLOS condition can be
etected by considering that the segment line between transmitter and
eceiver is intersected with the segment wall or not.1 The simulated

1 Please refer to Appendix A for more discussion.
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Fig. 4. MRMSE performance of EGPR (proposed algorithm), CGPR [22], NaGPR [22],
nd theoretical bounds under (a) LOS and (b) NLOS conditions. The Cramer–Rao lower
ound (CRLB) shows the lowest possible RMSE in theoretical analysis.

Fig. 5. TERP performance of EGPR (proposed algorithm), CGPR [22], and NaGPR [22]
in 𝑥 dimension under (a) LOS and (b) NLOS conditions. The horizontal line shows the
95% confidence interval accuracy.

Table 3
Performances of algorithms in terms of RMSE and TERP in the real-world
environment depicted in Fig. 6.

EGPR CGPR NaGPR

RMSE 2.72 4.65 3.93
TERP 93.33% 66.66% 86.66%

environment is depicted in Fig. 3.b. The MRSME performances of the
CGPR [22], NaGPR [22], and EGPR have been plotted in Fig. 4.b. As
can be seen, the proposed EGPR outperforms the MRMSE compared
with CGPR and NaGPR. The TERP performance of the NaGPR under
the NLOS condition in low shadowing noise is small as depicted in
Fig. 5.b, while the proposed EGPR can estimate the confidence interval
accurately in each level of noise deviant.

5.2. Experimental results

In this section, we use synthetic noise-free samples in the training
phase and really-collected data for the test phase. The test data has
been collected from the 2nd floor of Cyberspace Research Institute at
Shahid Beheshti University, as depicted in Fig. 6. There are 9 APs.2 in
he environment, which their locations are known. At each TP, 100 RSS
amples have been recorded, and the average of these samples is used
or the test. Also, we set −95 dBm for the RSS values of unavailable APs
t TPs. Each wall is described by two points, and the NLOS condition
s considered in the offline phase of localization. The RSS samples at

2 Note that two APs (numbered as 7 and 9) are at the same locations in a
D environment; however, their floor are different.
7

RPs are generated by the path-loss model. However, the test data (red
dots) is collected with a smartphone. Table 3 shows the performances of
algorithms in terms of RMSE and TERP. As can be seen, the proposed
method achieves better results in terms of RMSE and TERP. It shows
the robustness of the proposed EGPR compared with counterparts in
the real-world environment.

In Table 4, we have summarized characteristics of probabilistic-
based GPR algorithms in terms of online/offline complexity, the need
to validation data, prior knowledge about shadowing noise in the test
data, and accuracy of confidence interval estimation under LOS/NLOS
condition in low/high shadowing noise (LS/HS). The complexity level
of calculations in CGPR is low for both online and offline phases; how-
ever, it cannot truly estimate the 2𝜎 confidence interval. The NaGPR
implicates the complexity in the online phase with prior knowledge
about the shadowing noise of the test data, while it does not need
validation data. The proposed EGPR implicates the complexity in the
offline phase to estimate the noise of the data, while there is no need
for prior knowledge about shadowing noise.

6. Conclusion

We proposed a GPR-based algorithm named enhanced GPR (EGPR),
which can estimate the 2𝜎 confidence interval with higher accuracy
articularly compared with other methods for synthetic noise-free fin-
erprints, while it does not increase the computational complexity
n the online phase. Experimental results showed that when noise-
ree data is used in the training phase, the conventional GPR (CGPR)
ethod cannot estimate the 2𝜎 confidence interval. The NaGPR can
alculate the confidence interval via high accuracy with prior knowl-
dge about shadowing noise; however, it increases the complexity
n the online phase that is not acceptable for real-world scenarios.
e also theoretically analyzed the lower bound of errors in terms of
RLB and proved that the GPR-based algorithms are MVU and efficient
stimators, which means that they can reach the CRLB. However, to
stimate a reliable CRLB, the Noise kernel parameter should be tuned
arefully, since both CRLB and confidence intervals are directly affected
y Noise kernel. The proposed tuning process is independent of the
ptimization process and transports the online phase complexity to the
ffline phase. To reduce the offline phase complexity, one can consider
ow to learn the noise of validation data in the optimization process,
s a future work.
We have performed all simulations for the 2D environment, how-

ver, the proposed method can be extended for the 3D environment
o more realistically estimate the users’ locations. This would possibly
nhance the estimation accuracy, because, noise-free fingerprints are
enerated based on a 3D distance from the APs. Since the proposed
ethod needs a small number of validation data for tuning the noise
ernel parameter, the validation data also can be utilized for better
hoosing the path-loss parameters.
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ppendix A. NLOS condition

As depicted in Fig. A.7, the NLOS condition can be detected when
he segment line between a pair of AP and user is intersected by a walls.
he user is under the NLOS condition if we can find t and q such that

+ 𝑡𝒖 = 𝒃 + 𝑞𝒘, (A.1)

by multiplying both sides of (A.1) to 𝒘 we have
(𝒂 + 𝑡𝒖) ×𝒘 = (𝒃 + 𝑞𝒘) ×𝒘, (A.2)
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w
w

𝑡

v

Table 4
Comparison of probabilistic-based algorithms. The top and bottom arrows show a high and low level, respectively. Also, the green and red
arrows demonstrate a desired and undesired state, respectively.

Complexity Validation Data Noise Prior Knowledge Confidence Interval Accuracy

Online Offline LOS NLOS

LS HS LS HS

CGPR ↓ ↓ No No ↓ ↓ ↓ ↓

NaGPR ↑ ↓ No Yes ↑ ↑ ↓ ↑

Proposed EGPR ↓ ↑ Yes No ↑ ↑ ↑ ↑
Fig. 6. The Schematic of the 2nd floor of Cyberspace Research Institute at Shahid Beheshti University, where the experiment is conducted.
Fig. A.7. The locations of user, access point, and wall for detecting NLOS condition.
here × is cross product3 and 𝒘×𝒘 = 0. Simplifying the above equality,
e have

=
(𝒃− 𝒂) ×𝒘
𝒖 ×𝒘

, (A.3)

similarly for q, we have

𝑞 =
(𝒂− 𝒃) × 𝒖
𝒘 × 𝒖

, (A.4)

There are four possible situations:

1- If (𝒃− 𝒂) ×𝒘 = 0 and 𝒖 ×𝒘 = 0, two segments are collinear.
2- If (𝒃− 𝒂) ×𝒘 ≠ 0 and 𝒖 ×𝒘 = 0, two segments are parallel.
3- If 𝒖 ×𝒘 ≠ 0, 0 ≤ 𝑡 ≤ 1, and 0 ≤ 𝑞 ≤ 1, two segments are intersect

at the point 𝒂 + 𝑡𝒖 = 𝒃 + 𝑞𝒘.
4- Otherwise, the two segments are not parallel, however, they do

not intersect either.
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