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Abstract — 4D-imaging mmWave radars offer high angular
resolution in both azimuth and elevation, but achieving this
requires a large antenna aperture size and a significant number
of transmit and/or receive channels. This presents a challenge
for designing transmit waveforms that are both orthogonal
and separable on the receive side, as well as having low
auto-correlation sidelobes. This paper focuses on designing an
orthogonal set of sequences for 4D-imaging radar sensors based
on PMCW technology. We propose an iterative optimization
framework based on Coordinate Descent, which considers the
Regions Of Interest (ROI) and optimizes a phase-modulated
constant modulus waveform set based on weighted integrated
sidelobe level on the required ROI and spectrum shaping. The
optimization also accounts for the radar working adjacent to
communication systems and other radar sensors. Simulation
results are provided to demonstrate the effectiveness of the
proposed method, which achieves low sidelobe levels and is
compatible with spectrum constraints.

Keywords — mmWave Radar, PMCW, CDM-MIMO, WISL,
Waveform design, Spectrum shaping.

I. INTRODUCTION

High resolution 4D-Imaging millimeter-Wave (mmWave)
Multiple-Input Multiple-Output (MIMO) radars, are being
widely employed in various applications including indoor
sensing, health care, and autonomous driving [1]. To
achieve high azimuth-elevation angular resolution in these
sensors, a large antenna aperture size and a large number
of transmit/receive channels are necessary. However, these
requirements can be fulfilled virtually by utilizing sparsity
in the location of transmit or receive antenna elements.
This improved angular resolution capabilities of 4D-imaging
mmWave MIMO radars come with a cost of increased
complexity in designing transmit waveforms, as orthogonality
in transmission is required, which necessitates a multiplexing
scheme. In mmWave radar sensors, Frequency-Modulated
Continuous-Wave (FMCW) waveforms have traditionally
been favored due to their cost-effective implementation
using de-chirp techniques and low sampling rate ADCs [2].
However, in MIMO applications where a set of orthogonal
waveforms is required to be transmitted, the interest has shifted
towards using Code-Division Multiplexing (CDM) techniques
where potentially Phase-Modulated Continuous-Wave
(PMCW) can be transmitted [3]–[6]. The reason is that,
Time-Division Multiplexing (TDM) [7]–[9] and Frequency
Division Multiplexing (FDM) [10] multiplexing of FMCW do

not make full use of available time and frequency resources,
and BPM [11], [12] and Doppler-Division Multiplexing
(DDM) [13], [14] create folding in the useful Doppler region.
PMCW waveforms offer greater adaptability to environmental
conditions and hold the potential for enabling cognition with
capability of spectrum sharing [15], making them an attractive
alternative to FMCW, provided that the orthogonality between
transmitting waveforms is guaranteed [3]–[6].

Several approaches are available in the literature to design
a set of sequences with small auto- and cross-correlation
sidelobes for PMCW radars based on the Integrated Side-lobe
Level (ISL)/Weighted Integrated Side-lobe Level (WISL) or
Peak Side-lobe Level (PSL) metrics, including Multi-Cyclic
Algorithm New (CAN) [16], Iterative Direct Search [17],
ISLNew [18], Majorization-Minimization (MM)-Corr, [19]
and Coordinate Descent (CD) [6], [20], [21]. Furthermore,
it is possible to design the waveforms for mmWave radars
compatible with other transmissions operating in the same
frequency range. This is achieved by incorporating spectral
shaping methods into the optimization process for the sequence
set. Thus, the waveforms can have minimal interference with
other transmissions in the frequency band [22]–[26]. The
contributions of this paper are summarized as follows; An
unconstrained optimization problem is formulated to design
a set of spectrally compatible sequences with very low
range-sidelobe levels (good orthogonality) in a ROI realized by
the WISL metric and a weight vector for spectrum shaping.
An entry-based CD approach is then proposed to tackle the
problem for the continuous-phase constraint. In each step,
the global solution is obtained leading to a monotonically
decreasing objective function until a convergence criteria
is met. Finally, numerical results validate the proposed
algorithm’s performance for mmWave 4D-imaging radars1.

II. WAVEFORM OPTIMIZATION

In this section, we design a set of unimodular sequences
for PMCW radars based on jointly minimizing their auto- and
cross-correlation sidelobe levels and shaping their spectrum.

1Notation: We use boldface upper case X for matrices and boldface lower
case x for vectors. The (m,n)th element of X is denoted by Xm,n. The sets
of complex number, real number, Hadamard product, l2 norm , phase of vector
and matrix, hermitian operation, Transpose operation, modulus of the complex
number, correlation, and gradient are denoted by, CN , RN , ℑ(.), ⊙, ||.||22,
∠., (.)H ,(.)T , |.| ⊛, and ∇ respectively. ln defines the natural logarithm.
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The aim is to reduce the sidelobes as much as possible in
a ROI, which can be calculated based on the radar system’s
maximum range. Let us assume that X ∈ CM×K is the set
of sequences in baseband with M transmit antennas and K
samples for each, and xm,k = ejϕm,k is the kth sample of
mth antenna. WISL metric is defined by:

M∑
m=1

M∑
l=1

K−1∑
k′=−K+1

|αm,l(k
′)rm,l(k

′)|2 −
∑M

m=1 |αm,m(0)K|2 (1)

where αm,l(k
′) ∈ [0, 1], ∀k′ ∈ {−K + 1, . . . ,K − 1}

represents a set of weights, rm,l(k
′) ≜ (xm ⊛ xl)k′ =∑K−1

k′=1 xm,k′x∗l,K−k′ is the cross-correlation between mth and
lth antenna waveforms, that are xm = [xm,1, xm,2, ..., xm,K ]T

and xl = [xl,1, xl,2, ..., xl,K ]T , m, l ∈ {1, 2, ...,M}. If m = l,
rm,l(.) represents the auto-correlation of the mth signal. k′ is
one of the different (2K−1) lags in cross-correlation function.∑M

m=1 |αm,m(0)K|2 is the weighted energy of the waveform.
Since the signals are constant modulus, this term is a constant
and can be eliminated in the objective function. Re-writing
the metric in the frequency domain, we define the following
optimization problem:

min
X

f(X) ≜
M∑

m=1

M∑
l=1

||a1 ⊙ F−1(a2 ⊙ Fx̄m ⊙ Fx̄∗r
l )||22

s.t. xm,k ∈ X∞

(2)

where, a1 and a2 are WISL and spectral weight vectors,
respectively. X∞ = {ejϕ|ϕ ∈ Ω∞}, Ω∞ ≜ (−π, π]
indicates the unimodular phases. F and F−1 are (2K − 1)
points Discrete Fourier Transform (DFT) and Inverse DFT
matrices, respectively. x̄, here, is a zero-padding operation, i.e.,
x̄m ≜ [xTm, 0T

K−1×1]
T is the zero-padded vector of the mth

transmitting waveform. x∗rl ≜ [x∗(l,K), x
∗
(l,K−1), ..., x

∗
(l,1)]

T is
the the lth antenna sequence reverse. Since the constraint is
an affine set, the related optimization problem is non-convex,
multi-variable and NP-hard.

To solve the problem under continuous-phase constraint,
we use a CD approach and define an entry-based optimization
framework to formulate the problem in terms of each
single-variable. This leads to find the critical points and obtains
the global optimum solution in each step. To this end, we
consider each entry of X as the only variable to our problem,
while keeping the others fixed. Let x(i)

m0,k0
(m0 ∈ {1, 2, ...,M}

and k0 ∈ {1, 2, ...,K}) be the only entry variable to be
optimized in the ith iteration. Storing other entries of X
in Xi

−(m0,k0)
fixed, we can formulate the objective function

(f(X)) in terms of xi
m0,k0

as (for notation simplicity, we omit
the iteration number in the equations below):

f(xm0,k0 ,X−(m0,k0)) = ν−2(X)x∗2
m0,k0

+ ν−1(X)x∗
m0,k0

+

ν0(X) + ν1(X)xm0,k0 + ν2(X)x2
m0,k0

(3)

where the coefficients ν−2, ν−1, ν0, ν1 and ν2 are the
complex-valued functions of X having different values for
each entry (m0, k0) and can be calculated from Table 1, where
fk0

is a vector derived from F containing its kth0 column
elements. Similarly, fK+1−k0 is the (K+1−k0)

th column of
F. F̂−k0 is a ((2K−1)×K) sub-matrix of F containing all first

K columns of F, except for the kth0 column, i.e., in F̂−k0
, the

kth0 column of (F) is omitted. The same as F̂−k0
, F̂−K+1−k0

is a sub-matrix of F in which the (K + 1 − k0)
th column is

removed. Also, xm0,k ̸=k0
is the mth

0 row of X, in which the
the kth0 sample is dropped out and xm,k0 is the kth0 sample of
mth antenna waveform (m ∈ {1, 2, ...,M}). To simplify the
notations in Table 1, we define some auxiliary variables as,

Υ0 ≜ aT
1 ⊙ F−1(aT

2 ⊙ fk0 ⊙ fK+1−k0),

Υ1(m̂) ≜ aT
1 ⊙ F−1(aT

2 ⊙ F̂−k0x
T
m̂,k ̸=k0

⊙ fK+1−k0),

Υ2(m̂) ≜ aT
1 ⊙ F−1(aT

2 ⊙ fk0 ⊙ F̂−K+1−k0x
rH
m̂,k ̸=k0

),

Υ3(m̂, m̃) ≜ aT
1 ⊙ F−1(aT

2 ⊙ F̂−k0x
T
m̂,k ̸=k0

⊙ F̂−K+1−k0x
rH
m̃,k ̸=k0

).

(4)
where all of these variables are vectors of length (2K − 1).
Note that, since f(X) in Eq. 2 is real-valued, it can be
easily proved that ν−2 = ν∗2 and ν−1 = ν∗1 . Considering
the coefficients as νh(X), h ∈ {−2,−1, 0, 1, 2}, the above
equation based on the phases of each entry ϕm0,k0

and the
phase matrix Φ−(m0,k0), can be re-written as:

f(ϕm0,k0 ,Φ−(m0,k0)) =

2∑
h=−2

νh(Φ)ejhϕm0,k0 (5)

To minimize the objective function over Ω∞ on each entry
ϕm0,k0

, and as f are differentiable functions for ϕ ∈ Ω∞, we

can find the solution of df(ϕ)
dϕ =

d
∑2

h=−2 νhe
jhϕ

dϕ = 0. In this
regard, the derivative of f(ϕ) can be obtained by:

f
′
(ϕ) =

2∑
h=−2

jhνhe
jhϕm0,k0 (6)

Finding the roots of f
′
(ϕ) in Eq. 6 is equivalent to find

the roots of the 4 degree polynomial function
∑4

n=0 ρnz
n = 0

where z ≜ ejϕ, ρ4 = 2ν2, ρ3 = ν1, ρ2 = 0, ρ1 = −ν−1 =
−ν∗1 and ρ0 = −2ν−2 = −2ν∗2 . Assume zn, n = {1, ..., 4}
are the roots of

∑4
n=0 ρnz

n = 0, the roots of f
′
(ϕ) = 0 are

then ϕn = −j ln(zn), n = {1, ..., 4}.We only admit the real
roots for ϕ. Thus, the global optimum solution for ϕ is:
ϕ⋆
m0,k0

= argmin
ϕ

{f(ϕ)|ϕ ∈ {ϕn, n = {1, ..., 4},ℑ(ϕn) = 0} (7)

Subsequently, the optimum solution is x⋆i
m0,k0

= ejϕ
⋆
m0,k0

and the sequence set matrix X⋆i in each iteration is updated
until the convergence criteria is met. The proposed algorithm
is summarized in Algorithm 1. Note that, since f in Eq. 5 is a
function of sinϕ and cosϕ, it is periodic, real and differentiable
and has at least two extrema, so its derivative has at least two
real roots. As a result, the feasibility of Eq. 7 in each iteration
is guaranteed and the problem has the optimum solution.

III. SIMULATION AND RESULTS

In this section, we provide simulation results to assess the
performance of the proposed algorithm. Table 2 shows the
comparison between the ISL values of a set of random-phase
sequences with Multi-CAN [16], MM-Corr [19] BiST [4], and
the proposed method in this paper when we do not consider
ROI ( KROI = K). The small difference between the ISL
values of a set of random-phase codes and the lower bound is
not enough to design a set of orthogonal codes in a massive
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Table 1. Calculation of coefficients (ν0,ν1,ν2) in Eq. 3.

ν0

∑M
m=1

m ̸=m0

[
M ||Υ1(m)||22 +M ||Υ2(m)||22 + ||Υ3(m,m0)||22 + ||Υ3(m0,m0)||22 + 2M |xm,k0

ΥH
1 (m)Υ0|+ 2M |xm,k0

ΥH
0 Υ2(m)|+ 2|xm,k0

ΥH
1 (m0)Υ3(m0,m)|+ 2|xm,k0

ΥH
3 (m,m0)Υ2(m0)|

]
+

∑M
m=1

m ̸=m0

∑M
l=1

l ̸=m0

[
2|xl,k0

x∗
m,k0

ΥH
0 Υ3(m, l)|+ 2|xl,k0

xm,k0
ΥH

1 (m)Υ2(l)|+ 2|xl,k0
ΥH

1 (m)Υ3(m, l)|+ 2|xm,k0
ΥH

3 (m, l)Υ2(l)|+ ||Υ3(m,m0)||22
]

+M2||Υ0||22 +M ||Υ1(m0)||22 +M ||Υ2(m0)||22 + ||Υ3(m0,m0)||22 + 2|ΥH
0 Υ3(m0,m0)|

ν1

∑M
m=1

m ̸=m0

[
x∗
m,k0

ΥH
0 Υ3(m,m0) + xm,k0

ΥH
1 (m0)Υ2(m) +ΥH

1 (m0)Υ3(m0,m) + xm,k0
ΥH

1 (m0)Υ2(m) +ΥH
3 (m0,m)Υ2(m) + x∗

m,k0
ΥH

3 (m0,m)Υ0

]
+ΥH

3 (m0,m0)Υ2(m0) +ΥH
1 (m0)Υ3(m0,m0) +MΥH

1 (m0)Υ0 +MΥH
0 Υ2(m0)

ν2 ΥH
1 (m0)Υ2(m0)

Algorithm 1 Proposed Algorithm

1: Inputs: Initialize random feasible set of sequences X(0), predefined threshold value
ϵ, a1 and a2 weight vectors.

2: i← 0;
3: Compute f(X(0)) from (2);
4: for i = 0, 1, ... do
5: i← i + 1
6: for m0 = 1, . . . ,M do
7: for k0 = 1, . . . , K do
8: Calculate ν1 and ν2 using Table 1;
9: ρ4 ← 2ν2, ρ3 ← ν1, ρ2 ← 0, ρ1 ← −ν∗

1 , ρ0 ← −2ν∗
2 ;

10: Find the roots of
∑4

n=0 ρnz
n = 0;

11: Computing ϕn = −j ln(zn), n = {1, ..., 4};
12: Find the solution ϕ⋆

m0,k0
to the problem (7);

13: Update xi
m0,k0

= e
jϕ⋆

m0,k0 (Algorithm 1);
14: Xi = Xi

−(m0,k0)|xm0,k0
=xi

m0,k0

;

15: end for
16: end for
17: Compute f(Xi) from (2);
18: Stop if [f(Xi)− f(Xi−1)]/||f(Xi)||F > ϵ
19: end for
20: Outputs: X⋆ = Xi.

MIMO radar system [27] such as 4D-imaging radars. On the
other hand, Table 3 shows the impact of considering ROI in
the proposed waveform design approach. This table provides
the ISL values for different number of antennas and code
lengths and shows that, the proposed method can achieve a
very low-sidelobe levels in the required ranges by increasing
the ratio K

KROI
. Although in the proposed method the sidelobe

levels outside of ROI are very high, only the sidelobe levels in
the ROI determines the performance of the radar system and
we can perfectly use it in, forexample, automotive applications.

To compare the impact of different parameters, Fig. 1
represents the auto-correlation functions for different code
lengths, ROI, number of antennas, and considering/not
considering the spectrum-nulling. It is evident that with
increasing the number of antennas and considering stop-bands
the properties of auto-correlation degrade, yet by considering
the ROI and increasing the ratio K

KROI
, we achieve a very

low sidelobe levels, while doing spectrum shaping. Fig. 2a
shows the convergence curve of the CD approach for different
waveforms, in the proposed Algorithm 1. The figure shows the
monotonically decreasing objective values in each example. In
Fig. 2b we compare the range profile of the proposed method
with FMCW and Golomb sequence at the receive side. The
range profile for FMCW signals is the Fast Fourier Transform
(FFT) of beat frequency and for PMCW signals is the
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Fig. 1. Auto-correlation functions for (a) K = 256, KROI = 50,
M = 2, and no stop-bands, (b) K = 256, KROI = 100, M = 2, and
no stop-bands, (c) K = 512, KROI = 50, M = 2, and stop-bands,
(d) K = 256, KROI = 100, M = 10, and stop-bands

matched-filter output. In this example, we set B = 200MHz,
K = 2000 samples and Rmax = 50 m (KROI = 100
samples). We assume two targets in the range of 15 and 25 m.
This figure shows that the proposed method (for M = 2, 12,
and M = 12 with spectrum shaping) have a lower sidelobe
levels (in the ROI) while maintaining the same mainlobe width.
Also, the chirp signal in FMCW and Golomb sequence, in this
figure, are considered to be sent from a single antenna. Hence,
in the case of using multiplexing techniques for MIMO FMCW
radars or transmitting any other MIMO PMCW sequences
lead to a decrease in the performance of radars compared to
that of single input FMCW and Golomb sequence in Fig. 2b.
For the spectrum compatibility, we consider two scenarios for
K = 128 and 256 with KROI = 50. To compare the obtained
results with [27] in Fig. 2c, we set m = 2 and the normalized
frequency of stop-bands are [0.4, 0.5] ∪ [0.8, 0.85]. Although
the depth of the obtained nulls is not as good as [27], we
achieved better ISL due to the ROI consideration. This figure
shows that the proposed method can design a set of spectrally-
compatible code sequences with good properties in terms of
ISL, while imposing nulls in undesirable stop-bands.

IV. CONCLUSION

In this paper, we considered CDM for MIMO PMCW
radars in spectrally crowded environments to design orthogonal
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Table 2. Comparison between the ISL (dB)-values of different sequences and random-phase sequences (K = 64).
M 2 3 4 5 6 7 8 9 10

Random-phase 5.9289 9.8565 11.9106 14.0384 15.5558 16.8349 18.0590 19.2051 19.9744
Multi-CAN [16] 3.0103 7.7815 10.7918 13.0103 14.7712 16.2325 17.4819 18.5733 19.5424
MM-Corr [19] 3.0103 7.7815 10.7918 13.0103 14.7712 16.2325 17.4819 18.5733 19.5424

BiST [4] (θ = 0, L = 8) 3.2632 7.8529 10.8238 13.0302 14.7901 16.2411 17.4884 18.5796 19.5458
Proposed method (KROI = 64,K = 64) 3.1487 7.8052 10.7975 13.0142 14.7773 16.2346 17.4837 18.5745 19.5433

Lower bound 3.0103 7.7815 10.7918 13.0103 14.7712 16.2325 17.4819 18.5733 19.5424

Table 3. Comparison between the ISL (dB)-values of the proposed method for different code lengths (KROI = 64).
M 2 3 4 5 6 7 8 9 10

K = 128 -13.4972 -4.2372 2.2743 5.4578 7.9316 9.7548 11.3160 12.6290 13.7356
K = 256 -25.1622 -17.8270 -10.6694 -5.7151 -1.2017 2.6200 5.1869 7.0659 8.7133
K = 512 -33.8273 -29.5091 -23.3246 -17.6190 -15.4697 -10.4416 -7.9380 -5.7282 -2.7758
K = 1024 -40.9693 -36.2091 -30.4133 -30.6181 -27.3662 -24.1144 -20.3935 -17.2538 -14.1951
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Fig. 2. (a) objective values, (b) Range profiles, and (c) Spectrum of the proposed method for different code lengths compared to [27]

transmit waveforms, and proposed an entry-based optimization
method to design transmit sequences with near perfect
orthogonality in terms of correlation sidelobes in the required
ROI and spectrum shaping with defining an unconstrained
optimization problem. The numerical examples and simulation
results show that our proposed method can achieve a good
performance in mmWave 4D-imaging radar sensors.
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