
 

 

Supplementary Methods 
 
 
Arousal measures  
 
Equipment 
 
Electro-cardiogram (ECG), electro-dermal activity (EDA) and accelerometry were 
recorded using a BioPac™ (Santa Barbara, CA) recording at 1000Hz. ECG was 
recorded using disposable Ag-Cl electrodes placed in a modified lead II position. 
EDA was recorded using two EDA (Isotonic Gel) snap electrodes placed on the 
plantar surface of the foot (Ham & Tronick, 2008). A triaxial accelerometer 5G was 
attached to the same foot from which EDA data was recorded. In addition, head 
velocity data was derived from the head position estimates that are automatically 
generated during heads-free eyetracking. They were recorded by a Tobii TX300 
eyetracker. The process used to extract this data is described in ([blinded for review]). 
 
Experimental stimuli 
 

 
Figure S1 – schematic showing the viewing materials presented.  
 
 
Data reduction 
 
All data reduction techniques were identical to those used in our previous 
publications, in which we evaluated patterns of covariance between these different 
measures ([blinded for review]). More details on data processing techniques are given 
in these papers. To summarise, briefly: 
 



 

 

Heart rate (HR). Automatic r-peak identification was performed by the Acknowledge 
commercial software package. Automatic artifact rejection was then performed by 
excluding those beats showing an inter-beat interval of <330 or >750 ms, and by 
excluding those samples showing a rate of change of inter-beat interval of greater than 
80ms between samples. In another paper ([blinded for review]) we report on a 
comparison of these cleaning techniques with traditional hand-coding which shows a 
close comparison between the two approaches. Finally, HR data were z-scored and 
epoched into one-second epochs.  
 
Electrodermal activity (EDA). Again, our approach was similar to that previously 
used with developmental populations (Ham & Tronick, 2008; Hernes et al., 2002). 
First, null values were removed from the data using a threshold of 0.1μV. Second, 
data were log transformed to remove positively skewed values. Third, data were z-
scored and epoched into one-second epochs.  
 
Head velocity (HV). First, data samples showing a change in position of more than 
0.025 screen units between 120Hz iterations were excluded as being above the 
maximum possible threshold at which head movement can take place and therefore 
likely to be artifactual. This threshold corresponds to 2.5% of the screen, representing 
approximately 1.25 cm in our set-up. Second, data were downsampled to 12Hz by 
calculating a moving median window. Third, position data were converted to velocity 
data by taking the first derivative. Fourth, six data streams (three dimensions, two 
eyes) were collapsed to a single stream. Fifth, data were z-scored and epoched into 
one-second epochs.  
 
Peripheral accelerometer (PA). Our approach was similar to that previously used 
with developmental populations (Robertson, et al., 2001)). First, data were filtered to 
remove high-frequency noise using a Butterworth filter with a cut-off of 0.5Hz. 
Second, three-dimensional movement data were summed to create a one-dimensional 
estimate of total movement. Third, median windowing was performed.  
 
 
Behavioural measures 
 
Look duration (Analyses 1 and 3). For analyses 1 and 3 we wished to record 
continuous looking data, in 20-minute segments. Infants’ looks to and away from the 
screen were measured during the administration of a mixed testing battery (described 
in the main text). Look duration was automatically coded based on the eyetracker 
footage recorded. Looks were treated as starting when the child first looked towards 
the screen, and ending when the child looked away from the screen. This was derived 
as the time interval between the moment when the eyetracker data first became 
available, and it becoming unavailable. Very short sections of missing data (<2 
seconds) were interpolated, to cover short periods of missing data due to blinks and 
other artifactual causes (see further discussion of this in [blinded for review]). 
 
Look duration (Analysis 2). Look duration data presented in Analysis 3 are taken from 
an infant-controlled habituation task. This was presented in 3 blocks at different 
stages of the testing protocol. Each block featured one picture (a child’s face). Trials 
commenced with a small (3°) fixation target, presented concurrently with an 
attention-getter sound; once the infant had looked to this target, the image (subtending 



 

 

c.10°) was presented. An experimenter, behind a curtain, viewed a live video feed and 
a feed showing live eyetracking data. When the infant had looked away from the 
screen, the experimenter pressed a key to signal the end of a trial. The same image 
was re-presented consecutively until two consecutive looks had taken place that were 
less than 50% of the longest look recorded that block. The block also ended if the 
child had accumulated either 12 looks or 120 seconds’ looking time without reaching 
habituation criteria.  
 
 
Calculation of cross-correlation and auto-correlation (Analysis 1) 
 
For analysis 1 our data consist of continuous time-series data, recorded over a 20-
minute testing session. First, these data were time-synchronised and epoched into 1-
second epochs. A 1-second epoch duration was selected based on previous work 
([blinded for review]). Z-scores were calculated relative to baseline. This was 
calculated based on the average score obtained across the entire testing session.  
 
The procedure for calculating the cross-correlations between measures was as follows. 
First, we calculated the average correlation between values obtained for those 
measures across all epochs, using a Spearman’s rank order correlation. This 
correlation value was calculated independently for each participant, based on all 
epochs available for that participant (c.1200 per individual). A single average 
correlation value was then calculated by averaging across participants. This average 
correlation value is shown as the value at Time 0. Next, correlations were calculated 
in the same manner at each time-lag by shuffling one measure forwards and 
backwards in time, relative to the other. The procedure was identical for auto-
correlations – except that instead of examining the relationship of two different 
measures at variable time intervals, the relationship of each measure to itself at 
variable time intervals was assessed.  

 
Calculating the significance levels of the auto-correlations is straightforward, and is 
done by averaging the significance values of the Spearman’s correlations conducted at 
each time interval. Calculating the significance levels of the cross-correlations is, 
however, non-trivial, since the values obtained for the cross-correlation (the degree to 
which the relationship between two measures is present if a time-lag is introduced 
between them) is confounded by the degree of auto-correlation (the degree to which 
each measure, considered individually, is fast- or slow-changing) (Clifford et al., 
1989; Thiebaux & Zwiers, 1984). This potential problem in cross-correlations can be 
solved by first calculating the Effective Sample Size (Clifford, et al., 1989; Thiebaux 
& Zwiers, 1984): at each time interval, the cross-correlation (i.e. the relationship 
between the two variables) was first calculated, and then the auto-correlation value for 
each variable (i.e. the relationship of that variable to itself, at that time-lag) was then 
calculated. The higher of these two values was used to calculate the Effective Sample 

Size, using the standard formula: ܰ∗ ൌ ேሺଵି௥ሻ

ሺଵା௥ሻ
 , where N* is the Effective Sample Size, 

N is the actual sample size and r is the higher of the two auto-correlation values 
obtained at that time interval for each of the two measures independently (Thiebaux & 
Zwiers, 1984). The significance level of the cross-correlation obtained was then 
adjusted based on the Effective Sample Size. In this way we calculated the 
significance level of the relationship between two variables at a particular time-lag, 



 

 

independent of the relationship of each variable to itself at that time-lag. An 
alternative potential solution to this problem is to perform pre-whitening to remove 
auto-correlation in the data prior to analysing the cross-correlation (Martens et al., 
2003); however, this radical procedure can sometimes have unpredicted effects on 
results, and so we have preferred the Effective Sample Size method here.  


